
On Aspect-Oriented Approaches

Mattia Monga

Università degli Studi di Milano
Dip. Informatica e Comunicazione

Via Comelico 39/41, I-20135 Milano
mattia.monga@unimi.it

Abstract. Several approaches to program construction call themselves
aspect-oriented. However, there is still no common agreement on what
should be considered aspect orientation. The appealing proposal by Fil-
man who summarized it in quantification and obliviousness is considered
simplistic by who views aspect orientation as a true new paradigm of
software development. This paper drafts a model of aspect-oriented ap-
proaches, by showing how major examples of aspect orientation fit in it.
The proposed model claims that any aspect-oriented approach is essen-
tially a two-step process: a system is initially designed in a traditional
way, while a second step is introduced in order to predicate about the
entities defined, explicitly or implicitly, during the first step. Therefore,
aspect-oriented approaches are in principle devoted to software evolution
or augmentation, in contrast to reflective approaches, which uses models
of the system during system computations themselves.

1 Introduction

Separation of concerns is a very general and very powerful principle that applies
to any large and complex human activity. It is especially used in software to
express the ability to identify, describe, and handle important and critical facets
of a software system separately. Concerns are always related to a goal a stake-
holder wants to achieve with a software system or to anticipations or expectations
he or she has on a system. A concern can be seen as a perspective that is taken
by a stake-holder on a system in a given development stage [6].

Well organized software systems are partitioned in modular units each ad-
dressing a well defined concern. Such parts are developed in relative isolation and
then assembled to produce the whole system. A clean and explicit separation of
concerns reduces the complexity of the description of the individual problems,
thereby increasing the comprehensibility of the complete system [10].

Traditionally, programming languages provide constructs to partition the
software in modular units of functionality. Such parts are then assembled to
get the desired functionality of the whole system. Traditional languages provide
procedures and functions. Object-oriented languages break up programs in ob-
jects isolated by class encapsulation: this boundary limits the influence of pieces
of code to localised regions; moreover, inheritance allows one to incrementally



2

evolve components by adding new features or redefining existing features.
However, sometimes a concern is not easily factored out in a programming unit,
because it cross-cuts the entire system, or parts of it. Synchronization, memory
management, network distribution, load balancing, error checking, profiling, se-
curity are all aspects of computer problems that are unlikely to be separated in
well defined units. Common experience suggests that every decomposition of a
complex system leaves some concerns scattered among components. Scattering
is a problem because it hinders the possibility to reason about a concern in isola-
tion, by temporarily ignoring what is currently irrelevant. Thus, the problem is
clear: which means are needed to clearly separate every relevant concern? Aspect

is the name of a concern that, in a given context, is not easy to isolate from the
others and aspect-oriented approaches are those that propose a technique able
to achieve a higher degree of separation of concerns.
I am not happy with the above definition. On the one hand it obfuscates the
distinction between the problem and its tentative solution. Obviously enough,
separation of concerns is not a new problem. It has its roots in the very essence
of the western thought: Aristotle used taxonomies as the fundamental tool of his
philosophy and Descartes identified analysis as one of the four driving principles
of his research method. As far as software engineering is concerned Parnas’ re-
flections on program decomposition and information hiding date to the ’70s and
they are considered at the core of the discipline. On the other hand, if aspect
orientation is something able to separation difficult concerns, it is clearly a good
thing and we all should do it, since an aspect-oriented system is, by definition,
a system in which every relevant concern is separated enough to be managed
in isolation. I believe that such systems do not exist today, although several
systems claim to be aspect-oriented. We should sharply distinguish between the
problem, separation of concerns, and the techniques we use to try to cope with
it. In this paper I claim that some of them share some common principles and
they deserve a common name, namely aspect orientation. This should be useful
in understanding when an aspect-oriented approach is appropriated and when
some other approaches should be chosen to solve the problem at hands. Prag-
matically, aspect-oriented approaches are powerful tools that software engineers
should have in their portfolio, but only if we will able to define their essence,
their power, and their weaknesses, we will be free from the recurrent search for
the silver bullet.
The paper is organized as follows: Section 2 presents what I consider to be the
essential part of aspect-oriented approaches, providing some examples of a few
popular aspect-oriented systems described under this perspective and Section 3
draws some conclusions.

2 A model of aspect orientation

2.1 Aspect orientation à la AspectJ

The notion of aspect-oriented programming was introduced by Kiczales et al.
in [8]. Their approach was successfully implemented in AspectJ [1] by Xerox



3

PARC. AspectJ aims at managing tangled concerns at the level of Java code.
AspectJ allows for definition of first-class entities called aspects. This construct
is reminiscent of the Java class: it is a code unit with a name and its own
data members and methods. In addition, aspects may introduce an attribute or
a method in existing classes and advise that some code is to be executed before

or after a specific event occurs during the execution of the whole program.
Aspect definitions are woven into the traditional object-oriented (Java) code
at compile-time. Nevertheless, events that can trigger the execution of aspect-
oriented code are run-time events: method calls, exception handling, and other
specific points in the control flow of a program.

The AspectJ way to provide support for encapsulating otherwise cross-cutting
concerns is based on:

1. a syntactic extension to Java for isolating aspect-oriented code;
2. a language for identifying join points where advices should be introduced;
3. a compile time weaver responsible to mix aspects with the rest of the code

in order to produce the running system.

Integration, or weaving in the aspect-oriented jargon, can be in principle
performed in different ways and at different times. In fact, it can be done at
link-time [2], at run time [11], or at deployment-time [2].

The nature of the join points strongly affects the properties of the integration:
its flexibility, the ability to understand the integrated system in terms of its
components, reusability of components, and the nature and complexity of weaver
and other supporting tools.

In principle, the various aspects should not interfere with functional code,
they should not interfere with one another, and they should not interfere with the
features used to define and evolve functionality, such as inheritance. Currently,
non interference in presence of class evolution is really hard, and programmers
should be very careful in writing aspects that make use of the implementation
details of classes as little as possible if they want to be able to reuse their aspects.
Moreover, it is still not clear how to cope with the difficult problem of aspect
interaction (see [4, 7, 3] for some work in progress and discussion). An interesting
point to be noted is that, while aspects say something about classes, classes are
unaware of aspects, i.e., it is not possible to name an aspect inside a class:
aspects are conceptually a posteriori with respect to classes, they augment the
system by some functionality. Although advices may affect aspect code, advices
assume the existence of some working code to be “advised”, i.e., convinced to
do something else with respect a prior idea.

2.2 The core of aspect orientation

In a widely cited paper [5], Robert Filman compares aspect-oriented program-
ming to the event driven programming paradigm. He claims that aspect orienta-
tion is fundamentally different from publish-subscribe because it is characterized
by both



4

1. quantification: the ability to do something when a specific property occurs
to be true;

2. obliviousness: programmers are more or less unaware of what can be trig-
gered by their code;

On the contrary, in event driven systems, programmers expose explicitly which
properties can be quantified and other components explicitly subscribe them-
selves to be notified when the property becomes true. While generally consid-
ered insightful, Filman’s work is sometimes depicted as simplistic [12] since it
neglected the importance of the join-point model (i.e., what can be quantified
and what can be exposed by quantification itself). Moreover, the very concept of
obliviousness is quite controversial among aspect orientation experts. A loosely
regulated obliviousness as the one allowed by AspectJ constructs may cause tur-
bulent ripple effects that in general force programmers to take into account most
of the statements of a system in order to understand the properties of the system
they are building. As a consequence, several scholars are proposing techniques to
mitigate, discipline, or even avoid obliviousness in aspect oriented approaches.

Thus, it is still not clear what exactly is at the core of aspect orientation. I
suggest that, while quantification is important, the essential part of any aspect-
oriented approach is the two-step process, by which quantification is exploited.
The conceptual model of aspect orientation I have in mind is depicted in Fig-
ure 1. The system is described, designed, or implemented in any coherent way.
However, some issues are more or less orthogonal to this description, design,
or implementation. Thus, in order to describe, design, and implement this aug-
mentations, a model (an abstraction) of the system is considered. The original
conception of the system and any augmentation are put together by some al-
gorithmic device that, by knowing the ontology of the model, is able to weave
augmentations to produce a running system. It is worth noting that, since the
model is an abstraction of the system itself it is more general: as a consequence
of this generality, an augmentation concerning a general element may also af-
fect some entity that is not part of the original system. For example, if one
states that “every function call should be traced by a printf”, the model of
the system is the function call graph, and a universal quantification implies the
affection of printfs too; in order to avoid infinite recursion, one should state
the augmentation as “every function call in the original system should be traced
by a printf”.

In other words, aspect-oriented approaches are evolution techniques in which
one defines a computation ∆ that transforms a software system S in a new
system S′. ∆ can be defined by the tuple

< M, A, µ, ω >

where:

– M is a model of the system obtained by applying the abstraction function

µ : S → M

,



5

System

Model

Augmentation

Weaver

abstracts on

predicates onaugments

weaves

Fig. 1. The essence of aspect oriented approaches

– A is the augmentation of S defined on M

– ω denotes the weaving
ω : S, A → S′

.

According to this framework, an aspect-oriented approach can be described by
stating the features of < M, A, µ, ω >. Thus, obliviousness about ∆ becomes a
property of the construction of S, irrelevant for the approach (while still sig-
nificant when the properties of S and, in general, S′ are concerned). Distinct
aspect-oriented approaches may differ for the ontology and granularity of M

(what can be quantified), for the mapping mechanisms µ (what is considered
in mapping: which entities and which perspective, whether a static viewpoint is
involved, or the system is considered in its run-time, link-time, deployment-time
structure. This is a critical decision that heavily affects information hiding as-
sumptions), for the ontology A (what can be part of the augmentation), and for
the weaving mechanism ω.

2.3 Actual aspect-oriented approaches

A couple of representative examples should suffice to give an idea about the
framework rationale. For a detailed account of the described approaches, readers
are directed to the referenced papers.

AspectJ AspectJ [1] (see also the introductory discussion in section 2) presents
a rich M ontology and mapping power. In fact, a wide range of abstraction levels
are allowed in what can be considered as a join point in a Java system:

– Lexical entities (withincode, regular expression on identifiers, etc. )
– Statically known entities (void func(int), etc. ) and type relationships
– Run time events (call, execution, if something happens during a given

control flow, etc.)

The mapping µ operates at the level of the Java language specification: for
example, it can distinguish between function calls and function dispatching,
it can override encapsulation, it takes into account static and dynamic types.



6

This is the source of several intricacies, since AspectJ programmers have to be
aware of both Java and AspectJ subtilties to master their ∆. Augmentations
are composed by every legal Java entity and every join point can be augmented
before, after, or instead its detection. Weaving ω is performed at compile-time,
and cannot be undone.

Hyper/J Hyper/J [13] is a language to define multiple dimensions of concern
within a software system written in Java. Hyper/J considers the system as a set
of Java declarations (methods, attributes and classes) and provides:

1. a notation to map declaration units to arbitrary concerns and concerns to
concern dimensions: i.e., each unit is assigned to one or more concern;

2. a notation to describe various correspondences between declarations and
definitions;

3. an engine to bind together declarations and definitions according to such
correspondences.

Hyper/J considers the decomposition of the system in classes as a dimension
of concern (the ClassFile dimension), in principle analogous to the others: its
creators say that there is no tyranny of the dominant decomposition [13]. The
set of all declaration units form a hyper-space from which the compiler can cut
hyper-slices containing all concerns pertaining to a dimension. Hyper-slices can
be generated declaratively complete including in it all definitions needed for static
checking. These slices are eventually integrated in executable hyper-modules by
specifying which definitions must be linked to abstract declarations.

Again, essential in the Hyper/J approach is the two step process: program-
mers write a Java system and then it can be mapped on a new model (the
hyper-space). Augmentations are described in term of hyper-slices and the new
system is composed by augmented hyper-modules.

3 Conclusions

Nowadays, the main problem aspect-oriented approaches are facing is the need
for a better understanding of what properties of S are preserved in the augmented
system S′. I believe that in order to solve this hard question, a clearer comprehen-
sion in what is essential in an aspect-oriented is key. An important contribution
to this goal was Filman’s work. However, quantification and obliviousness can
be a too restricted, and sometime misleading, view of aspect orientation. On the
other hand, other proposals (see for example [9]) describe the richness of the
world of aspect-oriented systems, but an abstraction of its essential features is
missing. The model proposed above claims that any aspect-oriented approach is
essentially a two-step process: a system is initially designed in a traditional way,
while a second step is introduced in order to predicate about the entities defined,
explicitly or implicitly, during the first step. This is, in a sense, the meaning of
cross-cutting, that can be defined only if one assumes an existing structure.



7

Therefore, aspect-oriented approaches are in principle devoted to software evo-
lution or augmentation. From this perspective, aspect-oriented approaches differ
from reflection (although they often leverage on reflective services to implement
their abstractions) which, instead, uses a model of the system during the com-
putations of the system itself.

References

1. Aspectj. http://www.aspectj.org.
2. Aspectwerkz. http://www.aspectwerkz.org, 2004.
3. D. Balzarotti and M. Monga. Using program slicing to analyze aspect-oriented

composition. In C. Clifton, R. Lämmel, and G. T. Leavens, editors, Proceedings of
Foundations of Aspect-Oriented Languages Workshop at AOSD 2004, pages 25–29,
Lancaster (UK), Mar. 2004. Iowa State University.

4. R. Douence, P. Fradet, and M. Südholt. Composition, reuse, and interaction anal-
isys of stateful aspects. In Proceedings of the 3rd international conference of aspect-
oriented software development, Lancaster, UK, Mar. 2004. ACM.

5. R. Filman and D. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Proceedings of OOPSLA 2000 workshop on Advanced Separation
of Concerns, 2000.

6. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: A framework for integrating multiple perspectives in systems develop-
ment. International Journal of Software Engineering and Knowledge Engineering,
1(2):31–58, 1992.

7. S. Katz. Diagnosis of harmful aspects using regression verification. In G. T.
Leavens, R. Lämmel, and C. Clifton, editors, Foundations of Aspect-Oriented Lan-
guages, Mar. 2004.

8. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP), Finland, June 1997. Springer-
Verlag.

9. K. Mehner and A. Rashid. Towards a generic model for aop (gema). Technical
Report CSEG/1/03, Lancaster University, Lancaster LA1 4YR, UK, 2003.

10. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, Dec. 1972.

11. R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. Jac: A flexible solution for
aspect-oriented programming in java. In 3rd International conference on Meta-
level architectures and separation of concerns, number 2192 in Lecture Notes in
Computer Science, pages 1–25. Springer-Verlag, 2001.

12. A. Rashid. Personal communication.
13. P. Tarr and H. Ossher. Hyper/JTM User and Installation Manual. IBM Research,

2000.


