
Using Code Normalization for Fighting Self-Mutating Malware

Danilo Bruschi, Lorenzo Martignoni, Mattia Monga
Dipartimento di Informatica e Comunicazione

Università degli Studi di Milano
Via Comelico 39, 20135 Milano

{bruschi,martign,monga}@dico.unimi.it

Abstract
Self mutating malware has been introduced by computer
virus writers who, in ’90s, started to write polymorphic and
metamorphic viruses in order to defeat anti-virus products.
In this paper we present a novel approach for dealing with
self mutating code which could represent the basis for a new
detection strategy for this type of malware. A tool prototype
has been implemented in order to validate the idea and the
results are quite encouraging, and indicate that it could rep-
resent a new strategy for detecting this kind of malware.

1 Introduction
Most of malware detection mechanisms are based on pat-
tern matching, i.e. they recognize malware by looking for
the presence of malware signatures1 inside programs, IP
packet sequences, email attachments etc.; the most obvious
strategy for circumventing them was to write mutating mal-
ware, i.e. malicious codes which continuously change their
own code and, consequently, render signatures completely
useless.

Self mutation is a particular form of code obfusca-
tion2, which is performed automatically by the code itself.
Some well known self mutating programs are METAPHOR,
ZMIST and EVOL. The diffusion of this type of malware is
quite worrying as, in some papers recently appeared in lit-
erature [8, 7], it has been shown that current commercial
virus scanners can be easily circumvented by using simple
obfuscation techniques.

In this paper we present a novel approach for dealing
with self mutating code which could represent the basis for
a new detection strategy for this type of malware. Even
if in [6] it has been proven that perfect detection of self-
mutating code is a non computable problem, we believe that

1By malware signature we mean peculiar sequences of bytes (usually
represented by a regular expression) which characterize a specific malware
with respect to any other program.

2Code obfuscation is a set of techniques adopted for transforming a
program into an equivalent one which is more difficult to understand yet it
is functionally equivalent to the original.

the strategy we present has very interesting implications on
the practical point of view.

Our strategy, which can be classified as a static analy-
sis approach for verifying security properties of executable
code, is based on the following observation (see also [17]).
Since we target automatic mutations, mutating programs
have to be able to analyze their own bodies and extract
from them all the information they need to mutate into next
generations, and further generations must be able to do the
same. Thus, mutation mechanisms adopted by this type of
code have to be easily computable and in particular they
have to be efficient. This implies that it should be possible to
reverse the mutation process and derive the archetype from
which mutations have been constructed. More precisely, we
observed that self mutating programs for producing the next
generation usually produce highly unoptimized code, that is
code which contains a lot of redundant and useless instruc-
tions, on the other hand all the copies of the same malware
have to share common pieces of code. Thus our idea is that
of reducing any piece of code which we suspect to contain
some malware to a normal form, roughly speaking a code
which does not contain anything not needed for its correct
functioning, and verify whether it shares common features
with the normalized code of known malware. In order to
implement the normalization process we referred to well
known code optimization techniques adopted by compilers’
writers (for example see [3, 18]).

Once the code has been normalized the next problem to
solve is that of verifying its adherence to some malware,
adopting a strategy which guarantees a low false positive
percentage. For realizing such a phase we considered clone
detection techniques [16, 15, 5]. We briefly remember that
clone detection is primarily used in software engineering
to identify fragments of source code that can be consid-
ered similar despite little differences. We adapted such
techniques to work on binary code instead of source code,
since malware is normally available only as a compiled ex-
ecutable.

We implemented a tool prototype in order to validate our
idea and the results are quite encouraging, and indicate that

1

the current stable version of such tool should be considered
as a basic component in the design of security architectures.

This paper is organized as follows. In Section 2 we de-
scribe mutation techniques adopted by malware writers. In
section 3 we describe the optimization techniques we imple-
mented for removing the mutations previously described. In
section 4 we provide a brief overview of the clone detection
techniques we decide to adopt. In Section 5 we describe the
prototype implemented while in section 6 we describe the
experiments we performed with our prototype and the pre-
liminary results. Section 7 discusses related works. In the
final section some conclusions on the work presented are
drawn.

2 Techniques used for mutations
The mutation of an executable object can be performed us-
ing various types of program transformations techniques,
exhaustively described in [11, 12]. For the sake of com-
pleteness we report in the following a brief summary of the
most common strategies used by a malicious code to mutate
itself.

Instructions substitution

A sequence of instructions is associated to a set of alterna-
tive sequences of instructions which are semantically equiv-
alent to the original one. Every occurrence of the original
sequence can be replaced by an arbitrary element of this
set. For example, as far as the eax and ebx registers are
concerned, the following code fragments are equivalent.

Machine instructions Equivalent form
mov ecx,eax xor ebx,eax
mov eax,ebx xor eax,ebx
mov ebx,ecx xor ebx,eax

Instructions permutation

Independent instructions, i.e., instructions whose computa-
tions do not depend on the result of previous instructions,
are arbitrarily permutated without altering the semantic of
the program. For example, the three statements a = b *
c, d = b + e and c = b & c can be executed in any
order, provided that the use of the c variable precedes its
new definition.

Garbage insertion

Also known as dead-code insertion. It consists of the in-
sertion, at a particular program point, of a set of valid in-
structions which does not alter the expected behavior of
the program. For example given the following sequence
of instructions a = b / d, b = a * 2; any instruction

which modifies b, can be inserted between the first and the
second instruction; moreover instructions that reassign any
other variables without really changing their value can be
inserted at any point of the program (e.g., a = a + 0, b
= b * 1, . . .).

Variable substitutions

The usage of a variable (register, memory address or stack
element) is replaced by another variable belonging to a set
of valid candidates preserving the behavior of the program.

Control flow alteration

The order of the instructions, as well as the structure of
the program, is altered introducing fake conditional and un-
conditional branch instructions such that at run-time the or-
der in which single instructions are executed is not mod-
ified. Furthermore, direct jumps and function calls can be
translated into indirect ones whose destination addresses are
camouflaged into other instructions in order to prevent an
accurate reconstruction of the control flow.

3 Normalization techniques
Code normalization is the process of transforming a piece
of code into a canonical form more useful for comparison.

Most of the transformations used by malware to dissim-
ulate their presence (see Section 2) led to a major conse-
quence: the code size is highly increased. In other words,
one could view the variants of a piece of malware as unop-
timized versions of its archetype3, since they contain some
irrelevant computations whose presence has only the goal
of defeating recognition. Normalization of a malware aims
at removing all the “dust” introduced during the mutation
process and optimization techniques can be used to reduce
the “dust”.

Generally speaking, optimization is performed by the
compiler to improve the execution time of the object code
or to reduce the size of the text or data segment it uses.
The optimization process encompasses a lot of analysis and
transformations that are well documented in the compilers
literature [3, 18]. As shown by [19, 13] the same techniques
can also be directly applied to executable in order to achieve
the same goals. We deeply investigated such techniques and
we found that some of them can be successfully used in or-
der to fight the mutation engines adopted by self mutating
malware. In the following we briefly describe such tech-
niques.

3The term archetype is used to describe the zero-form of a malware,
i.e. the original and un-mutated version of the program from which other
instances are derived.

2

Instructions meta-representation

In order to ease the manipulation of object code, we used
a high-level representation of machine instructions that
makes explicit their semantics.

All the instructions of a CPU can be classified in the
following categories: (i) jumps, (ii) function calls and re-
turns, and (iii) all the other instructions that have side ef-
fects on registers, memory and control flags. In the fol-
lowing we call the instructions in category (iii) expres-
sions. Comparison instructions can be considered as ex-
pressions because they usually perform some arithmetics
on their operands and then update a control register accord-
ingly (e.g. eflags on IA-32). Our high-level represen-
tation expresses the operational semantics of every opcode:
which registers, memory address and control flags they are
using and modifying, etc. A simple example follows:

Machine instruction Intermediate form
pop eax r10 = [r11]

r11 = r11 + 4
lea edi,[ebp] r06 = r12
dec ebx tmp = r08

r08 = r08 - 1
NF = r08@[31:31]
ZF = [r08 = 0?1:0]
CF = (˜(tmp@[31:31]) ...
...

It is worth noting that even the simple dec instruction
conceals a complex semantics: its argument is decremented
by one and six control flags are updated according to the
result (the above example is reduced for space constraints).
A high-level representation makes easy to take into account
all the side effects, e.g., a subsequent branch that relies on
control flags to decide whether to jump or not.

Propagation

Propagation is used to propagate forward values assigned
or computed by intermediate instructions. Whenever an in-
struction defines a variable (a register or a memory cell)
and this variable is used by subsequent instructions with-
out being redefined, then all its occurrences can be replaced
with the value computed by the defining instruction. The
main advantage of propagation is that, it allows to gener-
ate higher level expressions (with more than two operands)
and eliminate all intermediate temporary variables that were
used to implement high-level expressions. The following
code fragment sketches a simple scenario where, thanks to
propagation, a higher level expression is generated:

Before propagation After propagation
r10 = [r11] r10 = [r11]
r10 = r10 | r12 r10 = [r11] | r12
[r11] = [r11] & r12
[r11] = ˜[r11]
[r11] = [r11] & r10 [r11] = (˜([r11] & r12))

& ([r11] | r12)

Dead code elimination

Dead instructions are those whose results are never used.
For example, if a variable is assigned twice but it is never
used between the two assignments (i.e., does not appear on
the right hand side of an expression), the first assignment
is consider dead or useless (the second is called a killing
definition of the assigned variable). For example, the first
assignment of the little instructions sequence shown above
(r10 = [r11]) is useless after propagation. Dead in-
structions, without side effects, can be safely removed from
a program because they do not contribute to the computa-
tion.

Algebraic simplification

Since most of the expressions contains arithmetical or log-
ical operators, they can sometimes be simplified according
to the ordinary algebraic rules. When simplification are not
possible, variables and constants could be reordered to en-
able further simplifications after propagation. The follow-
ing table shows some examples of the rules that can be used
to perform simplification and reordering (c denotes a con-
stant value and t a variable):

Original expression Simplified expression
c1 + c2 the sum of the two
t1 − c1 −c1 + t1
t1 + c1 c1 + t1
0 + t1 t1
t1 + (t2 + t3) (t1 + t2) + t3
(t1 + t2) ∗ c1 (c1 ∗ t1) + (c1 ∗ t2)

Control flow graph compression

The control flow graph can be heavily twisted with the in-
sertion of fake conditional and unconditional jumps. A
twisted control flow graph could impact on the quality of
the whole normalization process because it can limit the ef-
fectiveness of other transformations. At the same time other
transformations are essential to improve the quality of the
normalization of the control flow graph.

Expressions which represent branch conditions and
branch (or call) destinations could benefit from the results of
previous transformations: to be able to calculate the result
of a branch condition expression means to be able to predict
whether a path in the control flow graph will be followed or

3

not. If a path is never accessed then all paths that are orig-
inating from it and that have no other incoming paths will
never be accessed too (i.e., they are unreachable) and can
be removed from the original control flow graph. The same
applies to expressions that represent the addresses of indi-
rected function calls and of indirected branches. If an ex-
pression could be calculated then the indirection would be
replaced with a fixed constant address and that means that
new nodes can precisely be added to the control flow graph.

Chances for normalization may also arise even if an ex-
pression can not be fully calculated. For example, suppose
that propagation into one of the operands of a branch condi-
tion is not possible because there are two different incoming
definitions of the same variable coming from two different
concurrent paths. Nothing can be told about the truth value
of the condition because it still contains a variable. But, if
looking back at the values that an incoming variable may
assume, we find only fixed values, and not variables, we
can evaluate the condition for all possible incoming values
and if the result is always the same, one of the two outgo-
ing paths can be removed from the control flow graph. The
same approach can be used to determine the set of possible
target addresses of an indirect jump (or function call).

4 Comparison techniques
Unfortunately we can not expect that, at the end of the nor-
malization, all the samples of a self-mutating malware re-
duce to the same normal form. Differences that can not be
handled (e.g., some temporary assignment that cannot be re-
moved) usually remains. For these reasons it is not possible
to compare two samples just comparing byte per byte their
normalized form. For dealing with such a problem we need
a method that is able to provide a measure of the similarity
among different pieces of code, which allow us to capture
the effective similarity of them.

The problem of comparing codes in order to discover
common fragments among them is known as clone detec-
tion. Clone detection is primarily used by software engi-
neers to detect equivalent blocks within source code, in or-
der to factor out them in macros and function calls, reducing
the size of the code and improving its understandability and
maintainability. Clone detection techniques can rely on the
analysis of the text of the code [14], or on some more so-
phisticated representation of the program. [4] uses tokens,
[5] compares the abstract syntax trees of two fragments dis-
carding the smallest subtrees that should represent variables
and constants, [15] uses slicing to construct the biggest set
of equivalent instructions of two code fragments. In [16]
the structure of a code fragment is characterized by a vec-
tor of software metrics and a measure of distance between
different fragments is proposed. In our approach, we ex-
ploited this last technique since it allows for choosing the

appropriate accuracy level by selecting different thresholds.
Moreover, the distance can be used to quantify the similar-
ity of two code fragments.

The metrics we decided to adopt during our experiments
are the following:

1. m1: number of nodes in the control flow graph;

2. m2: number of edges in the control flow graph;

3. m3: number of direct calls;

4. m4: number of indirect calls;

5. m5: number of direct jumps;

6. m6: number of indirect jumps;

7. m7: number of conditional jumps;

The fingerprint of a code fragment is then simply a tu-
ple which elements are the metrics listed above: (m1 :
m2 : m3 : m4 : m5 : m6 : m7). Code fragments
are compared by comparing their fingerprints and finger-
prints are compared calculating their Euclidean distance:√∑7

i=1 (mi,a −mi,b)
2, where mi,a and mi,b are the ith

metric calculated respectively on fragment a and b.
The metrics have been chosen such that they should cap-

ture the structure of an executable code and it would be
possible to evaluate the benefit gained from the normaliza-
tion. We expect that after the normalization process most of
the fake conditional jumps get translated into unconditional
jumps or removed, fake indirect function calls and jumps
get translated into direct, because the destination addresses
have been computed, and nodes in the control flow that are
not reachable get simply removed. We expected that most
of the samples, after normalization, have the same finger-
print of the archetype.

5 The prototype
In this Section we describe in detail the architecture of our
tools and its main components.

Figure 1 represents the steps of the analysis. The mal-
ware executable is processed through a disassembler and
it is converted into an intermediate form. Further steps of
the analysis work on the intermediate representation. The
malware is processed by a set of transformations in order
to reshape the code and to remove, as much as possible,
redundant and useless instructions while trying to compact
their form. Each step of the normalization process is highly
dependent on both prior and subsequent steps; for this rea-
son they are repeated until the latest normalized form does
not introduce new improvements over the previous one. At
the end of the normalization process the resulting malware,

4

Machine
Code

High-level
assembly

Propagation
Dead-code elimination

Algebraic simplification

Evaluator

Control Flow
normalization

Figure 1: Normalization and identification process.

that should resemble as much as possible its archetype, is
processed by the evaluator in order to compare it with other
samples.

We built our prototype on top of BOOMERANG [1], an
open source decompiler. The aim of BOOMERANG is to
translate machine code programs into an equivalent source
code and to do this it needs to reconstruct, from low level
machine instructions, high level concepts that can be trans-
lated into source code. BOOMERANG provides an excellent
framework which can be used to perform any kind of ma-
chine code manipulation, so we adapted it in order to pursue
our goals. A brief description about how the normalization
process is implemented follows.

During the first phase of the analysis the executable code
is loaded and processed by a recursive disassembler. The
disassembler translates each machine instruction into an
internal representation that is constructed starting from a
given specification expressed in the SSL [10] language that
describes each machine instruction in term of their seman-
tic. Moreover sequential instructions, thanks to the recur-
sive behavior of the disassembler, are grouped into blocks
and blocks are connected together according to jump in-
structions to construct the control flow graph of each func-
tion or fragment. Subsequently, instructions are converted
into static single assignment form4 on which is then per-
formed the dataflow analysis. At the end of dataflow analy-
sis propagation, algebraic simplification, control flow com-
pression and removal of unreachable and dead instructions
take place. Finally the last normalized form of the input

4Static single assignment form, or simply SSA, is an intermediate repre-
sentation in which every variables is defined only once and every definition
generates a new variable. SSA is used to simplify the dataflow analysis.

sample is emitted, still represented into the intermediate
form, provided with the fingerprint based on the metrics cal-
culated at the end of the process. The similarity of the sam-
ples, instead, is calculated by a separate tool that receives in
input a set of fingerprints a returns a number representing
their similarity degree.

Our prototype takes advantage of BOOMERANG facili-
ties to perform the whole normalization; whenever neces-
sary they have been fixed and improved. For example, the
control flow compression routine has been enhanced in or-
der to deal with obfuscated branches predicates and to re-
move pending unreachable nodes; the algebraic simplifica-
tion routines has also been enhanced to handle a bigger set
of simplifications not previously handled and without which
normalization would have been less effective. It is worth
noting that none of the simplifications and the transforma-
tions implemented are malware specific.

6 Experiments and results
We performed our experiments on the METAPHOR [2]
virus which is one of the most interesting malware from
the mutation point of view. METAPHOR evolutes itself
through five steps: (i) disassembling of the current payload,
(ii) compression of the current payload using some trans-
formation rules, (iii) permutation of the payload introducing
fake conditional and unconditional branches, (iv) expansion
of the payload using some transformation rules and (v) as-
sembling of the new payload.

Unfortunately, the whole mutation process is applied
only on the malware payload that is stored encrypted in the
binary. We then performed our experiments on the decryp-
tor that is mutated only using step (iv)5, but we expect sim-
ilar results on the payload since our normalization is able
to cancel most of the transformations introduced in steps
(ii) and (iii). Moreover, compression is only used to avoid
explosion of the size during evolution and its influence on
the structure of the code is analogous to expansion, just the
inverse way.

The experiments we performed are the following. The
malware archetype was executed in a controlled environ-
ment in order to infect some dummy programs; after the
first infection the newly infected program were executed to
infect new dummy programs, and so on, until we collected
114 samples. The infected dummy programs were com-
pared with their uninfected copy such that it was possible
to extract the decryption routine and the encrypted payload.
The extracted decryption routines were then given in input
to our prototype in order to perform the normalization and
the comparison. Firstly we computed the fingerprint of each

5Instructions are not reordered but the control flow graph is mutated
with the insertion of new branches.

5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 25 50 75 100

di
st

an
ce

 fr
om

 th
e

ar
ch

et
yp

e

samples

before normalization
after normalization

Figure 2: Distance of the analyzed samples from the mal-
ware archetype before and after the normalization.

decryption routine without performing any normalization.
Subsequently, we performed the normalization process

and computed the fingerprints of the rearranged samples.
The calculated fingerprints were then compared with the
one that resembles the archetype. We noticed that the
fingerprints of the original samples (i.e., without having
carried out normalization) were almost different from the
archetype and that just a little subset matches exactly, prob-
ably because during mutation weak transformations were
chosen. After the normalization most of the samples, in-
stead, matched perfectly the archetype:

Distance range # of samples (before norm.) # (after norm.)
0.0 - 0.9 29 85
1.0 - 1.9 9 19
2.0 - 2.9 38 2
3.0 - 3.9 4 7
4.0 - 4.9 21 1
> 4.9 13 0

The results of comparison of the similarity degree with
and without normalization are depicted in figure 2. We man-
ually inspected the normalized samples that still presented a
different structure and noticed that the differences were due
to some garbage located after the end of the decryption rou-
tine that were recognized as valid machine instructions and
became part of the control flow graph. This is a limitation
of the comparison function chosen, because it is susceptible
to garbage in the control flow graph. We also measured the
difference between the number of instructions in the orig-
inal samples and in the normalized ones, they were about
57% less.

Furthermore, we collected randomly a small number of
system executable binaries, normalized them and compared
their functions fingerprints with the archetype one, just to
see what would have been their degree of similarity. The

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

di
st

an
ce

 fr
om

 th
e

ar
ch

et
yp

e

samples

Figure 3: Distance of some harmless functions from the
malware archetype.

results, for a total of 1000 functions, are shown in figure 3
and in the following summary:

Distance range # of functions
0.0 - 0.9 0
1.0 - 1.9 4
2.0 - 2.9 28
3.0 - 3.9 44
4.0 - 4.9 46
> 4.9 827

The current prototype implementation imposes some re-
strictions on the type of program characteristic that can be
used to measure the similarity of the samples, mostly be-
cause of the presence of dead code. A manual inspection of
the normalized samples highlighted that the main problem
was the presence of temporary defined intermediate mem-
ory cells that could not be removed from the code because
it was not possible to tell if they were used or not by other
instructions. We can not tell if they are dead until we are
not able to add to our prototype a smarter alias analysis al-
gorithm; actually the memory is handled in a conservative
way. The use of more rigorous and uncorrelated metrics
would allow to have a more accurate evaluation of the qual-
ity of the normalization process. Another problem we en-
visioned, even if we did not found evidence of it in our ex-
periments, is that one could introduce branches conditional
on the result of a complex function. It could be difficult to
evaluate statically that the value of the function falls always
in a given range, but this could be exploited by a malicious
programmer. However, the complexity of the function is
still bounded by the constraint that it has to be introduced
automatically (see previous discussion in Section 1).

Although the normalization of our samples was quite fast
(less than a second each) performances could be an issue
with big executables; our attempts to normalize common
executables of a UNIX system took an enormous amount of

6

time and system resources. The running time, calculated on
an Intel 3.0Ghz machine, ranges from 0.2 to 8 seconds per
functions.

7 Related works
The idea of using object code static analysis for dealing
with obfuscation malware has been firstly introduced by
Christodorescu and Jha in [7]. In such a paper they in-
troduced a system for detecting malicious patterns in exe-
cutable code, based on the comparison of the control flow
graph of a program and an automaton that described a ma-
licious behavior. More precisely, they generalized a pro-
gram P translating it into an annotated control flow graph
using a set of predefined patterns and then performed detec-
tion by determining whether there existed, or not, a bind-
ing such that the intersection between the annotated control
flow graph and the malicious code automaton (i.e., the ab-
stract description of the malware archetype) was not empty;
if a binding existed then P was classified as malicious. The
obfuscation techniques they were able to deal with using
such an approach were registers reassignments, control flow
rearrangement through unconditional jumps plus a limited
set of dead-code instructions as they were detected through
patterns during annotation. A further refinement of the their
work has been presented in [9]. The new malware detec-
tion algorithm received in input a program (converted into
an intermediated form and which control flow is normal-
ized removing useless unconditional jumps) and a template
describing a malicious behavior and tried to identify bind-
ings that connected program instructions to template nodes.
Whenever a binding inconsistence was found (e.g. two dif-
ferent expression are bounded to the same template vari-
able) a decision procedure (based on pattern matching, ran-
dom execution and theorem proving) was used to determine
if the inconsistence was due to an absence of the malicious
behavior in the program or because the binding had been
obfuscated inserting garbage. The algorithm returned true
if the whole template had been found in the program, don’t
know otherwise. In both papers some experimental results
obtained with system prototypes showed that the systems
worked pretty well, especially the second one because the
class of obfuscation transformations was wider than the one
handled by the first: the system was able to detect using
only a template different hand-made variants of the same
malware. At the moment the real problem of these ap-
proaches is speed.

We decided to concentrate our efforts on malware that is
able to obfuscate itself autonomously so our approach deals
with mutations in a way that is closer to the ways in which
it is generated. Thus, we can revert lot of the modifications
that malware suffered during its life cycle by reverting the
mutation process. The works described above especially

concentrate on comparison but do not try to fight the ob-
fuscation, so if the malicious code is highly obfuscated the
proposed detection techniques could become useless. We,
instead, have proposed that deobfuscation becomes a funda-
mental step in the analysis process and we also have shown
which techniques can be successfully used.

8 Conclusions and future works
We presented a strategy, based on static analysis, that can be
used to pragmatically fight malicious codes that evolve au-
tonomously in order circumvent detection mechanisms. To
verify our ideas we developed a prototype and successfully
used it to show that the transformations used by malware
can be reverted and that a malware that suffers a cycle of
mutations can be brought back to a canonical shape that is
highly similar to its original one. The similarities among
the analyzed samples were measured to determine the qual-
ity of the whole process. The same approach was also used
to compare generic executables with the malware in analy-
sis.

Our original intentions were to use more metrics, for ex-
ample the number of different used and defined variables,
the total number of statements and the number of concurrent
variable definitions reaching program assignments. The im-
provement of the prototype will be targeted by future works.
We are also planning to work on more accurate techniques
for the comparison of pieces of code that are not susceptible
to undesired garbage and that could provide a more reliable
way for the detection of known malicious codes in generic
executables, even when they are located within already ex-
isting and harmless functions.

References
[1] Boomerang. http://boomerang.

sourceforge.net.

[2] MetaPHOR. http://securityresponse.
symantec.com/avcenter/venc/data/
w32.simile.html.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[4] B. S. Baker. On finding duplication and near-
duplication in large software systems. In Proceed-
ings of the second working conference on reverse engi-
neering, pages 86–95, Los Alamitos, CA, USA, 1995.
IEEE.

[5] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees. In

7

ICSM ’98: Proceedings of the International Confer-
ence on Software Maintenance, page 368, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[6] D. M. Chess and S. R. White. An undetectable com-
puter virus. In Proceedings of Virus Bulletin Confer-
ence, Sept. 2000.

[7] M. Christodorescu and S. Jha. Static analysis of exe-
cutables to detect malicious patterns. In Proceedings
of USENIX Security Symposium, Aug. 2003.

[8] M. Christodorescu and S. Jha. Testing malware detec-
tors. In Proceedings of the 2004 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis
(ISSTA 2004), pages 34–44, Boston, MA, USA, July
2004. ACM Press.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Secu-
rity and Privacy (Oakland 2005), Oakland, CA, USA,
May 2005.

[10] C. Cifuentes and S. Sendall. Specifying the semantics
of machine instructions. In 6th International Work-
shop on Program Comprehension - IWPC’98, Ischia,
Italy, June 24-26 1998, pages 126–133. IEEE Com-
puter Society, 1998.

[11] F. B. Cohen. A Short Course on Computer Viruses,
2nd Edition. Wiley, 1994.

[12] C. Collberg, C. Thomborson, and D. Low. A taxon-
omy of obfuscating transformations. Technical Report
148, Department of Computer Science, University of
Auckland, July 1997.

[13] S. K. Debray, W. Evans, R. Muth, and B. D. Sut-
ter. Compiler techniques for code compaction. ACM
Transactions on Programming Languages and Sys-
tems, 22(2):378–415, 2000.

[14] S. Ducasse, M. Rieger, and S. Demeyer. A lan-
guage independent approach for detecting duplicating
code. In Proceedings of the International Conference
of Software Maintenance, pages 109–118, Sept. 1999.

[15] R. Komondoor and S. Horwitz. Using slicing to iden-
tify duplication in source code. Lecture Notes in Com-
puter Science, 2126:40–??, 2001.

[16] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and
M.Bernstein. Pattern matching techniques for clone
detection. Journal of Automated Software Engineer-
ing, 1996.

[17] A. Lakhotia, A. Kapoor, and E. U. Kumar. Are meta-
morphic viruses really invincible? Virus Bulletin, Dec.
2004.

[18] S. Muchnick. Advanced Compiler Design and Imple-
mentation. Morgan Kaufmann, 1997.

[19] B. Schwarz, S. K. Debray, and G. Andrews. Plto: A
link-time optimizer for the intel ia-32. In Proceedings
of the 2001 Workshop on Binary Translation, 2001.

8

