
Aspect-oriented Programming as Model Driven Evolution

Mattia Monga
Università degli Studi di Milano

Dip. di Informatica e Comunicazione
Via Comelico 39, I-20135 Milano, Italy

mattia.monga@unimi.it

ABSTRACT
Aspect-oriented programming (AOP) aims at managing cross-
cutting concerns at the programming language level. AOP
is basically an evolution technique that may be used to aug-
ment a system with a new concern considered orthogonal
to the others. The augmentation is applied automatically
to a code base and is described with respect to a model of
it. With AspectJ-like approaches this model has to be de-
scribed as a set of join points, a solution that is in most
cases too low level. Programmers should instead have the
power of abstracting from the code base the model they pre-
fer. Then, the augmentations described with respect to this
specific model can be woven into the original system. Since
the model introduced is specific to the concern the designer
is trying to tackle, it may explicitly express design decisions,
fostering safe evolutions.

1. ASPECT ORIENTATION À LA ASPECTJ
The notion of aspect-oriented programming was intro-

duced by Kiczales et al. in [11]. Their approach was suc-
cessfully implemented in AspectJ [1] by Xerox PARC. As-
pectJ aims at managing tangled concerns at the level of
Java code. AspectJ allows for definition of first-class en-
tities called aspects. This construct is reminiscent of the
Java class: it is a code unit with a name and its own
data members and methods. In addition, aspects may intro-
duce an attribute or a method in existing classes and advise
that some code is to be executed before or after a specific
event (join points) occurs during the execution of the whole
program. Aspect definitions are woven into the traditional
object-oriented (Java) code at compile-time. Nevertheless,
events that can trigger the execution of aspect-oriented code
are run-time events: method calls, exception handling, and
other specific points in the control flow of a program. In
fact, integration, or weaving in the aspect-oriented jargon,
can be in principle performed in different ways and at dif-
ferent times. In fact, it can be done at link-time [2], at run
time [14], or at deployment-time [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD – LATE2005 Chicago, Michigan USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

The nature of the join points strongly affects the prop-
erties of the integration: its flexibility, the ability to un-
derstand the integrated system in terms of its components,
reusability of components, and the nature and complexity
of weaver and other supporting tools. In particular it af-
fects the evolution of the system, since potential join points
are an (implicit) interface to the aspect code. Any change
in this interface might break the aspect code. Moreover,
programmers should be very careful in writing aspects that
make use of the implementation details of classes as little as
possible if they want to be able to reuse their aspects. Also,
it is still not clear how to cope with the difficult problem of
multiple aspect interaction (see [8, 10, 5] for some work in
progress and discussion).

In this paper I claim that aspect-oriented programming
itself is basically an evolution technique that may be used
to augment a system. However, the augmentation is applied
automatically to a code base; thus, the augmentation should
be described with respect to a model of this code base. With
AspectJ-like approaches this model has to be described as
a set of join points, a solution that is in most cases too low
level. Instead, I propose to give programmers the power of
abstracting from the code base the model they prefer. Then,
the augmentations described with respect to this model can
be woven into the original system. The paper is organized
as follows: Section 2 defines aspect-oriented programming
as an evolution technique; Section 3 presents a running ex-
ample used in the following to explain the advantages of the
approach; Section 4 sketches the proposed model-driven ap-
proach, by leveraging on graph transformations; Section 5
shows the feasibility of the approach on the running exam-
ple, and, finally, Section 6 draws some conclusions.

2. AOP AS AN EVOLUTION TECHNIQUE
AspectJ is surely the most successful tool enabling aspect-

oriented programming: however, several other approaches to
separation of concern are normally considered to be aspect-
oriented. Some (for example, [16, 13]) depart considerably
from the concepts introduced in Section 1. Due to space
restrictions it is not possible to discuss them here, but in
order to avoid the common confusion between the end (sep-
aration of concern) and the means software engineers may
use to pursuit it (aspect-oriented development), this paper
would like to contribute in clarifying what is at the core of
aspect orientation.

A relevant characteristic of aspect orientation is its en-
abling of quantification (doing something when a specific

property happens to be true [9]1). Thus, the essential part
of any aspect-oriented approach is the two-step process, by
which quantification is exploited. In fact, aspects are in-
herently a posteriori with respect to some system they aug-
ment2. The system is described, designed, or implemented
in any coherent way. However, some issues are more or less
orthogonal to this description, design, or implementation.
Better, designers would like to deal with some concerns as
if they were orthogonal. Thus, in order to describe, design,
and implement this augmentations, a model (an abstrac-
tion) of the system is considered. The original conception
of the system and any augmentation are put together by
some algorithmic device that, by knowing the ontology of
the model, is able to weave augmentations to produce a
running system. It is worth noting that, since the model is
an abstraction of the system itself it is more general: as a
consequence of this generality, an augmentation concerning
a general element may also affect some entity that is not
part of the original system. For example, if one states that
“every function call should be traced by a println”, the
model of the system is the function call graph, and a uni-
versal quantification implies the affection of printlns too;
in order to avoid infinite recursion, one should state the
augmentation as “every function call in the original system
should be traced by a println”.

In other words, aspect-oriented approaches are evolution
techniques in which one defines a computation ∆ that trans-
forms a software system S in a new system S′. ∆ can be
defined by the tuple

< M, A, µ, ω >

where:

• M is a model of the system obtained by applying the
abstraction function

µ : S → M

,

• A is the augmentation of S defined on M

• ω denotes the weaving

ω : S, A → S′

.

According to this framework, an aspect-oriented approach
can be described by stating the features of < M, A, µ, ω >.
Thus, obliviousness about ∆ becomes a property of the con-
struction of S, irrelevant for the approach (while still sig-
nificant when the properties of S and, in general, S′ are

1In order to distinguish aop from event-driven program-
ming, Filman introduces the concept of obliviousness, for
programmers are more or less unaware of what advises can
be triggered by their code. Obliviousness is quite controver-
sial among aspect orientation experts. A loosely regulated
obliviousness as the one allowed by AspectJ constructs may
cause turbulent ripple effects that in general force program-
mers to take into account most of the statements of a system
in order to understand the properties of the system they are
building. As a consequence, several scholars are proposing
techniques to mitigate, discipline, or even avoid oblivious-
ness in aspect oriented approaches [6, 3]
2I mean that the system about which aspects predicate is
conceptually a priori, and not necessarily implemented be-
fore them

concerned). Distinct aspect-oriented approaches may differ
for the ontology and granularity of M (what can be quan-
tified), for the mapping mechanisms µ (what is considered
in mapping: which entities and which perspective, whether
a static viewpoint is involved, or the system is considered
in its run-time, link-time, deployment-time structure. This
is a critical decision that heavily affects information hiding
assumptions), for the ontology A (what can be part of the
augmentation), and for the weaving mechanism ω.

3. AN ASPECTJ EXAMPLE
In the following I will describe a simple yet typical use

of AspectJ. The code is taken from [12]. In that paper the
authors try to show that the AspectJ solution indeed im-
proves the modularity of the design with respect to a clas-
sical object-oriented solution. The example implements a
minimal graphical framework, as depicted in Figure 1. The
important point is that whenever a Shape changes the code
should signal the Display to update itself.

Figure 1: UML class diagram of the Shape example

A classical object-oriented solution would scatter the sig-
nalling code around the shape framework, thus tangling the
shape-logic concern with the shape-show concern. The As-
pectJ solution (see Listing 1) isolates the updating part in
an aspect: the advise is executed after that any operation
that changes a Shape is performed. Relevant operations are
listed in the pointcut definition.

An important design constraint is that the Display should
be updated only once for each top-level change to the state
of a Shape. Thus, the attributes x and y are made pack-
age public in order to enable transitory changes when the
implementation requires them. For example, the moveBy op-
eration of Lines is implemented by changing directly the
coordinates of its points, otherwise (by using setX and setY)
spurious Display.update would be triggered (see Listing 2).

Both the object-oriented and the aspect-oriented solutions
cannot make clear this constraint in the code. Thus a mod-
ification in the Line.moveBy operation like the one shown in
Listing 3 breaks the constraint with unpredictable effects.

In [12] the authors claim that global reasoning is required
to discover the complete structure of update signaling, since

Listing 1: An aspect to update the Display
aspect UpdateSignaling{
pointcut change():

execution(void Point.setX(int))
|| execution(void Point.setY(int))
|| execution(

void Shape+.moveBy(int, int));

after() returning: change() {
Display.update();
}

}

Listing 2: Transitory changes during move
public void moveBy(int dx, int dy){
getP1().x += dx; getP1().y += dy;
getP2().x += dx; getP2().y += dy;
// Display.update() needed
// in the object−oriented solution

}

Listing 3: Transitory changes during move by setters
public void moveBy(int dx, int dy){
getP1().setX(dx); getP1().setY(dy);
getP2().setX(dx); getP2().setY(dy);
// Display.update() needed
// in the object−oriented solution

}

Listing 4: Revised advise to update the Display
after() returning: change()

&& !cflowbelow(change()){
Display.update();
}

it is inherently a cross-cutting concern. However, the aspect-
oriented solution, by isolating the concern make easier to
change it to take into account a new problem. Thus, an
elegant solution would be to update the Display only when
no higher level changes are on going (see Listing 4).

Thus, the mapping µ operates at the level of the Java lan-
guage, even overriding encapsulation. It is aware of most of
the details of Java and it could, for example, distinguish be-
tween function calls and function dispatching, and take into
account static and dynamic types. In other words, it works
at the same level of abstraction used by the programmer
of S, enabling a kind of semantic patch of the system since
augmentations A are composed by every legal Java entity
and every join point can be augmented before, after, or in-
stead its detection. This is the source of several intricacies,
since AspectJ programmers have to be aware of both Java
and AspectJ subtilties to master their ∆.

4. REASONING AT A HIGHER LEVEL WITH
EXPLICIT MODELS

In most cases, the maintenance of a system designed with
an aspect-oriented approach à la AspectJ is quite difficult.
By working at the level of the Java code, one is often forced
to think about the woven code to understand what is needed
to face a new challenge. Some authors (e.g.,[12]) claim that
this is the very essence of cross-cutting: if one want to cope
with a cross-cutting concern, s/he has to take into account
the whole system (and, obviously enough, some sort of closed
word assumption is needed). I agree with that: cross-cutting
implies that one should consider the system as a whole; how-
ever, not the whole system, in all its details. Instead, an ab-
straction of the system should be considered. However, since
the effectiveness of the abstraction depends on the concern
one is working on, the aspect-oriented engine should pro-
vide some general mechanism that can be adapted to very
different problems. In AspectJ the abstraction mechanism
µ consists in the pointcut definition language that is both
too low level and not very flexible, since it can express only
abstractions about the lexical structure, the syntactic struc-
ture, or the run-time object model of the system, at the
same level of the plain Java code itself.

In order to solve this problem, designers should be pro-
vided with a more general abstraction tool. The result of
the abstraction is a model of the system (M) that is manip-
ulated by building an augmentation (A). The final system
(S′) is obtained by enforcing (at compile-, link-, run-time)
the super-imposition of A. Since very often models can be
expressed by simple graphs, composed by labelled nodes and
arcs, graph transformations seems a perfect candidate to be
the mean for defining A. In fact, aspect weaving can be
mapped naturally to graph rewriting [4]. Thus, the pro-
posed approach can be summarized as follows:

1. a model M of the system is abstracted by applying an

opportune µ to S. If the system S is implemented, µ
can be partially automated. M consists in a simple
graph < N, E >, where N is a set of labelled nodes,
and E a set of labelled arcs;

2. a graph transformation γ is defined, modelling the aug-
mentation to applied to S: the left hand side of γ
should be mapped on M in order to produce a new
graph M ′;

3. an augmentation A is obtained by applying a concrete-
making operation α to M ′;

4. eventually A is woven into S by the weaving engine ω.

The described approach decomposes the evolution of S in
S′ in the aggregated transformation µ ◦ γ ◦ α ◦ ω; this en-
ables the analysis of the charactectistic of each step in order
to infer which properties can be assumed to be preserved
during evolution. However, to be really useful this approach
required that α would be, as far as possible, an automatic
transformation. On this regard some interesting techniques
are described by [7].

5. THE EXAMPLE REVISED
The running example introduced in Section 3 is now tack-

led by exploiting the graph-grammar approach. Graph trans-
formation rules will be described with single-pushout graph
grammars, following the approach used by the tool Agg [15],
that was used for implementing the example.

A software engineer wants to augment the system sketched
in Figure 1 with the “Update Display” concern. She has to
model the system in the context of this concern. A possi-
ble solution is depicted in Figure 2(a): the Line and Point

classes are abstracted in two state diagrams. Objects of
those classes, with respect to the display, can be only in two
states: the CHANGED state represents the case when the dis-
play needs refresh, the UPTODATE state, instead, occurs when
no display updates are needed. Some of the methods of the
classes change the state of the objects, as represented by the
transitions.

By leveraging on this model, the introduction in the sys-
tem of the new concern “Update Display” can be described
by a graph transformation rule as the one depicted in Fig-
ure 3. The rule states that if there is a Transition be-
tween a State UPTODATE and a State CHANGED due to an
operation o, then an opposite transition “after returning o
Display.Update” should be introduced in the diagram.

Moreover, the software engineer can now express explicitly
also the constraint that the Display should be updated only
once for each top-level change to the state of a Shape. A
possible solution is shown in Figure 4: if the Operation x
depends on Operation y and y is advised to Display.Update,
then add a control flow condition stating that the advise
should be activated only when y is not executed inside x.
This rule is currently not useful, since no dependencies among
operations are present. However, when the system will be
evolved according to Listing 3, the model of the system will
contain also the part (b) of Figure 2 and this rule will be-
come relevant.

The (repeated) application of the above rules to the graph
of Figure 2 produce a new model, depicted in Figure 5. This
model can be translated in a concrete augmentation (see
Listing 5) to be woven in the system.

Listing 5: Concrete augmentation to update the Dis-
play

after() returning: Point.moveBy(){
Display.update();
}
after() returning: Point.setX()

&& !cflowbelow(Line.moveBy){
Display.update();
}
after() returning: Point.setY()

&& !cflowbelow(Line.moveBy){
Display.update();
}
after() returning: Line.moveBy(){
Display.update();
}

6. CONCLUSIONS
The meaning of cross-cutting can be defined only if one as-

sumes an existing structure. Thus, aspects are inherently a
posteriori with respect to a base system. An aspect-oriented
approach à la AspectJ forces designers to express aspects at
the same level of abstraction of the base system. This means
that an AspectJ aspect is no more than a semantic patch to
the base system; thus in most case is very difficult to rea-
son at the aspect level, since only a system level exists. The
approach described in this paper aims at introducing a new
level of abstraction needed when a cross-cutting concern is
solved: the base is system is modelled with respect to the
cross-cutting concern, manipulated with a graph grammar,
and finally implemented in a concrete augmentation that
can be woven in the system. Since the model introduced is
specific to the concern the designer is trying to tackle, it may
explicitly express design decisions, fostering safe evolutions.

Acknowledgements
The author would like to thank Katharina Mehner for her
insightful comments on a first draft of this paper.

7. REFERENCES
[1] AspectJ. http://www.aspectj.org.

[2] AspectWerkz. http://www.aspectwerkz.org, 2004.

[3] J. Aldrich. Open modules: A proposal for modular
reasoning in aspect-oriented programming. Technical
Report CMU-ISRI-04-108, Carnegie Mellon
University, 2004.

[4] U. Aßmann and A. Ludwig. Aspect weaving by graph
rewriting. Technical report, June 1999.

[5] D. Balzarotti and M. Monga. Using program slicing to
analyze aspect-oriented composition. In C. Clifton,
R. Lämmel, and G. T. Leavens, editors, Proceedings of
Foundations of Aspect-Oriented Languages Workshop
at AOSD 2004, pages 25–29, Lancaster (UK), Mar.
2004. Iowa State University.

[6] C. Clifton and G. Leavens. Obliviousness, modular
reasoning, and the behavioral subtyping analogy.
Technical Report TR 03-15, Iowa State University,
2003.

[7] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro.
Translating java code to graph transformation

(a) (b)

Figure 2: Model

Figure 3: Rule UpdateDisplay

Figure 4: Rule OnlyTop

Figure 5: Model revised

systems. In H. E. et al., editor, Proceedings of ICGT
2004, volume 3256 of LNCS, pages 383–398.
Springer-Verlag, 2004.

[8] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse, and interaction analisys of stateful aspects. In
Proceedings of the 3rd international conference of
aspect-oriented software development, Lancaster, UK,
Mar. 2004. ACM.

[9] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Proceedings of OOPSLA 2000 workshop on Advanced
Separation of Concerns, 2000.

[10] S. Katz. Diagnosis of harmful aspects using regression
verification. In G. T. Leavens, R. Lämmel, and
C. Clifton, editors, Foundations of Aspect-Oriented
Languages, Mar. 2004.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.

[12] G. Kiczales and M. Mezini. Aspect-oriented
programming and modular reasoning. In Proceedings
of the 27th International Conference on Software
Engineering, St. Louis, MO, 2005. ACM. to appear.

[13] Maya. Boh. In Proceedings of AOSD 2004, Lancaster,
UK, Mar. 2004.

[14] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In 3rd International conference
on Meta-level architectures and separation of concerns,
number 2192 in Lecture Notes in Computer Science,
pages 1–25. Springer-Verlag, 2001.

[15] M. Rudolf and G. Taentzer. Introduction to the
language concepts of Agg. TU Berlin, Nov. 1999.

[16] P. Tarr and H. Ossher. Hyper/JTM User and
Installation Manual. IBM Research, 2000.

