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Abstract. Configuration management tools are traditionally server-based applications. To deal
with the new issues emerging from the current (and future) cooperative work scenarios in which con-
nectivity is intrinsically transient new applications based on of a fully decentralized, peer-to-peer
architecture were proposed. In this paper we analyze these two architectures leveraging on Stochas-
tic Well-Formed Nets (SWN) models, in order to compare the impact of the two alternative protocols
on the collaborative work.

1. Introduction

Configuration management is a very critical activity in software development. It is responsible for
keeping the development of software artifacts orderly and managed. Not surprisingly, it is considered
by process improvement methodologies, like CMM, as one of key practices that software development
organizations should establish in their improvement strategies [11].

Traditionally, configuration management tools followed a client-server architecture. A server machine
hosts arepositoryof artifacts; when one of the programmers involved in the project wants to modify
an artifact, s/he mustcheck-outa working copy of it on her/his machine and, when the modification
is finished, the new version has to bechecked-inagain in the repository. The server is responsible for
the management of the artifacts: if someone else has checked-in a new version of the same artifact,
any further attempt of checking-in raises a conflict, that can be handled only byupdatingthe working
copy andmergingthe concurrent modifications.

This approach is suitable when a reliable and permanent network infrastructure is available to connect
the participating nodes. However, it assumes the feasibility of having a central machine, set up to be
accessed by all the node and reachable by a node every time it needs a check-out, a check-in, or
an update operation. In order to relax this strong assumption some peer-to-peer architectures for
configuration management were proposed [12, 9].

In particular, in this paper we analyze PEERVERSY[1], a peer-to-peer versioning system aimed at
providing support to small groups of developers that cooperate to build software products, while
forming highly dynamic virtual communities, in which people change frequently their connectivity
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status, not always being able to access the networking infrastructure. In PEERVERSY there are no
well knownserver machines, instead the repository is distributed among the network of peers, each of
which contributes to the overall logical artifact repository with the artifacts it owns. Moreover, since
the network connection is intrinsically intermittent, as in the case of wireless connections, peers, in
fact, are not always on-line and they may dynamically join and leave the virtual ad-hoc community,
as it typically happens in mobile scenarios. They join it in impromptu meetings, where they exchange
data and synchronize their work. Each peer, however, shouldcontinue to provide its functionality to
the user even when it is in a disconnected stage. Thus, the supporting infrastructure should handle
connections and disconnections in a seamless fashion and the configuration management application
partially allows for check-out and check-in operations even if the peer is isolated from the others.

The PEERVERSY solution is based on a lazy replication of artifacts, managed by a Global Virtual Data
Structure (GVDS) [5]. Consistency is maintained by a protocol similar to the one used by DNS [10],
where multiple nodes record the associations between IP numbers and host names. Precisely, each
peer is theauthority for a set of items, and the copy of an artifact owned by the authority is the
master copy. In addition to the master copy, peers, when performing a check-out operation to get
their working copy, cache also a local copy (replica) of the documents for which they are not the
authority to allow users to work on them even when the authority is not reachable or when the peer
is disconnected from the network. In fact, a user can performboth check-in and check-out operations
from the local copies of a document. The only difference between the master copy and a replica is
that a check-in of a new version becomes definitive and available for all users only when the authority
authorizes the changes and updates the master copy.

Initially, the authority role is assigned to the peer that enters the document into the system. The
binding between authorities and peers, however, can be changed dynamically in order to improve the
overall performance of the system. For instance, if nodeX is the authority for the documentd, butY
was responsible for the last ten check-ins,Y may be promoted to becoming the new authority ofd.

Whenever a peer enters the community of peers, a reconciliation step is performed. More specifically,
whenX gets connected, for each itemi for whichX is the authority,X notifies all interested peers if
a newer version ofi is made available (The same happens when a new checked-in copy is accepted).
In such a case, the peers that own a replica ofi should update their copies.

Let us examine what happens when a user tries to check-out or check-in a document. Suppose that
peerX issues a check-out for a documentd whose authoritative peer isA (6= X). Two cases may
occur:

1. d is present inX ’s local repository. In such a case the check-out operation gets a copy ofd from
the local repository.

2. d is not present inX ’s local repository. In such a case a network search is issuedto retrieve a
valid copy. If no copy is found, the check-out operation fails. Otherwise, the system creates a
new local replica of the document and then it checks-out a copy of the artifact from the local
repository like in the previous case.

Suppose that a peerX issues a check-in request for a new version of a document whose authoritative
peer isA (6= X). We distinguish two cases:
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1. A is reachable byX. A check-in proposal is notified toA, which can reject the proposal or
commit to making it persistent in its local part of the repository as a new master copy.

2. A is not reachable byX. A check-in proposal is recorded in the local part of the repository
hosted byX unless a immediate conflict is raised. WhenA eventually becomes available, the
proposal is notified to it.A can reject the proposal or commit it, by making it persistentin its
local repository as a new master copy. If the item owned byA is newer then the one proposed
by X, a conflict arises andX ’s proposal will be refused. In this case, it isX ’s responsibility to
resolve the conflict and submit a new version.

Intuitively, such a protocol provides some advantages on a server-based one. Imagine, for example,
the case in which two nodes are isolated from the rest of the group: even if they cannot connect to a
central server machine, they could connect one with the other. With PEERVERSY, if one of the two is
the authority of documentD, every configuration management operation is still available. If, instead,
both peers are non-authoritative with respect toD, their replicas can be used to perform check-outs
and check-ins can be cached, waiting for the first opportunity of the availability of the authority to
finalize the operation. In this way people collaboration maybe oblivious about actual network topol-
ogy. Of course, when the number of writers is high we expect anincrease in the number of conflicts
arisen. In fact, in any server-based protocol, the server works as a shared point of coordination, and,
if one can assume its permanent availability,it may be used to assure that no one works (i.e., modify
artifacts) concurrently with another. However,optimisticprotocols [8] such that the one normally
used by CVS [6] do not force any locking policy, and conflicts are still possible. Therefore, in order
to reduce their number, workers are advised to do, if possible (i.e., they are able to reache the server),
an update before starting their work.

Since the number of nodes, their working profile, and, their connectivity profile intuitively impact
on the performance of a server-based or a peer-to-peer protocol, we were interested in a comparative
assessment of the two architectures. In this paper we present our findings obtained by modelling the
CVS and PEERVERSY protocol with Stochastic Well-Formed Nets (SWN). The paperis organized
as follows: in Section 2. we briefly describe our modelling approach, in Section 3. we present our
analysis, and finally in Section 4. we draw some conclusions and propose future enhancements to our
models.

2. The SWN model of the P2P infrastructure

In this section we present the SWN model(s) developed to analyze the impact of the peer-to-peer
infrastructure realized by thePeerVerSy tool on (small) groups of developers freely cooperating,
briefly commenting on the adopted modeling approach. Even ifan exhaustive description of the mod-
els is out of the scope of the paper, let us recall here the basic concepts about the SWN formalism that
are needed to motivate its use and to understand the salient points of the models presented afterwards.
Refer to [2] for a complete definition of the formalism.

2.1. SWN basics

SWNs are a flavor of Colored Petri Nets ([7]) characterized bya structured syntax that makes it
possible to detect and exploit system symmetries, thus greatly reducing the complexity of state-space
based analysis techniques.
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As in all High Level Petri Nets formalisms, tokens in places are associated with an identifier (color),
similarly transitions are parameterized, so that different (color) instances of a given transition can be
considered for enabling and firing. Arc functions associateeach transition instance with a multiset
of colored tokens to be withdrawn from/put into a place. Similarly a marking maps each place to a
multiset of colored tokens of the corresponding domain.

Colors are built from a set of (finite)basic color classes. A basic color class may be (circularly)
ordered, and may bepartitioned into static subclasses, denoting groups of entities/components of
given kind that cannot be mixed up. Acolor domain, defined as the Cartesian product of (possibly
repeated) basic color classes, is associated to each place and transition. Hence the color associated
with tokens in placep as well as the color instances of a transitiont, take the form of tuples of basic
color class elements.

The function on an arc (denotedI, O, H, depending on whether the arc isinput, outputor inhibitor)
connecting placep and transitiont maps any color instance oft to a multiset on the color domain
of p. Such function takes the form of a sum of weighted tuples ofelementary functionsdefined on
basic color classes: theprojection, selecting one element of a transition instance color tuple, and the
diffusion(denoted by symbolS), returning the set of all elements in a given (sub)class1. A transition
may be associated to aguard, that restricts the set of its admissible color instances.

A color instancec of t has concessionin markingM iff (1) for each input placep of t W−(t, p)(c) ≤
M(p), (2) for each inhibitor placep of t H(t, p)(c) >′

M(p), and (3)guard(t)(c) = true (the> +,−
operators are here implicitly extended to multisets).

A priority level is associated to each transition; priority level0 is reserved fortimedtransitions (rep-
resented as white boxes), while all other priority levels are for immediatetransitions (represented as
black bars), which fire in zero time.

A color instancec of t is enabledin markingM iff it has concession inM and no higher priority
transition instance has concession inM. An enabled color instance can fire, leading to the new
markingM

′:
∀p ∈ P,M′(p) = M(p) + W+(t, p)(c) − W−(t, p)(c)

A randomfiring delay with exponential pdf is associated to each timed transition, while weights
are used to probabilistically resolve conflicts between immediate transitions with equal priority. As
a result of the adopted time representation, a Continuous Time Markov Chain (CTMC) is directly
derived from the reachability graph of a SWN model.

The particular syntax adopted for color domains, arc functions, and guards allows behavioral symme-
tries to be automatically discovered and exploited to buildan aggregate state space (calledsymbolic
reachability graphor SRG [3]) and corresponding stochastic process (alumpedCTMC). The SRG is
built suitably setting asymbolic(i.e., parametric) initial marking, by means of asymbolic firing rule
working directly at level of symbolic markings.

2.2. The SWN model of the peer-to-peer infrastructure

The models are based on the specification documents of thePeerVerSy infrastructure [1]. The mod-
els have been developed and analyzed by means of theGreatSPN graphical package [4], following

1the successor of a projection is also allowed on ordered basic color classes
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these guidelines:

1. first the model of a traditional, client-server architecture was built

2. the complex model of the peer-to-peer architecture was then defined as a collection of submod-
els suitably composed: it may be considered as aspecialization(or refinement) of (1) (according
to the OO terminology), because its main component (the life-cycle of a cooperating worker) is
inheritedfrom in (1)

3. the other submodels of (2) represent the infrastructure that realizes the distributed repository of
artifacts

4. submodels (and the overall models as well) are fully parametric, so we made explicit the rela-
tions among component parameters

The main model parameters are:

• the number of cooperating workers,

• the number of artifacts on which workers collaborate,

• the association between a set of artifacts and one worker whoplays the role of authority for
them.

Parameters are instantiated by properly defining the modelcolor domainsandthe initial marking.

Thebehavior inheritancerelation we tried to establish between the models makes us confident that a
comparison between them could be reliably performed.

Concerning the abstraction level of models, we observe thatvery detailed models (although may be
very useful for completing the existing documentation) arehardly treatable for performance analysis
because of the state-space explosion they trigger.

The following issues have been considered in choosing a convenient abstraction level: (I) whether
to represent the underlying communication infrastructureand resource contention, (II) whether to
represent a single artifact or a set of artifacts shared by the group of developers (the former situa-
tion being better supported by the client-server architecture, while the latter one by the peer-to-peer
architecture), (III) whether to consider possible failures of the communication links or of the nodes
of the network (obviously the client-server architecture presents a single point of failure, while the
peer-to-peer architecture is intrinsically more fault-tolerant).

In this paper we decided to not consider neither the communication infrastructure nor the possible
occurrence of faults. Moreover, we restrict our analysis tocollaboration based on a single artifact.
These simplifications on one side allowed us to study the performance of many more configurations
than those manageable on the detailed models by theGreatSPN tool. On the other side, coherently
with the final goal of the paper (i.e., evaluating the impact of the the peer-to-peer protocol on the
cooperative work), they correspond to a worst-case assumption for the peer-to-peer architecture.
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The SWN model of the peer-to-peer architecture is depicted in Figure 1. It comprises three main
parts: i) on the right the main peer life-cycle, ii) on the bottom the infrastructure reaction to a check-
in operation, and iii) on the top the infrastructure reaction to a peer that goes online. The model of
the server-based architecture (not explicitly depicted here), corresponds to the component (i) of the
model in Fig.1.

Three basic color classes are used:UID (whose cardinality is one of model’s parameters), denoting
the group of cooperating workers,ST denoting the possible status (online, offline) of a worker, and
UPD, denoting the status (updated, non-updated) of the local replica of the artifact owned by a given
worker.

Timed transitions represent time-consuming activities (time being spent for decision and/or execu-
tion), while immediate transitions representlogical (sequences of) actions accomplished mainly sys-
tem infrastructure.

All places of the net but placeStatus have color domainUID: a token〈u1〉 in one of these places
represents that workeru1 has reached a particular status of his/her life-cycle.

The set of model’s timed transitions{checkout, startModify, endModify, update, merge, checkin}
have color domainUID: a color instance of any transition in this group representsa particular action
performed by a given worker during his/her life-cycle.

In the real world, each client checks out a working copy with aspecific version number, and by
comparing this with the version of the last copy of the artifact on the server he is able to establish
the up-to-date status. In order to exploit the symmetries ofthe model, we chose not to use the ver-
sion numbers but to directly maintain the up-to-date statusinformation in placesRepository and
WCopyUpdates, for the repository replica and the working copy respectively.

PlaceStatus models the online status of each peer, and by changing the frequency associated to
transitionsgoOnlineStart andgoOffline it is possible to model the online attitude of the peers (see
Section 3.1.).

Finally the place (UpdEvent) represents the presenceof a signal to a peer from the systemthat a
new version of the artifact is available. We highlight here that this is an important peculiarity of the
PeerVerSy system: it makes aware the peer as soon as possible that the working copy is not still
up-to-date. Using such an information, the peers are sometime able to avoid modify actions on old
versions of the artifact.

The updating of these three places is managed automaticallyby the infrastructure. In particular the
upper part of the net represents what happens when a peer goesonline. In the case that the version of
such a peer is newer than those of the already on-line peers, the repository replica of such peers are
automatically updated and a ”New version” signal is sent to them. On the contrary in the case that
the peer copy is older, is its repository that is updated and he receive the signal. This signal is thus an
indication that the repository replica contains a more recent version of the checked out working copy.
The bottom part of the net represents what happens when a check-in is accomplished: the working
copy status of all the other peers is set to non-uptodate. Therepository replica status of all the off-line
peers is set to non-uptodate. A new version available signalis sent to all the online peers. All the
conflicting pending check-in are then aborted (fail transition). Finally is also considered the case
that the check-in is accomplished by the authority when he/she is off-line. In this case no signal is
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sent and all working copies and repository replica are set asnon-uptodate.

3. Analysis of the results

3.1. Input parameters

Our analysis takes into account the following parameters:

1. The number of workers (N). We analyze the models with teams with 2 to 7 members working
on a single artifact. The computational complexity of the peer-to-peer model is such that a
greater number of members requires some days of CPU time on Intel Xeon 2.4GHz2.

2. Working profile (W ). Models assume that workers repeat cycles in which on average they work
(modify the single artifact) 2 units of time and they are idlefor a unit of time. When a conflict
is discovered an additional unit of time is spent in the mergeoperation.

3. On-line profile (O). Every member may be on-line or off-line. This simplification is needed in
order to abstract on the network topology. The server machine (in the server based model) is
assumed always on-line and a worker can reach it if and only ifits status ison-line. A peerA
can reach another peerB if and only if the status ofA andB is on-line. We characterized the
on-line profile of a model with two parameters:

(a) Connection periodicity (OP ). How long (in time units) is a on-line/off-line cycle. This
represents the dynamicity of the changes in the on-line status. We used the values of1/2,
1, 2, and4. OP = 4 means that if a worker is on-line a half of its time, on-line sessions
last on average 2 time units and off-line sessions 2 time units.

(b) On-line ratio (OR). How much time, on average, a worker is on-line against total time.
We used ratios of20%, 35%, 50%, 65%, 80%.

Figure 2 shows the cumulative probability of findingn workers on-line against differentORs
in a setting with 5 workers.

3.2. Output parameters

Our assessment was based on the analysis of the following output parameters:

1. Average check-in throughput per worker (C). This measures how many successful check-ins
were made by each worker during the simulation per time unit:the higher the better. In the peer-
to-peer setting we considered separately non-authoritative peers and the authority, since one of
the main advantages of the protocol is that the authority is virtually always able to perform a
successful check-in operation.

2. Average merge throughput per worker (M). This measures how many merge every worker
needed during the simulation per time unit: the lower the better, since merge operations corre-
sponds to duplicated work. In the peer-to-peer setting we considered separately non-authoritative
peers and the authority.

2Actually, the main problem was that data files generated by the GREATSPN tool with 8 members exceeded the
maximum file size (4GB) set on our machine
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3. Average number of workers that have an up-to-date versionof the artifact (U): the higher the
better.

3.3. Results

Figure 3 shows the average check-in (Fig. 3.a) and merge (Fig. 3.b) throughput per worker in a setting
whereOR is 50% andOP is 2. The server-based case is constantly located in the middle between
the authority throughput and the throughput of non-authoritative (normal) peers. In other words,
the authority performs always better, since the peer-to-peer protocol favors it in check-in operations.
Since is very common that one of the team members has a dominant role in the artifact management
(this asymmetry is neglected in our current model), the previous result means that a peer-to-peer
protocol may enhance its performances by carefully choosing the authority. Moreover, the decrease
in normal peers performances is still quite acceptable (even with an increasing number of peers),
given that they gain the flexibility of doing cooperative actions also when off-line.

Figure 4 shows the average check-in (Fig. 4.a) and merge (Fig. 4.b) throughput per worker in a setting
whereN is 5 andOP is 2. As expected, when the workers are mainly on-line (OR = 80%) the
two protocols perform very similarly. On the contrary, whenthe workers cannot be on-line very
often (OR <= 35%) the ability of working (performing check-ins) decreases significantly, except in
the case of the authority, that is the only peer that gains from the peer-to-peer protocol. However, the
other peers have a merge throughput largely comparable withthe server-based case, thus no additional
wasted work is forced by the protocol.

Figure 6 shows the average number of team members working on an up-to-date copy in the peer-to-
peer case (Fig. 6.a) and the server case (Fig. 6.b) in a setting whereN is 5. According to this metrics,
the peer-to-peer clear outperforms the server-based scenario. However, this is partially mitigated by
the average check-in throughput shown in Figure 5 in the samesetting.

4. Conclusions

A solution based on a peer-to-peer strategy offers several flexibility advantages. In particular it is pos-
sible to assign the master copy of each document to the peer who mostly uses it. In fact, when a user
works on a document of which he or she owns the master copy intothe local repository it is possible
to work on the document without the need of continuously connecting to the network to check if a
new version of the document has been released by others. A server-based approach is a perfectly ac-
ceptable solution– and in many cases a better performing solution– when the deployment of a central
repository is a feasible opportunity. In fact, the peer-to-peer solution proposed by PEERVERSY was
not designed to be a complete replacement for CVS or other server-based configuration management
systems. Instead, a PEERVERSY-like system could be the only choice in a very dynamic environment,
where nodes disconnect often and a distributed network of replicated servers cannot be afforded. Our
simulations show that the performances are in general comparable with the server-based ones and
in some cases even better: in fact the flexibility of the architecture may be exploited to get the best
possible results from a specific connectivity scenario.

We are working on an enhanced version of our models. In fact, they currently do not take into account
behavioral profiles of workers, and the possibility, in a multi-artifact context, of dealing with several
authorities. We expect that this could further improve the figures of the peer-to-peer case.
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Figure 2. Average number of on-line workers against on-lineratio
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Figure 3. Check-in and merge dynamics on increasing number of nodes
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Figure 4. Check-in and merge dynamics on increasing online attitude
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Figure 5. Average check-in throughput against different connection profiles
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Figure 6. Average up-to-date status against different connection profiles
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