Concern Specific Aspect-Oriented Programming with
Malaj

Mattia Monga

Politecnico di Milano
Dip. di Elettronica e Informazione
Piazza Leonardo da Vinci, 32
I 20133 Milano — Italy
monga@elet.polimi.it

1 Motivations

Software engineers know how separation of con-
cerns, i.e., thinking about a problem at a time,
can greatly improve designers’ productivity. The
success of object-oriented techniques is tightly cou-
pled to their ability to support the decomposition
of complex systems into simpler sub-systems, de-
signed and implemented as much as possible inde-
pendently. Objects isolate concerns by encapsulat-
ing design concepts behind a well-defined interface
and by grouping together related functions.

However, some concerns refuse to package them-
selves in a component, because their influence
cross-cuts the entire system. Example of these
are concurrency, distribution, persistence, security,
etc. Research work is on-going to find ways to over-
come these limitations of object-orientation with-
out giving up its proven advantages.

A first approach (see Section 2 and Figure 1.a), fol-
lowed by AspectJ [1], is based on the idea of weak-
ening information hiding rules, so that unencap-
sulable aspects could be woven into encapsulated
functional code. The main problem with this ap-
proach is that aspects may interfere with functional
code or one with another.

Another approach (see Section 3 and Figure 1.b),
followed by Hyper/J [2], is based on the idea of par-
titioning a software system in atomic units, that
can be aggregated according to different dimen-
sions. The problem here is the number of con-
nections among units, which increases the overall
intricacy of the system, thus hindering comprehen-
sion and evolution.

We believe that a third approach (adopted in
Malaj [3], see Section 4 and Figure 1.c) can be
more convenient: a number of unencapsulable con-

cerns are to be identified and carefully studied to
understand their very relationship with functional
code, so that ad-hoc linguistic constructs could be
properly designed. This way, we aim at reducing
clashes with traditional linguistic features and best
practices of object-orientation.

.
Ve . /' /
[4 Q/’ \./ L4
\ °
/ ® I
¢ aspect®

a) AspectJ

encapsulation
boundary

dimensions

hyperslices

b) Hyper/J

#» o | concern specific IIl
i’ / relationships

B

% e

/0

‘ < * e
encapsulation .
boundary C) Ma‘la‘J

functional code non-functional code

Figure 1: Different approaches to separation of un-
encapsulable concerns.

2 Aspect-Oriented Programming with As-
pectJ

AspectJ [1] is an aspect-oriented language (AOL)

proposed to make aspects clearly identifiable from

functional code, which is written by using Java,

called component language (CL). AspectJ pro-

vides:

1. some syntactic sugar to isolate the code for
each aspect;

2. a way to identify the join points in functional
code, i.e., the points where the aspect code is
introduced;

3. a weaver: an engine that is able to mix aspects
and functional code.

In AspectJ an aspect is defined via a construct that
is reminiscent of the Java class. An aspect, has
a name and its own data members and methods.
With an aspect it is possible to introduce an at-
tribute or a method in an existing class and advise
that some actions are to be taken before or after
the execution of an existing method.

Classes are unaware of aspects, i.e., it is not possi-
ble to name an aspect inside a class. The associa-
tion between aspect instances and class instances is
one-to-one. However, by using the keyword static,
it is possible to define an association between an
aspect instance and all the objects of a class. An
aspect can access all the internal details of its as-
sociated object (see Figure 1.a).

In a previous analysis [4] we identified a number
of problems and pitfalls that currently affect As-
pectJ!. In particular we found three main clashes
between the aspect oriented and the object oriented
features of the language. Possible clashes occur be-
tween:

e Functional code (expressed using a CL) and
other aspects (expressed using one or more
AQLs). Usually, such clashes result from the
need of breaking encapsulation of functional
units to implement a particular aspect. In As-
pectJ, the aspect code can access the private
attributes of a class. This may be useful in
some situations, but results in a potentially
dangerous breaking of class encapsulation.

e Different aspects. T'wo aspects could work per-
fectly when applied individually, but fail when
applied together (e.g., because they introduce
the same method with different definitions).

We used version 0.3.0.

o Aspect code and specific language mechanisms.
One of the best known examples of prob-
lems that falls into this category is inheritance
anomaly [5]. This term was first used in the
area, of concurrent object-oriented languages
to indicate the difficulty of inheriting the code
used to implement the synchronisation con-
straints of an application written using one of
such languages. In the area of aspect-oriented
languages, the term can be used to indicate
the difficulty of inheriting the aspect code by
a subclass.

3 Multi-Dimensional Separation of Con-
cern with Hyper/J

Hyper/J [2] is a language to define multiple dimen-

sions of concern within a software system written

in Java. Hyper/J considers the system as a set of

Java declarations (methods, attributes and classes)

and provides:

1. a notation to map declaration units to arbi-
trary concerns and concerns to concern dimen-
sions. Each can pertain to many concerns (see
Figure 1.b);

2. a notation to describe various correspondences
between declarations and definitions;

3. an engine to bind together declarations and
definitions according to such correspondences.

The hyperspace composed by all declaration units
is partitioned in hyperslices containing all con-
cerns pertaining to a dimension plus any other (ab-
stract) declarations needed to achieve declarative
completeness (an hyperslice is declaratively com-
plete if contains all definitions needed for static
checking). Hyperslices are eventually integrated in
executable hypermodules specifying which def-
initions must be linked to abstract declarations.
For example, two method declarations can have
the same definition because they have the same
name (i.e., signature) and the actual definition
could be made by merging (i.e. concatenating)
their original definitions. Possible alternatives to
merging are overriding, bracketing (some code is
executed before and after), summarising (results
of each original definition are aggregating in arbi-
trary ways). According to the Hyper/J approach,

classes are simply concerns pertaining to an object-
orientation dimension, and inheritance becomes a
relationship between a base and a derived concern
in which the definition of derived method overrides
the base one.

In this elegant approach we identify some problems:

e Software creation. Dimensions are partitions
of hyperspace composed by Java units: there-
fore, the declaration of these units conceptu-
ally precedes the separation of concerns. De-
signers of the system receive no help from hy-
perspaces: they have to generate a bunch of
classes to cope with all concerns. For exam-
ple, it is not possible to assign the developing
of a dimension to a separated team.

e Software evolution. Hyper/J can be very help-
ful to re-engineer an existing application, by
identifying the different dimensions involved
in the software. Evolution seems easier, but
what about evolution of the evolved software?
If designers do not want to go back to square
one, they need a “hyper-Hyper/J” to evolve
hypermodules.

e Software complexity. The overall intricacy of
the system does not diminish introducing dif-
ferent dimensions. There is no conceptual
economy in the definition of dimensions of con-
cern. Relations among software units become
explicit, but their number do not decrease.

4 Malaj: a Multi Aspects LAnguage for
Java

A general-purpose approach provides the maxi-
mum expressive power but forces programmers to
violate the principles of protection and encapsula-
tion. For this reason, Malaj [3], focuses on a well-
defined set of aspects (currently, synchronisation
and relocation), and provides a different linguistic
construct for each aspect. This limits visibility of
the features of the functional module to which the
different aspects apply. This is made possible by
carefully studying the relationship between func-
tional code and a given aspect (see Figure 1.c).

As its name says, Malaj is an aspect oriented ex-
tension to Java. The Malaj core language is a re-
duced version of Java, that does not include the

features that are provided through the separately
specified aspects. More specifically, the Java key-
word synchronized cannot be used in Malaj, and
the same is true for the methods wait, notify, and
notifyAll of the standard Java class Object. We
want to show how Malaj can provide support to
synchronisation and relocation of objects, without
tangling these concerns in functional code.

The Synchronization Aspect

Synchronisation between the different units that
compose an application is a central aspect for any,
non-trivial, software. To express this aspect it is
necessary to clearly state what happens when a
functional unit is invoked. Three cases may arise:

1. the call violates some precondition and an ex-
ception is returned to the caller (these condi-
tions are named deny guards);

2. the call violates some precondition and the
caller is suspended until the condition becomes
true (suspend guards);

3. the call does not violate any precondition and
execution of the functional unit may proceed.

To support this aspect, Malaj provides the
guardian construct. Each guardian is a distinct
source unit with its own name, possibly coded in
a different source file. Each guardian is associated
with a particular class (i.e., it guards that class)
and expresses the synchronisation constraints of a
set of related methods of that class. Each class has
at most one guardian.

For each class C, the guardian G of C basically rep-
resents the set of synchronized methods of C.

A guardian may include also a set of local at-
tributes and method definitions to code guards
that depend on state conditions. Finally, for each
method m of the guarded class, the guardian may
introduce a fragment of code to be executed be-
fore or after m. Observe that, to avoid breaking
object encapsulation and to increase separation be-
tween the functional and synchronisation aspects,
guardian code (i.e., deny and suspend guards, and
before and after clauses) cannot access private el-
ements of the guarded class and has read-only ac-
cess to the public and protected attributes of the
guarded class.

As for the relationship between the synchronisation
aspect and inheritance, the following rules exist:

1. The guardian of a class C is inherited by all
the subclasses of C that do not have a different
guardian.

2. A guardian G1 always extends a parent
guardian G. If not explicitly mentioned,
the parent guardian of G1 is the guardian
malaj.Guardian, which is part of the Malaj
package. G1 inherits all the synchronisation
constraints specified by G and it may add new
guards, redefine existing ones, or remove them.
To distinguish between added and redefined
guards, each guard of a given method m has its
own label. A guard in G1 that has the same
label of a guard in G redefines it, otherwise it
is considered as a new guard.

3. The guardian of a class C must extend the
guardian of the parent class of C.

4. The guards redefined in G1 cannot be stricter
than the original ones. In fact, as the next
point explains, a sub-guardian G1 guards a
class that extends the class guarded by the
parent guardian of G1 and, as observed by
Meyer [6], the precondition of a subclass can-
not be stronger than the precondition of the
parent class.

5. To reduce the impact of inheritance anomaly,
the before and after clauses of a guardian
G may refer to the corresponding clauses of
the parent guardian through the statement
super(). Similarly, in redefining a guard it is
possible to refer to the original guard through
the construct super().

The Relocation Aspect

Today software has to be aware of networks and
code implementing network awareness is typically
dispersed among functional units, thus represent-
ing a good candidate to be aspectified. In partic-
ular, programmers should be able to move objects
among sites. We identify two relationships to be
maintained as objects move:

Ownership: if an object A owns an object B, then

A is the only object entitled to move B. By
default, B follows A in its movements.

Interest: if an object A is interested in B, A has to
be always able to reach B, but A and B move
completely independently.

If an object A does not own B’ and is not interested
in it, it simply does not care of B’s location, and
even of its existence. Evidently, ownership implies
interest.

These relationships are inherently dynamic: they
are subject to change during program execution,
as objects change their interest in other objects ac-
cording to the programmers’ needs.

Malaj provides the relocator construct. Each re-
locator is a distinct source unit with its own name,
possibly coded in a different source file. A relo-
cator is associated with a particular class (i.e., it
relocates the objects of that class). Relocation
actions can be executed before or after the execu-
tion of any method. To specify this, the relocator
provides before and after clauses that allow pro-
grammers to introduce the piece of code that will
be executed before or after the execution of the
method.

In before and after clauses one is not allowed to
change attributes (i.e., the internal state of an ob-
ject can be changed only by using the methods it
provides). However, it is possible to:

e Take or release the ownership of an object, by
using the methods:

takeOwnership(Object owned)
throws ObjectOwnedException

releaseOwnership(Object owned)
throws NotOwnerException

Only the owner is allowed to release ownership
and only objects that have no owner can be
arguments of takeOwnership. Observe that,
by default, each newly created object is owned
by the object that created it.

e Express or retract the interest in an object, by
using the methods:

expressInterest(Object o)

retractInterest(Object o)

e Fix the location of an owned object, by using
the methods:
pin(Site s, Object owned)
throws NotOwnerException

unpin(Object owned)
throws NotOwnerException

Unpinned objects reside in the same site of
their owner.

o Refer to variable and method definitions that
are local to the relocator.

As for the relationship between the distribution as-
pect and inheritance, the following rules exist:

1. The relocator of a class C is inherited by all
the subclasses of C that do not have a different
relocator.

2. A sub-relocator L1 may add before and after
clauses for methods not considered in the par-
ent relocator L and may redefine L clauses.

3. To reduce the impact of inheritance anomaly,
the before and after clauses of a relocator
L may refer to the corresponding clauses of
the parent relocator through the statement
super().

5 Conclusions

Encapsulation is the kernel of object-orientation
and each hole we make in its boundaries has to be
carefully designed, because can destroy the whole
framework. Design criteria behind Malaj were in-
spired by earlier experience with general-purpose
aspect oriented languages. We think our approach
offers a good compromise between flexibility and
power, on the one side, and understandability and
ease of change on the other. It does not allow pro-
grammers to code any possible concern, but it en-
ables the comprehension of concern specific rela-
tions with functional code. This would be impossi-
ble in general. We envision Malaj as a collection of
concern-specific aspect languages, built on top of a
subset of the Java language. For now we discussed

how the synchronisation and relocation aspects can
be defined in Malaj. But one ultimate goal is to
cover a spectrum of concerns far beyond these two,
and to complement the programming support with
a formal model that can be used to reason about
program construction and concerns interaction.

REFERENCES

[1] XEROX Palo Alto Research Center, AspectJ:
User’s Guide and Primer, 1999.

[2] P. Tarr and H. Ossher, Hyper/J™ User and
Installation Manual. IBM Research, 2000.

[3] G. Cugola, C. Ghezzi, M. Monga, and G. P.
Picco, “Malaj: A proposal to eliminate clashes
between aspect-oriented and object-oriented
programming.” Accepted for publication in
Proceedings of the 16th IFIP World Computer
Congress International Conference on Software:
Theory and Practice(ICS2000), Aug. 2000.

[4] G. Cugola, C. Ghezzi, and M. Monga, “Lan-
guage support for evolvable software: An initial
assessment of aspect-oriented programming,”
in Proceedings of International Workshop on
the Principles of Software Evolution, (Fukuoka,
Japan), July 1999.

[5] S. Matsuoka and A. Yonezawa, “Analysis of
inheritance anomaly in object-oriented con-
current programming languages,” in Research
Directions in Concurrent Object-Oriented
Programming (G. Agha, P. Wegner, and
A. Yonezawa, eds.), pp. 107-150, Cambridge,
MA: MIT Press, 1993.

[6] B. Meyer, Object-oriented Software Construc-
tion. New York, NY: Prentice Hall, second ed.,
1997.

