Slicing AspectJ Woven Code

Davide Balzarotti, Antonio Castaldo
D’Ursi, Luca Cavallaro
Politecnico di Milano
Dip. di Elettronica e Informazione
Via Ponzio 34/5, 1-20133 Milano, Italy

ABSTRACT

The AspectJ programming language was proposed to make
cross-cutting concerns clearly identifiable with special lin-
guistic constructs called aspects. In order to analyze the
properties of an aspect one should consider the aspect itself
and the part of the system it affects. This part is just a slice
of the entire system and can be extracted by exploiting pro-
gram slicing algorithms. However, the expressive power of
Aspect] constructs makes difficult to implement slicing al-
gorithms that are both precise and produce useful, i.e. small
enough, slices. In this paper we describe our approach to
slice AspectJ programs, based on the analysis of the woven
code.

1. INTRODUCTION

Well organized software systems are partitioned in modu-
lar units each addressing a well defined concern. Such parts
are developed in relative isolation and then assembled to
produce the whole system. A clean and explicit separation
of concerns reduces the complexity of the description of the
individual problems, thereby increasing the comprehensibil-
ity of the complete system [15].

The notion of aspect-oriented programming was intro-
duced by Kiczales et al. in [10]. Their approach was suc-
cessfully implemented in Aspect] [1] by Xerox PARC. As-
pectJ aims at managing tangled concerns at the level of
Java code. AspectJ allows for definition of first-class en-
tities called aspects. These constructs are reminiscent of
the Java class: it is a code unit with a name and its own
data members and methods. In addition, aspects may in-
troduce an attribute or a method in existing classes and
advise that some code is to be executed before or after
a specific event occurs during the execution of the whole
program. Aspect definitions are woven into the traditional
object-oriented (Java) bytecode at compile-time. Neverthe-
less, events that can trigger the execution of aspect-oriented
code are run-time events: method calls, exception handling,
and other specific points in the control flow of a program.

Mattia Monga
Universita degli Studi di Milano
Dip. di Informatica e Comunicazione
Via Comelico 39/41, 1-20135 Milano, Italy,

The AspectJ way to provide support for encapsulating
otherwise cross-cutting concerns is based on:

1. asyntactic extension to Java for isolating aspect-oriented
code;

2. a language for identifying join points where advice
code should be introduced; set of join points are called
pointcuts

3. a compile time weaver responsible to mix aspects with
the rest of the code in order to produce the running
system.

The constructs provided by AspectJ show up to be very
convenient to express cross-cutting concerns. A typical As-
pectJ advice can be something like “before any call to the
division function, check if the divisor is not zero”; in a very
economical way it is possible to affect all the divisions in
the code, even without knowing where these divisions will
occur. However, it is not clear how real the separation is.
In fact, even though a “no division by zero” aspect would
be a isolated code unit, it might be difficult to figure out
the behavior of the whole system: every time the division
function is called, one has to consider that also the aspect
oriented code is executed. In general, aspects, while coded
in a separate unit, do not enable a true modular reasoning[5,
16]. Moreover, it is still not clear how to cope with the diffi-
cult problem of aspect interaction (see [7, 9, 3, 12] for some
work in progress and discussion). In order to asses the re-
sulting complexity of an aspect oriented program, we tried
to apply well known techniques of program comprehension,
namely static analysis and program slicing, to AspectJ. In
this paper we describe our effort for building a slicer able to
identify which part of an AspectJ program is affected by a
specific aspect.

The paper is organized as follows: in Section 2 we present
the challenge of slicing AspectJ programs, in Section 3 we
describe our approach to the problem, in Section 4 we sketch
the implementation of our tool, in Section 5 we show a sim-
ple example, and finally in Section 6 we draw some conclu-
sions.

2. SLICING AO PROGRAMS

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are Program slicing is a program analysis technique intro-
not made or distributed for profit or commercial advantage and that copies duced by Weiser in the first half of the '80s [21]. A backward
bear this notice and the full citation on the first page. To copy otherwise, 10 (or forward) slice of a program consists in all the statements
republish, to post on servers or to redistribute to lists, requires prior specific that may influence (or may be influenced by) a given set of

permission and/or a fee. statements, called the slicing criterion.

FOAL 2005 Chicago, Michigan USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00. We will focus our attention on backward slicing based only

on static information, i.e., without making any hypothesis
about input data. Slicing techniques were initially proposed
for procedural programs, however they have been widely
studied and applied also to object oriented programs [13].
In [14] Liang and Harrold approached the slicing of object
oriented programs as a graph reachability problem: each
method in an object oriented program is represented by a di-
rected graph (method dependence graph, MDG) in which ev-
ery statement is a node and edges represent control and data
dependences among them. All MDGs are then merged in a
system dependence graph (SDG), a directed graph that rep-
resents the whole analyzed program. On this graph, slices
can be computed by exploiting the algorithm introduced by
Horwitz, Binkley, and Reps [8].

Unfortunately, the techniques developed for object ori-
ented languages cannot be used as they are with aspect ori-
ented languages, due to some specific aspect oriented fea-
tures present in most modern aspect oriented languages. In
fact, AspectJ provides powerful constructs that, while giv-
ing great power to programmers, pose a number of problems
during static analyses of the code.

A first issue is the use of “inter-type declarations”. In
fact, aspects can modify a type by introducing a member
in a class or even by manipulating the type hierarchy. This
might be useful when one wants to adapt an existing class
to a given interface. The use of these constructs, though
handy in most cases, has the evil effect to force any analysis
to be “holistic”, because every analysis needs a closed world
assumption. If one wants, for instance, to decide if between
two classes A and B an inheritance relationship holds (a criti-
cal information needed when examining polymorphic calls),
one has to analyze all the aspects, because any of them could
declare such a relationship. Similarly, point-cuts may be de-
fined by using wildcards. This flexibility forces the analysis
to take into account all the code of the system.

Another issue is the use of dynamic properties in point-
cut definitions. For example, Figure 1 shows a pointcut
definition that depends on the value of the function If.-
getInputFromUser().

aspect Trace{
before(): call(void System.exit(int))
&& if(1f.getInputFromUser()){
System.out.println(thisJoinPoint);

}
}

Figure 1: A pointcut definition that uses dynamic
properties

Thus, specific slicing techniques for AspectJ programs
were proposed. Zhao and Rinard proposed an algorithm
for building a system dependence graph specific for AspectJ
programs [22]. They consider each advice like a method and
associate an MDG to each of them. Two cases are consid-
ered for inter-type declarations. If an inter-type declaration
introduces a method it is represented using a module depen-
dence graph. If it introduces a field in a class it is considered
as an instance variable of both the aspect, that introduced
the field, and the class in which it is introduced.

A pointcut is represented with a join point vertexr. A weav-
ing arc connects the point in the Java part of the AspectJ

program picked up by the pointcut to the join point vertex.
The join point vertex is connected to the module depen-
dence graph entry vertex associated with it.

Eventually, the whole aspect is represented by an aspect de-
pendence graph, a directed graph whose entry vertex is con-
nected by an aspect membership arc to the join point vertices
and the module dependence graphs declared by the repre-
sented aspect. The aspect dependence graph represents the
parameters, eventually passed or used by advices or inter-
type declared methods, with formal in and formal out ver-
tices, just like formal vertices used in Liang and Harrold’s
system dependence graph.

3. AO SLICING OF WOVEN CODE

Slicing AspectJ programs by considering methods and ad-
vice code as first-class entities [4, 22, 18] is conceptually
appealing, since it does not depend on the actual implemen-
tation of the AspectJ weaver, and, more fundamentally, it
enables the use of aspects as first-class entities in the result-
ing model. However, building a working tool is far from triv-
ial, because it needs to be able to manage several AspectJ
syntax details. In particular, the AspectJ pointcut defini-
tion language allows programmers to characterize pointcuts
on a wide range of abstraction levels:

e Lexical (withincode, regular expression on identifiers,
etc.)

e Statically known interfaces (void *.func(int), etc.)
e Run time events (call, execution, set, if, etc.)

For example, [22] does not take into account wildcards,
changes in class hierarchy, and dynamic pointcuts. Also
whether it would be possible to manage all these character-
istics with ad-hoc (and not easy to implement) solutions,
the resulting program should implement a lot of features
currently implemented by the AspectJ compiler.

Instead, one can try to analyze the woven program, i.e.,
plain Java bytecode, by applying existing techniques and
map the results on the original structure of the program.

Thus, in order to build as quick as possible a tool for
experimenting with AspectJ programs, we adopted a more
pragmatic strategy:

1. Compile classes and aspects using the AspectJ com-
piler.

2. Weave aspects into an executable program.

3. Apply existing slicing algorithms (we built upon the
Soot static analysis framework [19]) to the resulting
byte-code.

4. Obtain a slice, as a set of byte-code statements.

5. Map the results onto the original aspect oriented source
code.

The advantage in adopting such an approach is twofold.
First, it is not necessary to translate aspects into classes
because this task is done (in a better way) by AspectJ itself.
Second, this approach does not neglect any detail related to
Aspect]J syntax and it does not need any modification in
case of changes in some AspectJ functionalities.

Working at the level of Java byte-code could appear not
appropriate because any distinction among classes and as-
pects may seem to be lost. The AspectJ weaver translates
aspects in classes, advices in methods, and join points in
methods invocation. Thanks to this approach, it is not diffi-
cult to map every statement to its original aspect (or class).
However, a tool based on byte-code slicing has to be changed
when the AspectJ weaver modifies its implementation strat-
egy.

Thus, the strategy we implemented in our tool starts by
inspecting the Java byte-code, then the call graph is com-
puted and the “def-use” analysis performed. Eventually, an
SDG of the woven Java program is built, and, by exploit-
ing standard algorithms proposed by the program analysis
community during the last 20 years, static slices are com-
puted. Finally, slices can be mapped backwards to the As-
pectJ code, leveraging on the information about aspects that
is still encoded in the byte code. In the following section we
describe how the tool was implemented and the limitations
of the current prototype.

4. SLICER IMPLEMENTATION
4.1 Strategy and limitations

Notwithstanding the deep research work done in the slic-
ing field, only a few products able to do slicing of real object-
oriented programs exist: for example, the Bandera tool [6]
has a component aimed at slicing Java programs in order
to ease model checking of properties of multi-threading pro-
grams. Bandera operates at the bytecode level, thus one
could imagine its use also in an AspectJ context (remem-
ber that AspectJ programs are eventually woven in plain
bytecode). However, all our attempts to use it for slicing
programs generated by the AspectJ compiler failed, since
the code, while publicly available under a GPL license, is
hard to understand and evolve. In fact, Bandera’s slicing
component is targeted to slice synchronization constructs,
thus, it should be enhanced to deal with generic slices. Re-
cently, Bandera’s research group released the Indus program
slicer [2]. We did not test the new tool, yet. However, using
the Indus tool required a licence agreement conflicting with
our goal of producing an open source tool.

However, both Bandera and Indus are based on a Java
program analysis framework called Soot [19]'. Therefore,
we decided to build our slicer directly on the Soot set of
libraries. The Soot framework uses an intermediate repre-
sentations called Jimple, that simplifies the analysis of the
bytecode. The algorithm used to compute slices is the one
proposed by Horwitz, Binkley and Reps [8]. This algorithm
works on the SDG of the program that is built by putting
together the MDGs of all methods. It is worth noting that
the advice code is represented by plain methods in the woven
code, thus normal techniques apply. In order to build the
SDG, each method is analyzed after the methods it calls. For
each analyzed method the following graphs are computed

e the control flow graph (CFQG), representing the control
flow among statements: a statement a is connected to
b if b can be executed immediately after a;

e the control dependence graph (CDG), representing state-

ment dependences from conditional statements;

1Soot itself is LGPL, thus there is no contradiction in using
it in a proprietary tool as Indus is.

e the data flow graph (DFG), representing data depen-
dences: a statement a is connected to b if b uses a
variable defined by a.

The main purpose of our work was to show the feasibil-
ity of our slicing approach based on bytecode analysis. We
would like to have a tool as quick as possible to start exper-
imenting with AspectJ examples of increasing complexity.
In order to build a working tool in a reasonable amount of
time, the current prototype has the following limitations:

e variables are not of array types;

e 1no exception handling mechanism is used;
e there are no inner classes;

e there are no static members;

e there are no recursive calls;

e the program has a single thread of control;
e there are no inter-procedural aliases.

The tool produces correct slices (i.e, slices that contain
all the statements that might be part of the minimal slice,
that is not computable [20]) for any program that satisfies
the above limitations. We intend to remove all these lim-
itations in the forthcoming versions of the tool, but their
introduction was useful to build quickly a proof-of-concept
prototype. Our tool is available on request under a GPL
license agreement.

4.2 Building the graphs

In order to build the CFG and the CDG of each method
we relied on the Soot framework. To each CFG we added
a Start node to represent the method’s entry point and a
Stop node to represent the method’s exit point. Then the
CDG was built following the approach used by the Bandera
tool [6].

Since a method (or advice code) often calls another method
(or advice code) their MDGs must be connected at the call
sites. An example showing how call sites are connected is
shown in Figure 2.

Calling method (before)

CFG edge

'
'
Call node ' COG edge
'
'

\V

Successor

Calling method (after) aall 64_98_,.-—""“—

Call node == -
parameter-in_ -~
\V \ \V LT

Called method

;
Actual-out

Summary

Successor

Figure 2: Call site modification for a polymorphic
call

Due to polymorphism, the piece of code actually executed
could be decided only at run-time, thus we created a new
branch of control flow for each possible call target. In each
branch, we put actual-in and actual-out nodes depending on

how parameters are used by the called method.

We say that a method uses one of its parameters if it reads
the parameter value or if it defines its value. We say that
a method defines one of its parameters if it defines the pa-
rameter value. We put an actual-in node for each parameter
used by the callee and an actual-out node for each parameter
that may be modified by the callee.

We chose to analyze each method after the methods it

calls, so we know which parameters are used or defined and
we can determine which actual nodes we have to create.
To take into account dependencies among actual and for-
mal parameters, we added some edges to the SDG. We put
a parameter-in edge from an actual-in node to the corre-
sponding formal-in node in the called method. We put a
parameter-out edge from a formal-out node in the called
method to the corresponding actual-out node in the calling
method.

Actual-in and actual-out nodes in each branch are control
dependent on the method call instruction, so we add control
dependence edges from the call node to actual-in and actual-
out nodes. To take into account the dependence of called
method on its caller, the call node itself is linked to the
entry vertex of called method with a method call edge. Since
method call edges are interprocedural edges, they are only
put in the SDG.

Next we add summary edges from actual-in nodes to actual-
out nodes. A summary edge is added from actual-in A to
actual-out B if and only if the value of A may affect the
value of B. Again, these dependencies have been computed
during the analysis of the called method.

The last node of each branch is eventually connected with
a control flow edge to the original call node successor in the
CFG. Figure 2 shows a modified call in case there is a single
parameter and its value is modified by the called method.

4.2.1 Formal Parameters and Return Value Repre-

sentation

After the creation of actual nodes, we have to build formal-
in and formal-out nodes to represent formal parameters of
the method under analysis. Since Jimple representation al-
ready contains instructions representing the assignment of
parameter values to local variables, we use these instructions
as formal-in nodes.

To create formal-out nodes, we analyze method instruc-
tions one by one, searching for instructions that modify
reference-type parameters. Non-reference parameters (prim-
itive types as ints) cannot be modified, since their redefini-
tion is not returned to the calling method, so we do not
create formal-out nodes for them. For each parameter, we
add a formal-out node in the method if and only if there
is at least one instruction that can modify the parameter.
Formal-out nodes are placed sequentially before the Stop
node in the CFG of the called method. To handle multi-
ple return statements, we link each one of them to the first
formal-out node (if there are no formal-out nodes, they are
linked to the Stop node).

4.3 Dataflow analysis

DFGs are built following a slightly modified version of
the algorithm proposed in [17]. This algorithm requires
to associate six sets (use, def, gen, kill, in, and out) to
each node. The def set contains the variables defined in
a given node. In our implementation the gen set (gener-

ated from the def one) contains strings in the form ‘node-
number.variable-defined’. For example, if node 7 defines
variable ‘foo’, we put in node 7 gen set the string ‘7.foo’.
When we find a killing definition® of ‘foo’, we put in the
killing node kill set the string ‘*.foo’. This means that ev-
ery other definition of ‘foo’ has to be killed. We also use the
character ‘*’ to express datamember killing. When we find
a killing definition of the reference variable ‘bar’; we put in
the killing node kill set the string “*.bar.*’, instead of explic-
itly killing all its data-members. This allows us to represent
killing definitions for object data-members without knowing
the inner structure of classes.

Computation of reaching definitions needs comprehension
of intra-procedural alias information. We don’t describe
here the algorithms we use to compute intraprocedural aliases,
since they are performed by the Soot framework. Since
aliases affect variables uses and definitions in method nodes,
we have to modify gen, def and use sets for each node.

For each used variable in the node we build a graph to
express the use of its ‘containers’ and its aliases. The ‘con-
tainer’ of a class datamember is the object the datamember
belongs to. An example of this graph is shown in figure 3.

4> Alias are linked
~Y by this arrow

Figure 3: Alias graph example

We start building this graph by adding the used variable
to it. Next we add to the graph its aliases. Then, for each
graph head, we add to the graph its ‘container’, linking the
container with the head. When we add a ‘container’ to the
graph, we also add its aliases and we link them with the
head we are examining. We go on until no more containers
can be added to the graph.

From this graph we can extract the node use set. We
examine the graph heads one by one. We follow graph edges
until we reach one of the tails. For each node we come across,
we take the last part of its name and concatenate it with
others. The obtained variables are added to the node use
set. Then we remove the examined head from the graph.
Referring to figure 3, we can examine what happens when
examining the head named ‘x’. First, ‘x’ is added to the
node use set. Then we follow the edge and we come across
‘foo.a’. We add ‘x.a’ to the node use set. Next we come
across ‘foo.a.b‘, and we add ‘x.a.b’ to the node use set. Since
we have reached a tail node, we remove the ‘x’ node from
the graph.

If we are examining a variable being defined by the node, we
build the graph in the same way, except that we do not add

2Killing definitions are definitions that make useless previ-
ous definitions of the same variable

variables alias. However containers’ aliases are still added
to the graph.

Reaching definitions are then computed using the same
algorithm proposed in [17], with some minor modifications
needed to make it work with our representation of killing
definitions.

The last step in the method analysis consists in calcu-
lating dependencies of formal-out nodes and return value
node from formal-in nodes. Starting from each formal-out
node, we backwards follow summary, control and data de-
pendence edges, looking for formal-in nodes. Any formal-in
node found in this intraprocedural slice affects the formal-
out node we examined.

4.4 Mapping the Slice to the AspectJ Code

Once the slice of code that affects a given criterion is com-
puted, we have to map it back onto the original AspectJ
source code. This is accomplished analyzing source code in-
formation found into the bytecode instructions. Since byte-
code contains information about original source code lines
corresponding to each bytecode instruction, the mapping is
performed extracting source code line numbers from byte-
code. In this way method and advice statements are easily
identified. Instead, pointcut declarations do not normally
contain executable statements. However, when they do (as
in the example shown in Fig. 1), the mapping is solved cor-
rectly.

Currently, we are not able to correctly map inter-type
declarations. In fact, AspectJ weaver documentation does
not precisely describe the weaving of inter-type declaration
(that part is prone to heavy optimization, and it is likely
to change in different releases). Inter-type declarations are
implemented by direct bytecode manipulation, without pre-
serving any information about their source, therefore by an-
alyzing only bytecode it is impossible to spot them correctly.

5. AN EXAMPLE

Figure 4 contains a piece of code that shows a simple case
of aspect interference. Class T represents an hypothetical
boiler controller. Suppose the programmer wants to add
two different aspects. The first one (LockAspect in the code)
introduces a locking mechanism in order to assure that only
one object at a time can modify the boiler status. The
second aspect (TInvariant in the code) checks that the boiler
temperature can never be set to a value greater than 100
Celsius degrees and shuts down the boiler otherwise. Both
the aspects work properly if they are independently applied
to the program but if they are applied together the invariant
aspect can in some case interfere with the locking mechanism
leading the system to a deadlock status.

Applying our tool to the weaved bytecode it is possible to
construct the SDG and then calculate the slices using the
two aspects as slicing criteria. The whole graph contains
236 nodes and around 650 edges.

The slice built using TInvariant as slicing criterion does
not contain any node that belongs to the LockAspect code.
That means that the locking mechanism does not interfere
with the invariant property. On the contrary, the slide built
starting from LockAspect contains nodes of the invariant
code. This is not a proof that the two aspects are incompat-
ible, but it represents a useful information for the program-
mer since it points out that the TInvariant aspect affects the
behavior of the locking aspect.

6. CONCLUSIONS

Our tool, while quite limited in the current preliminary
version, shows that AspectJ programs analysis can be actu-
ally performed analyzing woven bytecode. Moreover, since
every Java program is also a valid AspectJ program, the tool
can also be used to analyze plain Java programs, provided
that the limitations described in Section 4.1 are satisfied.

Mapping the computed slice onto the source code is cur-
rently possible only for statements that are part of meth-
ods and advice code. The main open problem is still about
the inter-type declarations: currently they are not correctly
mapped, because it is not easy to understand whether class
files have been modified during the weaving process. How-
ever, we can correctly analyze effects of inter-type decla-
rations in the program. Mapping of inter-type declarations
would be easily implemented if AspectJ compiler could mark
intertype declarations using Java annotations, provided by
Java 1.5.

We plan to remove most of the limitations of the tool in
the following releases. We will be able soon to analyze ar-
rays introducing in our code the opportune representation.
Soot already provides a representation for arrays and we are
going to use it. We will also implement a simplyfied excep-
tion analysis, that will be able to deal with intraprocedural
exceptions, using tools provided by Soot.

The further step will be dealing with direct and mutual
recursion along the lines sketched in [17]. Morever, static
fields will be analyzed by exploiting the techniques described
in [11].

Our final goal is to understand how large is the impact of
using aspects on the comprehension of the whole program.
In fact, if the slice associated to an aspect would be too
big (at worst the whole program), this is a hint that the
separation of the aspect code from the base one is only syn-
tactical, since in the worst case no compositional invariant
can be taken for granted.

7. REFERENCES

[1] Aspectj. http://www.aspectj.org.

[2] Indus. website:http://indus.projects.cis.ksu.edu/.

[3] Davide Balzarotti and Mattia Monga. Using program
slicing to analyze aspect-oriented composition. In
Curtis Clifton, Ralf Ldmmel, and Gary T. Leavens,
editors, Proceedings of Foundations of Aspect-Oriented
Languages Workshop at AOSD 200/, pages 2529,
Lancaster (UK), March 2004. Iowa State University.

[4] Lynne Blair and Mattia Monga. Reasoning on
AspectJ programmes. In Proceedings of Workshop on
Aspect-Oriented Software Development, pages 45-50,
Essen, Germany, March 2003. German Informatics
Society.

[5] Curtis Clifton and Gary T. Leavens. Obliviousness,
modular reasoning, and the behavioral subtyping
analogy,. Technical Report TR03-01a, Iowa State
University, January 2003. presented at SPLAT 2003.

[6] James Corbett, Matthew Dwyer, John Hatcliff, Corina
Pasareanu, Robby, Shawn Laubach, and Hongjun
Zheng. Bandera: Extracting finite-state models from
Java source code. In 22nd International Conference on
Software Engineering, pages 439-448, Limerick,
Ireland, June 2000. IEEE Computer Society.

7]

[13]

[14]

[15]

public class T{
int temperature;
public T(){
this.temperature = 0;

}

public void set_temp(int t){
System.out.println(”Setting temperature to ”+t);
this.temperature = t;

}

public void shutdown(){
System.out.println(” Shutting down...”);

}
}

public class Main {
public void method1(T t, int x){
t.set_temp(x);

public static void main(String[] argc){
Main m = new Main();
T t = new T();
m.method1(t, Integer.parselnt(argc(0]));
}

}

public aspect LockAspect {
public void T.get_lock(){
System.out.println(”Lock acquired”);

public void T.release_lock(){
System.out.println(”Lock released”);

}
before(T t): target(t) && (call(void set_temp(int))){
t.get_lock();

after(T t): target(t) && (call(void set_temp(int))){
t.release_lock();

before(T t): target(t) && (call(void shutdown())){
t.get_lock();

after(T t): target(t) && (call(void shutdown())){
t.release_lock();

}
}

public aspect TInvariant {
before(T t, int newval):
set(int T.temperature) && args(newval) && target(t){
if (newval > 100) t.shutdown();

}
}

Figure 4: Example of interacting aspects

Remi Douence, Pascal Fradet, and Mario Stidholt.
Composition, reuse, and interaction analisys of
stateful aspects. In Proceedings of the 3rd
international conference of aspect-oriented software
development, Lancaster, UK, March 2004. ACM.
Susan Horwitz, Thomas Reps, and David Binkley.
Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and
Systems, 12(1):26-60, January 1990.

Shmuel Katz. Diagnosis of harmful aspects using
regression verification. In Gary T. Leavens, Ralf
Lammel, and Curtis Clifton, editors, Foundations of
Aspect-Oriented Languages, March 2004.

Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented
programming. In Proceedings of the Furopean
Conference on Object-Oriented Programming
(ECOOP), Finland, June 1997. Springer-Verlag.
Gyula Kovécs, Ferenc Magyar, and Tibor Gyiméthy.
Static slicing of Java programs.

Shriram Krishnamurthi, Kathi Fisler, and Michael
Greenberg. Verifying aspect advice modularly. In
Proceedings of SIGSOFT’04/FSE-12, Newport Beach,
CA, USA, November 2004. ACM.

L. Larsen and M.J. Harrold. Slicing object-oriented
software. In In Proceedings of the 18th International
Conference on Software Engineering, pages 45-50.
Association for Computer Machinery, March 1996.
Donglin Liang and Mary Jean Harrold. Slicing objects
using system dependence graphs. In ICSM, pages
358-367, 1998.

David Lorge Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, December 1972.

[16]

(17]

(18]

(21]

(22]

Martin Rinard, Alexandru Salcianu, and Suhabe
Bugrara. A classification system and analysis for
aspect-oriented programs. In Proceedings of
SIGSOFT’04/FSE-12, pages 147-158, Newport
Beach, CA, USA, 2004. ACM.

Christoph Steindl. Slicing for Object-Oriented
programming languages. PhD thesis, Johannes Kepler
University Linz, 1999.

Maximilian Stoerzer. Analysis of AspectJ programs.
In Proceedings of 3rd German Workshop on
Aspect-Oriented Software Development, March 2003.
R. Vall, e Phong, C. Etienne, G. Laurie, H. Patrick,
and L. Vijay. Soot - a Java bytecode optimization
framework. 1999.

M. Weiser. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering,
pages 439-449. IEEE Computer Society Press, March
1981.

M. Weiser. Program slicing. IEEFE Transactions on
Software Engineering, 10(4):352-357, July 1984.
Jianjun Zhao. Slicing aspect-oriented software. In
Proceedings of the 10th IEEE International Workshop
on Programming Comprehension, pages 251-260, June
2002.

