Weighing the value of changeability in Open Source Software

Mattia Monga, Andrea Trentini
D.I.Co. - Universita degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy
(monga|trentini)@dico.unimi.it

April 14, 2006

Abstract

Software value assessment is not an easy task.
Many techniques have been proposed in the past,
qualitative and quantitative, based on human eval-
uation or on measureable metrics. This paper pro-
poses a quantitative technique based on the con-
cept that “modularization is value”, applied to the
Debian package database. This (software imple-
mented) technique defines two metrics: change cost
(as a function of the dependencies among packages)
and integration cost (as a function of the number
of maintainers involved). We applied our technique
to sets of packages and we show and comment the
results we obtained.

1 Introduction

A big issue in Software Engineering is the task of
evaluating the “quality” of a software system. Tra-
ditional SE techniques span from the use of metrics
[8, 7, 2, 4] to the measurement of defects by testing
a system at runtime [1, 10, 5].

Another important issue to be assessed is the
“value” of a piece of software, and, in particular,
its “relative value” (e.g., relative to a specific user).

The quality of a software system influences its
“value”: if a low quality (e.g., many bugs/defects)
means always low value (no matter the purpose of
the system), high quality does not imply high value
since the definition of “value” should take into ac-
count functionality (in a broader sense) and sub-
jective usefulness. That is, the measurement of
software value can also be done by evaluating the
“suitability to task” for a specific user (or group

of).

One of the techniques proposed to evaluate
the suitability of open source software is BRR
(Business Readiness Rating” [9]). BRR is a
community initiative (sponsored by Carnegie Mel-
lon West Center for Open Source Investigation,
O’Reilly CodeZoo, SpikeSource and Intel) to sup-
ply a standardized method to decide if some specific
Open Source software application is ready (mature
enough) to be used in a business context. BRR
defines a set of semi-quantitative metrics (Func-
tionality, Usability, Quality, Security, Performance,
Scalability, Architecture, Support, Documentation,
Adoption, Community, Professionalism) and gives
guidelines to evaluate and to normalize (by weigh-
ing) them for the computation of a “readiness-for-
business score”.

In our view, the main disadvantage of BRR is
that the defined metrics are not purely quantita-
tive and they cannot be measured on the code, al-
though it is exactly the availability of the code
the key difference between open source and closed
source products. The BRR guidelines offer a stan-
dard method to frame votes in a repeatable schema.
However, a way to (somewhat) measure the value
of a software product through a purely quantitative
(and possibly automatic) manner is also needed.

In the following we propose a quantitative tech-
nique to evaluate the effort needed to introduce a
change in a set of Debian packages [3]. By exploit-
ing the Debian APT database (a cache of all avail-
able packages), which is very complete in terms of
meta-information on dependencies between pack-
ages, we calculate the impact of introducing a
change and integrating them in the system. Our
metrics are in part derived from [6].

2 Proposed approach

The very essence of open source software (OSS) is
that it is possible to change its code. Closed source
products can be customized along the lines their
creators have provided by configuration means.
OSS, instead, can be modified even in order to
achieve unanticipated features. Thus, if in closed
source a key property is flexibility, i.e. how easy is
to adapt a product to a specific task, the value of
OSS depends also on its modifiability, i.e., how easy
is to modify the code. Moreover, since modifica-
tions are often carried on concurrently with the up-
stream development, it is also important to assess
how expensive is to keep coherence between both
development trunks (upstream and downstream:
possibly eventually merging them).

In order to measure the changeability of a piece
of OSS, we consider it as composed by a number of
units that can be the target of a change. These can
be modules, in the sense of an encapsulated func-
tionality with well defined boundaries, files, pack-
ages, or even arbitrary sections of code. What is
important in our approach to changeability evalu-
ation is that should be possible to know the depen-
dencies among different units. A unit A depends
on unit B if a change in the semantics of B changes
the semantics of A.

The knowledge about dependencies among units
can be used to measure the coupling of the whole
system. Following [6], we call change cost the de-
gree to which a change to any single unit causes
a (potential) change to other units in the system,
either directly or indirectly through a chain of de-
pendencies.

Moreover, when a change is introduced in an
open source system, we would like to assess how
easy would be to integrate it in the upstream
development or, conversely, how easy will be to
merge further upstream releases with the down-
stream change. We call this coordination cost and
we suggest that it is a function of the number of
principals involved in the development and the av-
erage change cost of the system.

2.1 A case study with Debian pack-
ages

As a case study for our changeability assessment
we choose the Debian packaging system. We con-

sidered a set of Debian packages and their depen-
dencies. In fact, every Debian system maintains a
database of available and installed packages. Pack-
ages are produced by Debian maintainers by aug-
menting pieces of OSS with control information
that is used to install them coherently on users ma-
chines. Debian adopts a “micro-packaging” policy,
i.e., whenever is possible maintainers try to break a
product in several small packages in order to foster
reuse of libraries and shared data.

Control information includes knowledge about
installation dependencies. A package A may de-
clare a dependency on some other package B by
specifying a Depends, Pre-Depends, Recommends,
Suggests, Enhances or Conflicts relationship.
Dependencies can be analyzed by standard De-
bian tools: only dependencies explicitly declared
by package maintainers are recorded in control in-
formation, however they are normally quite pre-
cise since the Debian developer toolkit provide sev-
eral tools to discover and track them. In our pre-
liminary study we have taken into account only
Depends constraints.

2.1.1 Change cost computation

Given a set of packages, we compute the change
cost from the dependency matrix. A dependency
matrix is a binary square matrix in which the ele-
ment a;; is 1 if and only if the package ¢ depends
on the package j, 0 otherwise.

Indirect dependencies can be computed by ma-
trix multiplication. M x M = M? contains the
dependencies obtained in 2 steps. In fact:

(M2)i’j = Z?:l(M)i,r (M)

thus (M?); ; > 0 if and only if r exists such that
i depends on r and r depends on j.

M? is the identity matrix, for each i, (M?);,; =
1, and it can be interpreted as the fact that each
package depends on itself.

If n is the number of packages in the set, the
transitive closure of dependencies T' can then be
computed by the formula

T=7 (M) (1)
k=0

where M* is the matrix M* where any (M*); ; > 1
was substituted by 1. Limiting the sum to n avoids

the problem of cyclic dependencies that might be
present in the package database.

The density of ones in T is the measure of change
costs we considered. In fact, the sum of values of
every element in a column j of T' gives how many
other packages are potentially affected by a change
in j. The average change cost x of the set of pack-
age is given by the formula

Z?:O,j:O(T)iJ
XS

(2)
where 7' is the matrix 7' where any (T); ; > 1 was
substituted by 1

The maximum value for x is 1, meaning that
every change impacts on everything. The minimum
value is 1/n, when each package depends only on
itself.

2.1.2 Integration cost computation

Integration cost is a measure of the effort needed
when a change is introduced in the system and
we want to merge that with the upstream devel-
opment. Intuitively, this cost increases with the
number of people which are affected by the change,
since the change merge has to be ideally coordi-
nated among all of them. Thus, if the change cost
X gives the average percent ratio of units affected
by a unit change, we consider the coordination cost

K given by
K=X"p 3)

where p is the number of principals involved in the
development of the system. Given a set of pack-
ages, p is the number of Debian maintainers who
are responsible for all of them.

3 Experimental data

We built a Python script to compute change and
integration costs on arbitrary sets of Debian pack-
ages, leveraging on the APT cache database. The
tool is available on request. We ran our tool over
several subsystems with the same functional goal:
in other words we tried to get cost figures about
comparable applications.
Thus, we compared:

e two implementations of the X Window Sys-
tem, the old monolithic XFree86 and the new
modular one, XOrg;

Pkg set | # of | Change | Integration
pkgs | cost cost

xorg 66 0.028696 | 0.057392
xfree86 3 0.444444 | 0.444444
kde 359 0.005912 | 0.384308
gnome 380 0.006053 | 1.004737
perl 1068 | 0.006667 | 1.526835
python 941 0.004118 | 0.650571
postfix 9 0.185185 | 0.740741
gmail 1 1 1

cyrus 25 0.060800 | 0.304000
sendmail | 4 0.562500 | 0.562500
courier 25 0.139200 | 0.278400

Table 1: Change and integration costs for several
package sets

e two graphical desktop managers, Gnome and
KDE;

e two interpreted language environments,

namely Python and Perl;
e five mail servers;

Table 1 shows the results of the computation of the
change cost and the integration cost. Here in the
table we have four groups of package sets:

Some interesting remarks can be made over these
results:

e Consistently with our intuition a modularized
product gives a lower change cost with respect
to a monolithic one (see XFree86 vs. XOrg);

e A high number of packages in the set lowers
the change cost since most packages have a
small number of dependencies, in the range 0-
100 (maybe less). The dependency matrix is
quite sparse;

e The KDE development team is smaller than
the Gnome team. In fact, the integration cost
is far lower meaning that a change has to be
negotiated with less people;

e When comparing Cyrus and Courier mail
servers (same amount of packages): Cyrus has
lower change cost but a higher integration cost.
It seems that Cyrus is better structured (mod-
ularized) but since much more developers are

involved, integrating a change in it could be
hard, thus “wasting” part of the modulariza-
tion advantage.

4 Conclusions

In this paper we proposed two measures for weigh-
ing the value of changeability in Open Source Soft-
ware products. We applied our metrics to some
complex subsystems of the Debian GNU /Linux dis-
tribution. Since open source is mainly about “get-
ting and modifying the code” we wanted to have
some systematic way to assess the cost of a change
in the code base. We considered two different costs:
the cost of actually performing the change (change
cost) and the cost of integrating the change in the
open source system. Our preliminary results are
consistent with the well accepted software engineer-
ing principle that modularity fosters changes. In-
tegration cost is even more difficult to assess. We
choose to evaluate the development “entropy” that
one has to manage for integrating a change with
the number of people involved in the work. In fact,
lot of other factors are probably relevant, as, for ex-
ample, how open to external contributions a devel-
opment community is. We are working on a refine-
ment of our metrics and we are planning to assess
them on a more extensive set of examples.

References

[1] W. Richards Adrion, Martha A. Branstad, and
John C. Cherniavsky. Validation, verification,
and testing of computer software. ACM Com-
put. Surv., 14(2):159-192, 1982.

[2] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality.
In ICSE ’76: Proceedings of the 2nd inter-
national conference on Software engineering,
pages 592—605, Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[3] Debian. http://www.debian.org, 2006.

[4] Norman E. Fenton and Martin Neil. Software
metrics: roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software
Engineering, pages 357-370, New York, NY,
USA, 2000. ACM Press.

[5] D. Gelperin and B. Hetzel. The growth of soft-
ware testing. Commun. ACM, 31(6):687-695,
1988.

[6] Alan MacCormack, John Rusnak, and
Carliss Y. Baldwin. Exploring the structure
of complex software designs: An empirical
study of open source and proprietary code. In
Management Science (forthcoming).

[7] Nachiappan Nagappan, Laurie Williams,
Mladen Vouk, and Jason Osborne. Early es-
timation of software quality using in-process
testing metrics: a controlled case study. In 3-
WoSQ: Proceedings of the third workshop on
Software quality, pages 1-7, New York, NY,
USA, 2005. ACM Press.

[8] Hideto Ogasawara, Atsushi Yamada, and
Michiko Kojo. Experiences of software qual-
ity management using metrics through the life-
cycle. In ICSE ’96: Proceedings of the 18th
international conference on Software engineer-
ing, pages 179-188, Washington, DC, USA,
1996. IEEE Computer Society.

[9] Business Readiness Rating. Rfc
1. http://www.openbrr.org/docs/
BRR_whitepaper_2005RFC1.pdf, 2005.

Hong Zhu, Patrick A. V. Hall, and John H. R.
May. Software unit test coverage and ade-
quacy. ACM Comput. Surv., 29(4):366-427,
1997.

