
An Overview of Property-Based Testing for the
Working Semanticist

Alberto Momigliano
based on joint work with James Cheney, Matteo Pessina,

Guglielmo Fachini, Francesco Komauli, Rob Blanco, and Dale
Miller

DI, University of Milan

KCL
June 18, 2018



Motivation

I We’re not interested in program verification in general, but in
semantics engineering, the study of the meta-theory of
programming languages

I This means meta-correctness of programming, e.g. (formal)
verification of the trustworthiness of the tools with which we
write programs:

I from static analyzers to compilers, parsers, pretty-printers down
to run time systems, see CompCert, seL4, CakeML, VST . . .

I Considerable interest in frameworks supporting the “working”
semanticist in designing such artifacts:

I Ott, Lem, the Language Workbench, K. . .



Why bother?

I One shiny example: the definition of SML.

I In the other corner (infamously) PHP:

“There was never any intent to write a programming
language. I have absolutely no idea how to write a
programming language, I just kept adding the next
logical step on the way”. (Rasmus Lerdorf, on
designing PHP)

I In the middle: lengthy prose documents (viz. the Java
Language Specification), whose internal consistency is but a
dream, see the recent existential crisis [SPLASH 16].



Why bother?

I One shiny example: the definition of SML.

I In the other corner (infamously) PHP:

“There was never any intent to write a programming
language. I have absolutely no idea how to write a
programming language, I just kept adding the next
logical step on the way”. (Rasmus Lerdorf, on
designing PHP)

I In the middle: lengthy prose documents (viz. the Java
Language Specification), whose internal consistency is but a
dream, see the recent existential crisis [SPLASH 16].



Mechanized meta-theory (MMT)

I Most of it based on common syntactic proofs:
I type soundness
I (strong) normalization/cut elimination
I correctness of compiler transformations
I simulation, non-interference . . .

I Such proofs are quite standard, but notoriously fragile, boring,
“write-only”, and thus often PhD student-powered, when not
left to the reader

I Yeah. Right.

I mechanized meta-theory verification: using proof assistants
to ensure with maximal confidence that those theorems hold



Mechanized meta-theory (MMT)

I Most of it based on common syntactic proofs:
I type soundness
I (strong) normalization/cut elimination
I correctness of compiler transformations
I simulation, non-interference . . .

I Such proofs are quite standard, but notoriously fragile, boring,
“write-only”, and thus often PhD student-powered, when not
left to the reader

I Yeah. Right.

I mechanized meta-theory verification: using proof assistants
to ensure with maximal confidence that those theorems hold



Mechanized meta-theory (MMT)

I Most of it based on common syntactic proofs:
I type soundness
I (strong) normalization/cut elimination
I correctness of compiler transformations
I simulation, non-interference . . .

I Such proofs are quite standard, but notoriously fragile, boring,
“write-only”, and thus often PhD student-powered, when not
left to the reader

I Yeah. Right.

I mechanized meta-theory verification: using proof assistants
to ensure with maximal confidence that those theorems hold



Not quite there yet

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.

I It is lots of hard work (especially if you’re no Xavier Leroy, nor
Peter Sewell et co.)

I unhelpful when the theorem I’m trying to prove is, well, wrong.

I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I We all know that a failed proof attempt is not the best way to
debug those mistakes

I In a sense, verification only worthwhile if we already “know”
the system is correct, not in the design phase!

I That’s why I’m inclined to give testing a try (and I’m in good
company!), in particular property-based testing.



Not quite there yet

I After almost 20 years of formal verification with Twelf,
Isabelle/HOL, Coq, Abella, I’m a bit worn out

I I still find it a very demanding, often frustrating, day job.

I It is lots of hard work (especially if you’re no Xavier Leroy, nor
Peter Sewell et co.)

I unhelpful when the theorem I’m trying to prove is, well, wrong.
I mean, almost right:

I statement is too strong/weak
I there are minor mistakes in the spec I’m reasoning about

I We all know that a failed proof attempt is not the best way to
debug those mistakes

I In a sense, verification only worthwhile if we already “know”
the system is correct, not in the design phase!

I That’s why I’m inclined to give testing a try (and I’m in good
company!), in particular property-based testing.



PBT

I A light-weight validation approach merging two well known
ideas:

1. automatic generation of test data, against
2. executable program specifications.

I Brought together in QuickCheck (Claessen & Hughes ICFP
00) for Haskell

I The programmer specifies properties that functions should
satisfy inside in a very simple DSL, akin to Horn logic

I QuickCheck aims to falsify those properties by trying a large
number of randomly generated cases.



QuickCheck’s Hello World! (FsCheck, actually)

let rec rev ls =

match ls with

| [] -> []

| x :: xs -> append (rev xs, [x])

let prop_revRevIsOrig (xs:int list) =

rev (rev xs) = xs;;

do Check.Quick prop_revRevIsOrig ;;

>> Ok, passed 100 tests.

let prop_revIsOrig (xs:int list) =

rev xs = xs

do Check.Quick prop_revIsOrig ;;

>> Falsifiable, after 3 tests (5 shrinks) (StdGen (518275965,...)):

[1; 0]



Not so fast. . . 1/2

I Sparse pre-conditions:

ordered xs ==> ordered (insert x xs)

I Random lists not likely to be ordered . . . Obvious issue of
coverage. QC’s answer:

I monitor the distribution
I write your own generator (here for ordered lists)

I Writing generators may overwhelm SUT and become a
research project in itself — IFC’s generator consists 1500 lines
of “tricky” Haskell [JFP15]

I When the property in an invariant, you have to duplicate it as
a generator and as a predicate and keep them in sync.

I Do you trust your generators? In Coq’s QC, you can prove your
generators sound and even complete. Not exactly painless.

I We need to shrink random cex to understand them
(δ-debugging). So, you need to implement (and trust)
shrinkers as wells.



Not so fast. . . 2/2

Lots of current work on supporting coding or automatic derivation
of (random) generators:

I Needed Narrowing: incremental generate-and-test: traverse
the pre-condition instantiating locally the unknown and
backtracking if that does not work:

I Classen [JFP15], Fetscher [ESOP15] with applications to
generation of well-typed terms

I (Note: narrowing also used in exhaustive generation/symbolic
execution)

I General constraint solving: Focaltest [2010], Target [ESOP
15]

I A combination of the two in the Luck [POPL17], a DSL to
write Haskell-like generator keeping control of the distribution
and of the amount of constraints solving.



Exhaustive data generation

An alternative, based on the small scope hypothesis: enumerate
systematically all elements up to a certain bound:

I The granddaddy: Alloy [Jackson 06];

I (Lazy)SmallCheck [Runciman 08]: exhaustive version of QC,
plus symbolic execution via laziness. Bound is # of
constructors

I EasyCheck [Fischer 07]: automatic enumeration test data
satisfying a condition in Curry

I αCheck

I Most of the testing techniques in Isabelle/HOL



Back to mechanized meta-theory

I PBT is a form of partial “model-checking”:
I tries to refute specs of the SUT
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof (or go to the pub).



Back to mechanized meta-theory

I PBT is a form of partial “model-checking”:
I tries to refute specs of the SUT
I produces helpful counterexamples for incorrect systems
I unhelpfully diverges for correct systems
I little expertise required
I fully automatic, CPU-bound

I PBT for MMT means:
I Represent object system in a logical framework.
I Specify properties it should have.
I System searches (exhaustively/randomly) for counterexamples.
I Meanwhile, user can try a direct proof (or go to the pub).



Testing and proofs: friends or foes?

I Isn’t Dijkstra going to be very, very mad?

“None of the program in this monograph, needless
to say, has been tested on a machine” [Introduction
to A Discipline of Programming, 1980]

I Isn’t testing the very thing theorem proving want to replace?

I Oh, no: test a conjecture before attempting to prove it and/or
test a subgoal (a lemma) inside a proof

I The beauty (wrt general testing) is: you don’t have to invent
the specs, they’re exactly what you want to prove anyway.

I In fact, PBT is everywhere:



PBT and Proof Assistants

I Random-based:
I Isabelle/HOL Isabelle/HOL broke the ice some 15 years ago;

then Agda (2004) [probably not there anymore], PVS (2006),
ACL2 (2009)

I Coq’s foundational QuickChick (2015-17) is the most
advanced, soon to be featured in the Software Foundations
curricula, featuring now generator automation (but not for
dependent types yet)

I Enumeration-based: this is all Isabelle/HOL, AFAIK
I Bulwhahn’s smart generators automatically creates

enumerators satisfying a precondition via compilation to logic
programs. Exhaustive generation is now the default in Isabelle
for executable specs.

I Blanchette’s Nitpick, a model finder for higher-order logic by
translation to SAT using Alloy’s backend.



My work around PBT (not in chronological order)

1. Haskell harness for PBT tools (with Guglielmo).

2. αCheck (with James, Matteo etc.).

3. A reconstruction of PBT in terms of focusing and
foundational proof certificates (with Dale and Rob).

Common theme is doing PBT at a good level of abstraction and in
a logically justified way.

I I’m looking at you, PLT-Redex . . .



Haven’t we seen this before?

I Robbie Findler and co. took on the PBT-for-MMT idea as
Randomized testing for PLT Redex

PLT Redex is a domain-specific language designed for
specifying and debugging operational semantics. Write
down a grammar and the reduction rules, and PLT Redex
allows you [. . . ] to use randomized test generation to
attempt to falsify properties of your semantics.

I They made quite a splash at POPL12 with Run Your
Research, where they investigated “the formalization and
exploration of nine ICFP 2009 papers in Redex, an effort that
uncovered mistakes in all nine papers.”

I The authors, you ask? Hudak, Peyton Jones, Henrik Nilsson,
Avik Chaudhuri, Jay McCarthy, Oderski. . . The bugs? Nothing
major: typesetting rules, some omitted rules, some unexpected
behaviour of a model, one false theorem (but fixable)



What Robbie does not tell you (in his POPL talk)

I Redex offers no support for binding syntax:

In one case (A concurrent ML library in Concurrent Haskell),
managing binding in Redex constituted a significant portion of
the overall time spent studying the paper. Redex should
benefit from a mechanism for dealing with binding. . .

I Test coverage can be lousy

Random test case generators . . . are not as effective as they
could be. The generator derived from the grammar
. . . requires substantial massaging to achieve high test
coverage. This deficiency is especially pressing in the case of
typed object languages, where the massaging code almost
duplicates the specification of the type system. . .

I The latter point improved using CLP techniques with
Fetscher’s thesis, see “Making random judgment” paper
[ESOP15].



1. The Haskell thing

Aim: set up a Haskell environment as a competitor to PLT-Redex
I Taking binders seriously (no strings!) and declaratively: we

used Binders Unbound [ICFP2011]
I hides the locally nameless approach under named syntax:
I Mature library, Easy to integrate, Rich API

I Varying the testing strategies (and the tools) from random to
enumerative (QC,SmallCheck, LazySmallCheck,Feat);

I Limiting the efforts needed to configure and use all the
relevant libraries;

I avoid the manual definition of complex generators, if possible
I producing counterexamples in reasonable time or bust

I Full disclosure: work carried out in 2016 and did not take into
account developments such as lazy-search nor Luck

I Hence our approach to generating terms under invariants has
been, so far, the naive generate-and-filter approach



1. The Haskell thing

Aim: set up a Haskell environment as a competitor to PLT-Redex
I Taking binders seriously (no strings!) and declaratively: we

used Binders Unbound [ICFP2011]
I hides the locally nameless approach under named syntax:
I Mature library, Easy to integrate, Rich API

I Varying the testing strategies (and the tools) from random to
enumerative (QC,SmallCheck, LazySmallCheck,Feat);

I Limiting the efforts needed to configure and use all the
relevant libraries;

I avoid the manual definition of complex generators, if possible
I producing counterexamples in reasonable time or bust

I Full disclosure: work carried out in 2016 and did not take into
account developments such as lazy-search nor Luck

I Hence our approach to generating terms under invariants has
been, so far, the naive generate-and-filter approach



1. The Haskell thing

Aim: set up a Haskell environment as a competitor to PLT-Redex
I Taking binders seriously (no strings!) and declaratively: we

used Binders Unbound [ICFP2011]
I hides the locally nameless approach under named syntax:
I Mature library, Easy to integrate, Rich API

I Varying the testing strategies (and the tools) from random to
enumerative (QC,SmallCheck, LazySmallCheck,Feat);

I Limiting the efforts needed to configure and use all the
relevant libraries;

I avoid the manual definition of complex generators, if possible
I producing counterexamples in reasonable time or bust

I Full disclosure: work carried out in 2016 and did not take into
account developments such as lazy-search nor Luck

I Hence our approach to generating terms under invariants has
been, so far, the naive generate-and-filter approach



Case Studies

Three kind of experiments:

1. Benchmarks of mutations in the literature:
I A Simply Typed Lambda Calculus with Lists

I Mutations in typing and reduction rules from the PLT-Redex
model, to be killed by preservation/progress:

I A Type System for Secure Flow Analysis

2. Code in the “wild”:
I Porting of TAPL implementations in Haskell
I Examples from the Binders Unbound library

3. Search for deep bugs:
I Let-Polymorphism and references in SML-like languages



1.2 Testing Results for STLCl

1-
pr

es

1-
pr

og

2-
pr

og

3-
pr

es

3-
pr

og

4-
pr

og

5-
pr

es

6-
pr

og

7-
pr

og

8-
pr

es

9-
pr

es

10−1

100

101

102

103

104

105
F(au)

F(hw)

SC(au)

SC(hw)

LSC(hw)

QC(hw)



Comments

I LazySmallCheck only tool that killed all mutants. Partially
defined expressions really helped in generating well-typed
terms

I Feat and enumeration by size missed one mutant but was less
volatile than LSC

I QuickCheck missed three mutants. In addition it required of
course an hand-written generator

I SmallCheck was the worst: it found most of the bugs only
when invoked with the exact specific depth – current
implementation is not monotonic

Different outcomes in other case studies — difficult to draw hard
conclusions



The hunt for deeper bugs

I In the 90’s it was realized that combining let-polymorphism
and references in a SML-like makes the the type system
unsound

let r = ref (\x.x) in

r := \x:unit.()

!r 0

I In 2000 Pfenning and Davies showed a similar issues w.r.t.
intersection types and computational effects

I Can we reproduce those counterexamples?

I Kinda. No, not really.



The hunt for deeper bugs

I In the 90’s it was realized that combining let-polymorphism
and references in a SML-like makes the the type system
unsound

let r = ref (\x.x) in

r := \x:unit.()

!r 0

I In 2000 Pfenning and Davies showed a similar issues w.r.t.
intersection types and computational effects

I Can we reproduce those counterexamples?

I Kinda. No, not really.



MLR

I A simple MiniML language with references: 12 constructors
for expressions, 5 for types

I A naive implementation of type inference — purely functional,
substitution are composed eagerly etc

I The smallest cex to preservation lies at depth 13, too deep!

I None of the tools found it, even using custom enumerators
and expanding the time-limit to two days. . .

I We got it with Feat by changing the statement to make store
typing explicit:

term App (Deref (StoreLoc 0)) Unit

store typing {0 -> forall [a]. Ref (a -> a)}

store {0 -> Lam (bind x (Const 0))}

I Here it’s simple to reconstruct the classical cex, but how
general is this?



2. αCheck

I Our recently (re)released tool:
https://github.com/aprolog-lang

I On top of αProlog, a simple extension of Prolog with nominal
abstract syntax.

I Equality coincides with ≡α, # means “not free in”, 〈x〉M is
an M with x bound, Nis the Pitts-Gabbay quantifier.

I Allows functional notation, but it is flattened to relations

I Use nominal Horn formulas to write specs and checks

I αCheck searches exhaustively for counterexamples.

I Iterative deepening search strategy

https://github.com/aprolog-lang


Problem definition

I Consider a (pure) nominal logic program P and a model M.

I Consider specifications of the form

N~a∀~X .A1 ∧ · · · ∧ An ⊃ A

where A can be equality/freshness constraints – encode
disjunctions/ existentials as usual in Prolog

I A counterexample is a ground substitution θ such that

M � θ(A1) ∧ · · · ∧M � θ(An) ∧M 6� θ(A)

I The partial model checking problem: Does a counterexample
exist? If so, construct one. Obviously undecidable.

I What do we mean by 6� θ(A)? It’s logic programming, so
careful here: Two forms of negation: negation as failure and
negation elimination



An example

I Consider an encoding of a λ-calculus with constants, with
predicate tc for typing and step for the operational
semantics.

I Let’s insert a mutation (in the typing rule for application) and
run the tool

tc(G,app(M,N),T):-

tc(G,M,funTy(T,U)),tc(G,N,U). % should be funTy(U,T)

#check "prsrv" 7: tc([],E,T), step(E,E’) => tc([],E’,T).

Checking depth 1 2 3 4

Total: 0.008 s:

E = app(lam(x\u),u)

E1 = u

T = pairTy(unitTy,unitTy)



Implementation with NAF

I A check N~a∀~X .A1 ∧ · · · ∧ An ⊃ A is basically a bounded
query:

?− N~a. A1 ∧ · · · ∧ An ∧ gen(X1) ∧ · · · ∧ gen(Xn) ∧ not(A)

I Search for complete (up to the bound) proof trees of all
hypotheses

I Instantiate all remaining variables X1 . . .Xn occurring in A
with exhaustive generator predicates for all base types,
automatically provided by the tool.

I Then, see if conclusion fails using NF.

I Easy peasy. Still, NF is messy (semantically and
computationally); can we do better?



Implementation with NE

I Idea: Use negation elimination instead
I AKA “intensional negation”, similar to “constructive

negation”,

I For each predicate A, define predicate not A denoting the
“complement” of A

I Avoids need to instantiate variables unless needed in
derivation; can reorder goals past negation:

?− A1 ∧ · · · ∧ An ∧ not A ∧ An+1 ∧ · · ·

I New implementation (NEs) makes it competitive with NF,
though search spaces are quite different.

I Proven sound.



Case studies carried out with αCheck

I Several λ-calculi (from the Redex benchmark suite), MiniML
with references, λ-zap, where the properties of interests are
related to type preservation; up to LF equivalence algorithms
and their structural properties.

I The listmachine benchmark by Appel & Leroy in the area of
compiler correctness.

I Type System for Secure Flow Analysis — A mild extension of
Volpano et al.’s type system as formalized in Nipkow and
Klein’s Concrete Semantics

Rough appraisal:

I Immediate to setup, and pretty useful for shallow bugs, typos
etc — I really miss it when using Abella for example.

I Deeper ones, well, not so much.



3. PBT via Foundational proof Certificates

I Functional approaches to PBT are rediscovering logic
(programming): narrowing/mode analysis in Isabelle and
Coq’s QC, Randomized CLP in PLT-Redex.

I If we take a proof-theoretic view of LP, good things start to
happen, and this now means focusing in a sequent calculus.

I Generate-and-test approach to PBT can be seen in terms of
focused sequent calculus proof where the positive phase
corresponds to generation and a single negative one to testing.

I Searching for a cex is searching for a proof of a polarized
formula like ∃x [τ(x) ∧+ P(x) ∧+ ¬Q(x)]. This is a single
bipole — a positive phase followed by a negative one.

I Intuition: generation is hard, testing is but a deterministic
computation.



µMALL

I As the plan is to have a PBT tool for Abella, we have in
mind specs and checks in multiplicative additive linear logic
with (for the time being) least fixed points (Baelde & Miller)

I E.g. , the append predicate is:

app ≡µλAλxsλysλzs (xs = nl ∧+ ys = zs) ∨
∃x ′∃xs ′∃zs ′(xs = cns x ′ xs ′ ∧+ zs = cns x ′ zs ′ ∧+ A xs ′ ys zs ′)

I Usual polarization for LP: everything is positive — note, there
are no atoms.



A further step: FPC

I A flexible and general way to look at those proofs is as a proof
reconstruction problem in Miller’s Foundational Proof
Certificate framework

I FPC proposed as a means of defining proof structures used in
a range of different theorem provers

I If you’re not familiar with it, think a focused sequent calculus
augmented with predicates (clerks for the negative phase and
experts for the positive one) that produce and process
information to drive the checking/reconstruction of a proof.

I For PBT, we suggest a lightweight use of FPC as a way to
describe generators by fairly simple-minded experts.



FPC for the common man

I We defined certificates for families of proofs (the generation
phase) limited either by the number of inference rules that
they contain, by their size, or by both.

I They essentially translate into meta-interpreters that perform
bounded generation of derivations.

I As a proof of concept, we implement this in λProlog and we
use NAF to implement negation — it’s a shortcut, but
theoretically, think fixed point and negation as A→⊥.

I We use the two-level approach: OL specs are encoded as
prog clauses and check will meta-interpret them using the
(size/height) certificate to guide the generation.

I Checking ∀x :elt,∀xs, ys:eltlist. rev xs ys → xs = ys is

cexrev Xs Ys :-

check (qgen (qheight 3)) (is_eltlist Xs), % generate

solve (rev Xs Ys), not (Xs = Ys). % test



From algebraic to binding signatures

I The proof-theoretic view allows us to move seamlessly from
standard first-order terms to higher-order LP with λ-tree
syntax, which was the whole selling point.

I No current tool supports proofs and disproofs with binders

I This means accommodating the ∇-quantifier
I Here we take another shortcut and restrict to Horn specs (no

hypothetical encodings).
I . . . but we have experimented with kernels for logics such LG

as well

I It’s well known that in this setting nabla can be soundly
encoded by λProlog’s universal quantification



Measurements for STLCl

bug check αC λP Description/Rating

1 preservation 0.3 0.05 range of function in app rule
progress 0.1 0.02 matched to the arg. (S)

2 progress 0.27 0.06 value (cons v) v omitted (M)
3 preservation 0.04 0.01 order of types swapped

progress 0.1 0.04 in function pos of app (S)
4 progress t.o. 207.3 the type of cons return int (S)
5 preservation t.o. 0.67 tail reduction returns the head (S)
6 progress 24.8 0.4 hd reduction on part. applied cons (M)
7 progress 1.04 0.1 no eval for argument of app (M)
8 preservation 0.02 0.01 lookup always returns int (U)
9 preservation 0.1 0.02 vars do not match in lookup (S)

I Mostly it’s λProlog compiler kicking αCheck’s ass

I Perhaps also the use size vs. αCheck ’s fixed height



Conclusions

I PBT is a great choice for meta-theory model checking.

I Checking specifications with αCheck is immediate – no reason
not to spec’n’check on a regular basis

I Checking intermediate lemmas helps catch bugs earlier

I Spec and checks make great regression tests

I Our Haskell things suggests it’s not clear cut which testing
strategy performs better in which domain, but having a
cascade of them is a big plus — see also Isabelle/HOL’s
plurality of tools

I Deeper bugs still in general out of grasp-



Future work: αCheck

I αCheck works surprisingly well, given the naivete of its
implementation: basically an iterative deepening modification
of the original OCaml interpreter for αProlog

I But recent experiments with encoding abstract machines
(CICMark and IFC) reminds us of how powerless we are w.r.t.
the combinatorial explosion

I Change the hard-wired notion of bound (# of clauses used)
and how it is distributed over subgoals:

I Take ideas from Tor

I Bring in some random-ness by doing random backchaining:
flip a coin instead of doing chronological backtracking

I Prune the search space by not generating terms that exercise
“equivalent” part of the spec



Future work: the blame game

I Suppose your PBT tool reports a cex. Now what? You’re not
getting payed just for finding faults. . .

I Staring at a potentially huge spec even with a cex in hand not
the best way to go. Two issues:

1. Soundness: your spec is plain wrong and returns an answer
that should not hold

2. Completeness: you’ve forgotten to encode some info and some
answers are not produced.

I Proof-theory to the rescue (possibly):

1. Use certificate distillation to restrict to a more manageable set
of suspects – or just inspect the proof-term

2. Use abduction (perhaps as an expert) to collect sets of
assumptions that should hold but don’t.



Future work: going sub-structural

I If you think FPC as glorified meta-interpreters in the logic
programming sense, then why stick to vanilla?

I It’s folklore that linear logical framework are well suited to
encode object logic with imperative features, e.g. Pfenning
and Cervesato’s encoding of MLR in LLF;

I Data structures for heaps, stores. . . are replaced by linear,
affine, etc predicates

I This seems promising for exhaustive PBT, where every
constructor counts

I Work in progress: linear version of the list-machine benchmark

I Sub-structural PBT can bring some form of validation to
frameworks such as Celf, whose meta-theory is not there yet

I Meta-interpreters are not viable in the long run:
I give the αCheck treatment to languages such as LolliMon
I use program specialization to do amalgamation

I Initial experiments with VeriMAP to unfold Tor’s disjunction



Future work: Meta Mutation Testing

I Mutation analysis seems a good way to evaluate your PBT
tool:

I generate mutants of your OL
I compute the killing ratio
I use model based PBT to estimate the equivalent mutant issue

I However, mutation testing should be automatic, rather than
manual as in the literature (still looking at you PLT-Redex)

I Exception is Mutabelle in Isabelle/HOL, which weirdly
mutates theorems not OL

I For Haskell, one can use MuCheck, yet:
I What are sensible mutations operators for PL artifacts?
I How to avoid re-writing a mutation tester for each PBT tool?

I Just write one for a meta-language such as Ott/Lem and
extract mutations for target languages (Coq, Isabelle, OCaml)



Thanks!


