
Reasoning on AspectJ Programmes

Lynne Blair
Computing Department

Faculty of Applied Sciences
Lancaster University

LA1 4YR Lancaster, UK

lb@comp.lancs.ac.uk

Mattia Monga
Dip. Informatica e Comunicazione

Università degli Studi di Milano
Via Comelico 39/41
20135 Milano, Italy

mattia.monga@unimi.it

ABSTRACT
In this paper we suggest that in order to analyse the proper-
ties of an AspectJ aspect one can consider the aspect itself
and the part of the system it affects. In fact, we argue that
in AspectJ every pointcut declaration defines a “slicing cri-
terion” that can be used to compute the associated slice.
One can use the sliced programme to build useful models
of the system and the aspects and exploit them to prove
properties. For example, non-interference at code level can
be guaranteed if the slices associated to different aspects are
disjoint.

1. MOTIVATION
When software engineers design systems, they try to cope
with the intrinsic complexity of their systems by decompos-
ing them in interacting, but clearly separated, modules that
encapsulate the code concerning a particular issue. This
practice has several benefits on the development process:
it enables division of labour, it promotes comprehensibility
and it fosters flexibility because any module can be manipu-
lated pretty independently from the others [10]. However, it
has been noticed that sometime concerns are difficult to en-
capsulate because they cross-cut several parts of the system
and are tangled with the code that addresses different con-
cerns. For example, this is typically the case of concurrency
and security issues.

Recently, aspect-oriented languages were proposed to make
cross-cutting concerns clearly identifiable with special lin-
guistic constructs. Aspect-oriented languages provide sup-
port for writing encapsulated units that:

1. syntactically isolate the code implementing the cross-
cutting concern;

2. identify join points in the rest of the code;

Join points are nodes in the control flow graph of the pro-

GI-AOSDG2003 Essen, Germany

gramme and a weaver is responsible for mixing in the cross-
cutting code when a join point occurs during programme
execution. Thus, by using these languages, it is possible
to write aspect oriented modules that can be merged (wo-
ven) with the rest of the system, affecting all the modules
featuring the relevant join-points.

The best known system implementing an aspect-oriented ap-
proach is probably AspectJ [16]. Designed and implemented
at Xerox PARC, it is aimed at managing tangled concerns
in Java programs. In AspectJ it is possible to define a first-
class entity called an aspect. This construct is reminiscent
of the Java class: it is a code unit with a name and its
own data members and methods. In addition, aspects may
define sets of join points (pointcut), introduce an attribute
or a method in existing classes (introductions), and declare
pieces of code (advices) that can be woven before or after

a join point.

Aspect oriented programming is very convenient to express
cross-cutting concerns. A typical aspect oriented statement
can be something like “before any division, check if the di-
visor is not zero”; in a very economical way it is possible
to affect all the divisions in the code, even without knowing
where these divisions will occur. However, this strength is
also a source of complexity, because it can be difficult to
figure out the behaviour of the whole system: every time
a division is performed, one has to remember that also the
aspect oriented code is executed. In fact, it is often very dif-
ficult to guess where are the join points affected by aspect
oriented code.

Moreover, one often does not want to reason on the “woven”
programme, but on the aspect oriented code in isolation: af-
ter all this was the motivation for structuring it as a separate
module. For example, if a synchronisation policy is codified
with an aspect, programmers would be able to prove that
the policy is deadlock free, without studying the details of
the code to which is applied [2].

In this paper we suggest that in order to analyse the prop-
erties of an aspect one can consider the aspect itself and
the part of the system it affects. This part is just a slice
of the entire system and, while the minimum slice is not
computable, some good approximations can be extracted ex-
ploiting well known programme slicing algorithms [11]. We
argue that in AspectJ every pointcut declaration defines a
“slicing criterion” that can be used to compute the associ-

ated slice. One can use the sliced programme to build useful
models of the system and the aspects and exploit them to
prove properties. The paper is organised as follows: in Sec-
tion 2 we briefly introduce programme slicing, in Section 3
we explain how programme slicing can be applied to aspect-
oriented programmes, in Section 4 we discuss the current
limitations of our approach, and, after a short discussion
on related works in Section 5, in Section 6 we draw some
conclusions envisioning our future work.

2. PROGRAM SLICING
Program slicing [14] is a technique aimed at extracting pro-
gramme elements related to a particular computation. It
has been studied mainly in the context of procedural pro-
gramming languages [3]. A slice of a programme is a set
of statements which affect a given point in the programme
(slicing criterion). Producing the minimal slice is known
to be uncomputable, however it is possible to compute non-
minimal slices with fairly efficient algorithms.

In order to formalise the concepts of programme slice and
slicing criterion, we follow [6] considering the simplest pro-
gramming language with just assignments, conditionals and
jumps. Given a programme or a code fragment π written
in this language, it is always possible to build a control flow
graph Gπ =< N,E, s, e > where

• N is the set of nodes representing the statements of π:
a node for each assignment and each jump;

• E is the set of directed edges representing the control
flow among the statements of π: if it is possible that
a statement s2 follows immediately another statement
s1, then there is an edge from n1, representing s1, to
n2, representing s2;

• a unique start node s with no incoming arcs

• a unique end node e with no outgoing arcs

All nodes in N are reachable from s and e is reachable from
all nodes in N .

A programme slice πC is an executable portion of a pro-
gramme π that may affect the values of variables that are
referenced at some programme points. The set of interesting
points is called a slicing criterion (C). If Gπ is the control
flow graph associated to π, a slicing criterion is a non-empty
set of nodes C = {n1, . . . , nk} where each ni ∈ N and k ≥ 1.
Informally, any execution of πC is indistinguishable from an
execution of π by looking at the values of variables at the
points in the slicing criterion.

It is possible to build good approximations of the minimal
slice, by using only compile-time information about a pro-
gramme [15, 5] (static programme slicing). A static slicing
algorithm computes programme slices by building the tran-
sitive closure of programme dependencies starting from the
points in the slicing criterion and proceeding backward. In
particular it usually takes in account control and data de-
pendencies. However, other kinds of ad-hoc dependencies
can be defined when one is interested in more complex prop-
erties of the state of the programme than the plain value of

variable: for example, in [1] some special dependencies are
exploited to reason about concurrency.

A statement s1 is control dependent on statement s2 if s2 is
a conditional (therefore two possible paths start from s2 in
the control flow graph) and, assuming that the programme
will terminate, only one of the paths starting from s2 con-
tains s1. A statement s1 is data dependent on statement
s2 if the computation at s1 requires a value computed in
s2. Thus, the computation of data dependency requires the
ability to compute the set of variables defined and used in
every statement 1.

Static slicing algorithms were extended to cope with stat-
ically typed object oriented systems. The major problem
is the resolution of polymorphic method calls. In order to
deal with them, “polymorphic” edges that represent the dy-
namic choice among all the possible destinations were intro-
duced [8]. In the following Section, we will show how slicing
algorithms can be applied to AspectJ programmes.

3. SLICING ASPECT-ORIENTED
PROGRAMMES

In AspectJ an aspect is a container for data fields, methods,
pointcut declarations, and advice definitions. Therefore, an
aspect can be represented by a tuple α =< M,P,A >, where
M is the set of all members, P is the set of all pointcut
declarations, and A is the set of all advice definitions. Since
slicing algorithms are suitable for object-oriented code, in
order to use them without modifications, we introduce the
concept of a class conjugated to an aspect. Let χ =< M, Ã >
a conjugated class with the same members M and a set of
methods Ã in which there is a method ma for each advice
a ∈ A, such that ma has the same signature and the same
body of a.

Let π be an aspect-oriented programme, composed by some
classes κi and some aspects αj . Since conjugated classes
are traditional object-oriented classes, it is always possible
(see Section 2) to build the control flow graph Gψ of the
conjugated programme ψ composed by the same κi and by
the χj respectively conjugated to each αj .

Moreover, each pointcut p defines a slicing criterion Cp, be-
cause it identifies some points in the control flow graph of
the aspect-oriented programme ψ, and this matches the def-
inition of slicing criterion we gave in Section 2. Therefore
each aspect α defines a slicing criterion Cα =

⋃
i∈P Ci. It is

worth noting that the slice produced by this criterion may
contain statements taken from Ã.

For example, in Figure 1 shows an aspect TraceMyClasses

and its conjugated class. The pointcut MyClass defines the
criterion Cp1 : the set of all statements within the definitions
of the types Circle or Square. The pointcut MyMethod defines
the criterion Cp1 ∩ Cp2 : the set of all statements that are
an execution of any method and satisfy Cp1 . The pointcut

MyCall defines the criterion Cp1 ∩ Cp3 : the set of all state-
ments that are an execution of any method and satisfy Cp1 .
Summing up, the aspect TraceMyClasses defines a slicing cri-
terion C = Cp1 ∪ (Cp1 ∩ Cp2) ∪ (Cp1 ∩ Cp3) = Cp1 . In fact,

1This is critical in presence of aliasing, see [9]

aspect TraceMyClasses {
pointcut myClass():

within(Circle)
|| within(Square);

pointcut myCall():
myClass()
&& call (∗ ∗(..));

pointcut myMethod():
myClass()
&& execution(∗ ∗(..));

/∗∗
∗ Prints trace messages before methods.
∗/
before (): myMethod() {
Trace.traceEntry(”Entering”)

}
after (): myCall() {
Trace.traceExit(”Calling”);

}

class TraceMyClassesAspect {
before_myMethod() {
Trace.traceEntry(”Entering”);

}
after_myMethod() {
Trace.traceExit(”Calling”);

}

Figure 1: An aspect TraceMyClasses and its conjugated class, TraceMyClassesAspect

since the pointcut MyClass is never used alone we could use
the stricter criterion (Cp1 ∩ Cp2) ∪ (Cp1 ∩ Cp3) ⊆ Cp1 .

This criterion C can be used to slice the programme to which
the aspect is applied: only that slice can be affected by the
aspect code. Thus, we can use the slice to build proper
models of the aspect.

4. PROBLEMS
In the previous section we showed how slicing algorithms
can be applied to aspect-oriented programmes. However,
real aspect-oriented languages as AspectJ provide powerful
constructs that, while giving great power to programmers,
pose a number of problems.

A first issue is the use of “inter-type declarations”. As we
said above, an aspect can introduce a member in another
type. Moreover, it is also possible to manipulate the type hi-
erarchy, saying, for example, that an type A extends a type
B. This might be useful when one wants to adapt an exist-
ing class to a given interface. The use of these constructs,
though handy in most cases, has the evil effect to force any
analysis to be “holistic”, because most of the system mod-
ules must be taken in account. If one wants, for instance,
to decide if between two classes A and B an inheritance rela-
tionship holds, s/he has to analyse all the aspects, because
any of them could declare such a relationship. In the au-
thors’ opinion, the inter-type declarations are a breech of
modularisation rules and should be avoided. There are no
conceptual problems in dealing with them, but the analy-
sis becomes inherently more difficult. The use of wildcards
in pointcut declaration has a similar impact: it does not
preclude the analysis, however

1. some closed world assumption is needed;

2. the analysis itself cannot be modularised, implicitly
increasing its complexity.

Thus, the use of inter-type declarations and wildcards forces
the analisys to take into account all the code of system.

Another issue is the use of dynamic properties in point-
cut definitions. For example, Figure 2 shows a pointcut
definition that depends on the value of the function If.-
getInputFromUser().

In general, the use of dynamic properties means that the
slicing criterion cannot be determined statically. There are
two possible solutions. Let the criterion be δ � σ where δ
is the part of the predicate whose value is known only at
run-time, σ the part known statically, and � denotes any
composition of the two parts. One can consider

1. the criterion defined by (σ � true) ∪ (σ � false);

2. the criterion defined by σ. in this case the code bound
to the pointcut need to be enclosed in a conditional
instruction if(δ)

The first solution is a conservative approximation. The sec-
ond solution is more efficient, but it modifies the code one is
going to analyse, at the risk of including new, unexpected,
joinpoints. In fact, the computation of the value of the pred-
icate is in general a complex function that can be even af-
fected by the aspect code.

5. RELATED WORKS
Slicing of aspect oriented programmes was proposed by Jian-
jun Zhao in [17]. In his paper, Zhao applies slicing tech-
niques to AspectJ code. He tries to identify which state-
ments might affect a given statement in an aspect-oriented
programme. He does not consider inter-type declarations,
wildcards, and dynamic properties. Our goals, while we use
an analogous technique, are rather different: we exploit the
fact that each aspect define a slicing criterion that can be
used to build a model of the entire system to reason about
aspect weaving.

In our work we were inspired by Bandera [1]. Bandera is
aimed at model checking plain Java programmes. In order
to simplify the model, Bandera uses the property to be veri-
fied (in general a formula in a linear temporal logic) to build
a slice of a programme (see Figure 3.a). In fact, the model is

public class If{
static boolean getInputFromUser(){

return
showDialog()
== YES_OPTION;

}
public method(){

System.exit(0);
}

}

aspect Trace{
before(): call(void System.exit(int))

&& if(If.getInputFromUser()){
System.out.println(thisJoinPoint);

}
}

Figure 2: A pointcut definition that uses dynamic properties

a model of the relevant slice. Originally we wanted to build
a model by examining an aspect in isolation (the experiment
is described in [2]). However, this goal resulted very difficult
to achieve, because of the number of hypothesis one needs
to impose on the code affected by the aspect. In this paper
we suggest that an aspect can be used to reduce (but not
eliminate) the part of the programme that one must anal-
yse in order to model check properties of the system under
verification (see Figure 3.b).

6. CONCLUSIONS AND FUTURE WORK
Aspect-oriented programming as intended by AspectJ is a
way to express incremental modifications to the behaviour
of a programme. An advice declaration specifies an action
to be taken whenever some condition arises during the exe-
cution of the programme [13, 4]. We claim that in AspectJ
every pointcut declaration defines a “slicing criterion”: a
set of interesting points in the control flow graph of the
programme. Therefore, one can use well known slicing al-
gorithms to compute the part of a programme that is af-
fected or affects a given aspect. The ultimate goal of aspect-
oriented programming is the separation of otherwise cross-
cutting concerns. However, these benefits are lost if the
comprehension of aspect properties entails the analysis of
the whole programme. Instead, if we are able to define some
boundaries around aspect influence, the separation turns out
to be not just syntactic sugar but a true aid in dealing with
programme complexity.

We plan to use our approach to solve feature interaction
problems. A feature is no more than a clustering of individ-
ual requirements within the specification of the behavioural
characteristics of a system [12]. Since features cut across the
entire system, they are perfect candidates to be implemented
by an aspect. Thus, the problem of feature interactions be-
comes the problem of discovering aspect interactions and can
be studied by analysing just the source code. Intuitively, if
two features are implemented by two distinct aspects α, β
a sufficient condition to ensure that no feature interaction
arises is that SCα ∩ SCβ = ∅, where SCα , SCβ are the slices
associated to the two aspects.

In general, every time one wants to reason about an as-
pect, s/he can use the associated slice instead of the whole
programme to build useful models. We believe that this mo-
tivates the use of aspect-oriented constructs as an effective
tool to manage complexity.

7

7. ACKNOWLEDGMENTS
The authors want to thank Katharina Mehner and the anony-
mous reviewers for their useful comments on early drafts of
this work.

8. REFERENCES
[1] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,

Robby, S. Laubach, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In 22nd International Conference on Software
Engineering, pages 439–448, Limerick, Ireland, June
2000. IEEE Computer Society.

[2] G. Denaro and M. Monga. An experience on
verification of aspect properties. In T. Tamai,
M. Aoyama, and K. Bennett, editors, Proceedings of
the International Workshop on Principles of Software
Evolution IWPSE 2001, pages 184–188, Vienna,
Austria, Sept. 2001. ACM.

[3] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
program dependence graph and its use in
optimization. In M. Paul and B. Robinet, editors,
Proceedings of the International Symposium on
Programming, volume 167 of LNCS, pages 125–132,
Toulouse, France, Apr. 1984. Springer.

[4] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Proceedings of OOPSLA 2000 workshop on Advanced
Separation of Concerns, 2000.

[5] M. J. Harrold and N. Ci. Reuse-driven interprocedural
slicing. In Proceedings of the 1998 International
Conference on Software Engineering, pages 74–83.
IEEE Computer Society Press / ACM Press, 1998.

[6] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing
software for model construction. Higher-Order and
Symbolic Computation, 13(4):315–353, Dec. 2000.

[7] R. Lämmel. A semantical approach to method-call
interception. In G. Kiczales, editor, Proceedings of the
1st International Conference on Aspect-Oriented
Software Development (AOSD 2002), pages 41–55,
Enschede, The Netherlands, Apr. 2002. ACM, ACM
Press.

[8] L. Larsen and M. J. Harrold. Slicing object-oriented
software. In Proceedings of the 18th International
Conference on Software Engineering, pages 495–505.
IEEE Computer Society Press / ACM Press, 1996.

(a) (b)

Figure 3: Flow of data in Bandera and in our proposal

[9] A. Orso, S. Sinha, and M. J. Harrold. Effects of
pointers on data dependences. Technical Report
GIT-CC-00-33, College of Computing, Georgia
Institute of Technology, Dec. 2000.

[10] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053–1058, Dec. 1972.

[11] F. Tip. A survey of program slicing techniques.
Journal of programming languages, 3:121–189, 1995.

[12] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L.
Wolf. A conceptual basis for feature engineering. The
Journal of Systems and Software, 49(1):3–15, Dec.
1999.

[13] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron,
editors, FOAL 2002 Proceedings: Foundations of
Aspect-Oriented Languages Workshop at AOSD 2002,
number 02-06 in Technical Report, pages 1–8.
Department of Computer Science, Iowa State
University, Apr. 2002.

[14] M. Weiser. Program slicing. In Proceedings of the
5th International Conference on Software
Engineering, pages 439–449. IEEE Computer Society
Press, Mar. 1981.

[15] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[16] XEROX Palo Alto Research Center. AspectJ: User’s
Guide and Primer, 1999.

[17] J. Zhao. Slicing aspect-oriented software. In
Proceedings of the International Workshop on
Principles of Software Evolution IWPSE 2002,
Orlando, Florida, May 2002. ACM.

