Language Support for Evolvable Software:
An Initial Assessment of Aspect-Oriented
Programming

Gianpaolo Cugola Carlo Ghezzi
Mattia Monga

Politecnico di Milano — Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32
I 20133 Milano — Italy

{cugola, ghezzi, monga}@elet.polimi.it
July 1999

1 Introduction and Motivations

Separation of concerns [1] is key to manage the complexity of understanding and evolv-
ing software. Software engineers have learned how to decompose a complex system into
simpler sub-systems, with the goal of making the complexity of sub-problems tractable.
Sub-problems are addressed relatively independently and the complete solution is built
by gluing together the sub-solutions. The parts that compose the whole system are
often modular units of functionality and this partitioning is well supported by existing
programming languages, thanks to object orientation, functional decomposition, etc.
Indeed, object-oriented programming languages, and the adoption of suitable program-
ming techniques, are important steps in the direction of making software evolution easier.
There are two major object-oriented concepts that affect evolution: encapsulation and
inheritance. Encapsulation limits the effects of change to localized portion of code. In-
heritance allows one to incrementally evolve a component by adding new features or
redefining existing features. Both encapsulation and inheritance are instances of the
more general concept of separation of concerns.

However, sometimes a concern is not easily encapsulated in a functional unit, because
it crosscuts the entire system, or parts of it. Synchronization, memory management,
network distribution, load balancing, error checking, profiling, security are all aspects of
computer problems that are unlikely to be separated in functional units.



As an example, suppose that a Java class is used to describe the pure functionality
of certain objects. Additional separate aspects may include:

e the definition of constraints on sequences of applicable operations (e.g., to get
information from an object one must first apply a setup operations, and then one
of a set of assignment operations);

e the definition of synchronization operations to constrain concurrent access to the
object (e.g., a consumer trying to read a datum from a queue must be suspended
if the queue is empty);

e the definition of how objects are distributed on the nodes of a network, either
statically or through dynamic migration.

Each aspect should be clearly identifiable; it should be self-contained and easily
changeable. Moreover, the various aspects should not interfere with one another. They
should not interfere with the features used to define and evolve functionality, such as
inheritance. That is, a composition algebra should be defined for the different linguistic
features.

This position statement is organized as follows: Section 2 introduces the current
stage of Aspect-Oriented Programming. Section 3 discusses the problems and pitfalls of
current Aspect-Oriented languages. Section 4 provides some conclusions and motivates
future briefly sets a research agenda.

2 A Brief Introduction to Aspect-oriented Programming

The central idea of Aspect Oriented Programming (AOP) [2] is to separate the code that
expresses an aspect (that is a property of the system not cleanly separable in a functional
unit) from the code that expresses functional units. A weaver braids (not necessarily
at compile-time) aspects with functional units to obtain the final system. Aspects are
expressed by the means of an Aspect Oriented Language (AOL), whilst functional units
are defined with a Component Language (CL). There can be a different AOL for each
kind of aspect someone wants to cope with. In AspectJ 0.1 [3], an environment for
aspect programming developed at Xerox PARC, the CL is Java and there is an AOL for
synchronization (COOL) and an AOL for expressing remote invocation (RIDL). In the
new version (0.3) of AspectJ [4], there is a unique general-purpose AOL that captures
the crosscutting nature of aspects, independent of what those aspects are.

3 Problems and Pitfalls

In this section, we give a few examples taken from AspectJ and we discuss a number
of drawbacks and pitfalls. More generally, our remarks enlighten the weaknesses of the
current state of the art in AOLs and indicate directionsof future investigation. In our
analysis of current AOLs, we found three main drawbacks:



1. Possible clashes between functional code (expressed using a CL) and other aspects
(expressed using one or more AOLs). Usually such clashes result from the need of
breaking encapsulation of functional units to implement a different aspect. As an
example, in AspectJ, aspect code may access the private attributes of a class. This
can be useful in some situations but results in a potentially dangerous breaking of
class encapsulation. Imagine a situation in which a class Foo has a private variable
i that needs to be accessed by aspect Bar. Imagine also that subsequently class Foo
is changed by changing type of variable i from int to float. This results in breaking
the aspect code. In general, it is not possible to change the internals of a functional
unit without changing other aspects.

2. Possible clashes between different aspects. Suppose (see Figure 1) that a class
Point exists with two variables x and y and two methods, setX and sety. Suppose
we have developed an aspect TraceBefore to trace the start of execution of methods
of class Point and an aspect TraceAfter to trace the end of execution of the same
methods. The two aspects work perfectly when applied individually (for example,
to trace the start of execution or to trace the end of it). Unfortunately, since they
introduce the same method (i.e., method print) with different definitions, they fail
when applied together.

aspect TraceBefore{

introduce private void
Point . print (String methodName){
System . out. println ("Tracing method "+

class Examplel{ methodName+" before");
public static void main(String args[]){ System.out. println ("x="+4x+" y="=y);
Point p=mew Point (); }
p.setX (1); advise void Point.setX(int i),
p.setY (1); void Point.setY (int i){
static before{
} print (thisJoinPoint . methodName);
}
class Point{ }
int x,y; }
public Point (){ aspect TraceAfter {
x=y=0; introduce private void
Point . print (String methodName){
public void setX (int x){ System . out. println ("Tracing method "+
this . x=x; methodName+" before");
} System . out. println ("x="4x+" y="=y);
public void setY (int y){ }
this . y=y; advise void Point.setX (int i),
void Point.setY (int i){
} static after {
print (thisJoinPoint . methodName);
}
}
}

Figure 1: An example of clash between two aspects

3. Possible clashes between aspect code and specific language mechanisms. One of



the best known examples of problems that falls into this category is inheritance
anomaly [5]. This term was first used in the area of concurrent object-oriented
languages [6, 7, 8] to indicate the difficulty of inheriting the code used to imple-
ment the synchronization constraints of an application written using one of such
languages. In the area of AOP languages, the term can be used to indicate the dif-
ficulty of inheriting the aspect code in the presence of inheritance. As an example,
consider class Window in Figure 2. Methods show and paint cannot be called before
method init is called. This behavior is controlled by the aspect WindowSync. Now
consider class SpecialWindow in Figure 3. It redefines method show in such a way that
it does not require a previous invocation of method init. (Note that this way of
subclassing Window is consistent with the OO type theory, which requires subclasses
not to strengthen the precondition for redefined methods.) In principle, it should
be possible to ”inherit” the WindowSync aspect just modifying the code associated
to method show (e.g., replacing it with the empty sequence). Unfortunately, this
is not possible and it is necessary to rewrite entirely the aspect code (see aspect
SpecialWindowSync in Figure 3).

class Example2{
public static void main(String args[]){
Window w=new Window ();

w. init (); aspect WindowSync{
w. show ; introduce boolean Window. initDone=false ;
} advise void Window. init (){
} static after {
initDone=true;
class Window{ }
public void init (){ }
/) .. advise void Window. show (),
void Window. paint (){
// Requires initialization static before{
public void show (){ if (! initDone)
/) .. System.out. println ("Error: init never called");
}
// Requires initialization }
public void paint (){ }
/)

Figure 2: An aspect to control the sequence of invocation of different methods

All these problems show that AOP is still in its infancy. The experience gained
in the area of concurrent object-oriented-languages [5] suggests that these problems
might result more from the linguistic choices made in developing AOLs, rather than
from intrinsic limitations of the approach. The problem of finding adequate linguistic
features which do not suffer from inheritance anomaly is thus an open research topic.



aspect WindowSync{

introduce boolean Window. initDone=false ;
advise void Window. init (){

static after {

class SpecialWindow extends Window{ initDone—true :
- )

// This version of show does mnot }
// meed any initialization }
p;l/ﬂlc void show (){ advise void Window. paint (){

static before{
if (! initDone)
System . out. println ("Error: init never called");

}
}
}

Figure 3: An example of inheritance anomaly

4 Conclusion and Open Issues

The goal of developing evolvable software should permeate all phases of software produc-
tion: from requirements to specification to design and implementation. In this paper, we
deliberately concentrated on the programming phase. We introduced AOP and showed
that it is based on a conceptually appealing idea. AOP tries to provide linguistic mech-
anisms to factor out different aspects of a program, which can be defined, understood,
and evolved separately. It pushes the idea of separation of concerns one step forward
with respect to existing programming language constructs, which simply provide ways
to encapsulate single functionality in a unit. Aspects in an AOP resemble ViewPoints
in design and specification, as advocated by [9].

AOP, however, is still in its infancy. It is more an open research area than an existing
technology that one can use. The problems and pitfalls we outlined in the previous
section indicate that it is still unclear which constructs an AOL should provide and
how they should interact with the functional language and the mechanisms provided to
support functional evolution. As we observed, a fully general-purpose AOL, like AspectJ,
with full visibility of the internal details of its associated functional module, violates the
principles of protection and encapsulation. On the other end, one might predefine a
set of possible aspects an AOL should deal with, and then provide ad-hoc AOLs with
constructs supporting limited visibility of certain features of the functional module to
which the different aspects apply. The tradeoff is between flexibility and power, on
one side, and understandability and ease of change on the other. (For a preliminary
discussion of these points, see [10]).

In addition, we feel that aspects should be definable in a formal way. The formal
definition will allow the AOL to define an algebra of aspect composition, clearly spec-
ifying when certain combinations of aspects are applicable (and what the effect is) or,
conversely, when their combination is not possible or not defined, because it generates
inconsistencies. Again, the problems arising here are strictly related to the ones being
investigated in the case of viewpoints and viewpoint composition.

Research work at the programming language level should go hand-in-hand with ex-



perimental work, which should try to assess the usefulness and usability of the language.
This is especially important since our claim is that AOP can be a vehicle to support
evolvability, and this eventually will require some sort of experimental validation. [11]
did an interesting initial experiment using AspectJ version 0.1. Experiments of similar
kind will be needed, as further progress will be made in AOP technology.

References

1]
[2]

E. W. Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin, “Aspect-oriented programming,” in Proceedings of the Furopean Con-
ference on Object-Oriented Programming (ECOOP), (Finland), Springer-Verlag,
June 1997.

XEROX Palo Alto Research Center, AspectJ: User’s Guide and Primer, 1998.
XEROX Palo Alto Research Center, AspectJ: User’s Guide and Primer, 1999.

S. Matsuoka and A. Yonezawa, “Analysis of inheritance anomaly in object-oriented
concurrent programming languages,” in Research Directions in Concurrent Object-
Oriented Programming (G. Agha, P. Wegner, and A. Yonezawa, eds.), pp. 107-150,
Cambridge, MA: MIT Press, 1993.

A. Yonezawa and M. Tokoro, eds., Concurrent Object-Oriented Programming. Cam-
bridge, Mass.: The MIT Press, 1987.

G. Agha, “Concurrent object-oriented programming,” Communications of the
ACM, vol. 33, pp. 125-141, Sept. 1990.

O. Nierstrasz, “Composing active objects,” in Research Directions in Concurrent
Object-Oriented Programming (P. W. G. Agha and A. Yonezawa, eds.), pp. 151-171,
MIT Press, 1993.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke, “View-
points: A framework for integrating multiple perspectives in systems development,”
International Journal of Software Engineering and Knowledge Engineering, vol. 1,
no. 2, pp. 31-58, 1992.

G. Kickzales, J. Lamping, C. V. Lopes, A. Mendhekar, and G. Murphy, “Open im-
plementation design guidelines,” in Proceedings of the 19" International Conference
on Software Engineering, (Boston, MA), may 1997.

G. Kickzales, E. L. Baniassad, and G. C. Murphy, “An initial assessment of aspect-
oriented programming,” in Proceedings of the 215t International Conference on Soft-
ware Engineering, (Los Angeles, CA), may 1999.



