
EXup: An Engine for the Evolution of XML Schemas and
Associated Documents

Federico Cavalieri
DISI - University of Genova

Via Dodecaneso, 35
Genova, Italy

cavalieri@disi.unige.it

ABSTRACT
XML Schema is employed for describing the type and struc-
ture of information contained in XML documents. Schema
evolution means that a schema is modified and the effects of
the modification on instances are faced. XSUpdate is a lan-
guage that allows to easily identify parts of an XML Schema,
apply a modification primitive on them and define an adap-
tation for associated documents. Purpose of this paper is to
present the engine we developed for the evaluation of XSUp-
date statements against XML Schemas and associated doc-
uments. The presented engine relies on the translation of
XSUpdate statements in XQuery Update expressions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages;
H.2.4 [Database Management]: Systems

1. INTRODUCTION
XML Schema [14] is widely adopted to describe the structure
of XML data. Knowing the schema of documents facilitates
their querying, retrieval and sharing. New requirements may
arise in application domains that lead to update the struc-
ture of data. Moreover, the integration of heterogeneous
sources may require to modify the schema. Following the
terminology introduced in [9], updates to the schema infor-
mation, besides modifying the schema, can lead to schema
evolution. Schema evolution means that the original schema
is replaced by an updated schema and the effects of the up-
date on instances are faced. Specifically, we focus on efficient
revalidation of documents and adaptation of documents to
the modified schema.

Despite the high dynamicity of the contexts where XML doc-
uments are employed, XML updates have received less atten-
tion than XML queries and the W3C proposal for XML doc-
ument updates, XQuery Update Facility [12], has appeared
as a candidate recommendation only in June 2009. As sur-
veyed in [7], updates on XML Schemas have received even

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Updates in XML (EDBT Workshop Proceedings), March 22, 2010, Lau-
sanne, Switzerland.

less attention despite the great impact they may have in the
database field. Even if commercial tools (e.g. Stylus Studio,
XML Spy) have been developed for graphically designing
XML Schema definitions, they do not support the specifica-
tion of schema updates nor the semi-automatic adaptation
of associated documents. Commercial DBMSs, like Oracle
11g, Tamino, DB2 v.9, support XML Schema Definitions at
different levels, but the support for schema evolution is quite
limited.

Complex schema evolution specifications can easily be ex-
pressed by means of XSUpdate [4, 6] expressions. XSUpdate
allows to identify a set of components in a schema, specify
a modification primitive to apply on them and an adapta-
tion approach for associated documents. In this paper we
describe how XSUpdate statements can be translated into
XQuery Update expressions achieving the intended effect.
We also present EXup, an engine for the translation and
evaluation of XSUpdate statements locally, over the net-
work, and within other applications.

In the remainder of the paper we present the XSUpdate
language in Section 2 and then our translation algorithms
in Section 3. In Section 4 the EXup implementation is de-
scribed. Finally, conclusions and future developments are
discussed in Section 5.

2. XSUPDATE
XSUpdate is a SQL-like language to express evolution state-
ments over an XML Schema and of associated documents.
Every schema modification operation is executed over a set
of one or more components in a specific schema, named the
evolution objects. An evolution object can be the root el-
ement, a type definition or the declaration of an attribute,
element or grouping operator (sequence, choice or all).

An XSUpdate statement is composed of three parts, dis-
cussed in the remainder of the section: (i) the identification
of the evolution objects, (ii) the specification of the modifi-
cation operation to carry out on the evolution objects and
(iii) the specification of the adaptation to carry out on the
associated documents.

2.1 Identifying the Evolution Objects
The identification of the evolution objects within an XML
Schema is specified by means of an XSPath expression. The
XSPath language [5] allows to express navigational path ex-
pressions on the hierarchical structure of an XML Schema

Figure 1: XML Schema HTML-Log.xsd (left) and associated XML Document HTML-Log.xml (right).

to identify schema components as well as the correspond-
ing elements/attributes in documents valid for the schema.
Even if the XML Data Model [10] can be employed to rep-
resent schema contents, it cannot be profitably exploited to
represent the graph structure of schemas. In fact, there can
be elements or attributes that need to be bound with their
global types or referred global declarations. To easily exploit
these relations a graph representation of XML Schemas is
adopted on which concise and intuitive navigational expres-
sions can be specified, being able, for instance, to retrieve
the elements in a declaration regardless on how their type
has been actually defined.

Details of the internal structure of types and elements are
seldom required, most notably when their identification is
the purpose of the navigational expression. Therefore, a
graph representation of schemas at high and low levels of ab-
straction has been proposed [5]. At low level all the details
of a schema are represented, whereas at high level the struc-
ture of elements and types is simplified removing grouping
operators.

The XML Schema HTML-Log.xsd in Figure 1 describes an
HTTP communication of a web browser listing the messages
sent and received. Each message contains the IP address
of the server, stored in the SourceIP element for incoming
messages or in the DestIP element for outgoing ones. The
data sent and received are contained in one or more Packet

elements, along with their processing date and time.

The low level graph representation of the schema is reported
in Figure 2. In the graph four types of nodes can be dis-
tinguished: declarations of elements (rounded rectangles),
attributes (hexagons), operators (ellipses) and type defini-
tions (rectangles). Explicit links, those due to the schema
hierarchical structure, are represented by solid arrows, while
implicit links that lead to the graph representation are repre-

sented with dashed arrows. Each node reports the cardinal-
ity specified in the schema (for conciseness (1,1) is omitted),
and is numbered according to the pre-ordered traversal of
the schema nodes.

To identify the low/high level parents of an element, an
attribute or an operator, starting from the corresponding
node, implicit and explicit edges (with the exclusion of im-
plicit edges representing global elements references) are nav-
igated backwards towards the schema root. For low level
parents along each path, the first element or operator is
selected. In case of high level parents, instead, the first el-
ement is selected. If one of the selected node is global, also
nodes referencing it are selected. The low/high level parents
of a type are the union of the low/high level parents of the
elements/attributes using it.

Example 1. Consider the DestIP6 and the SourceIP7 el-
ements, in both cases the low level parent is the choice5

operator and the high level parent is the Log2 element.

The IPAddressType8 definition is employed by the DestIP6,
SourceIP7 elements. Its low/high level parents are the union
of the low/high level parents of these two elements, and
therefore they are identical to that of the previous case.

Consider the Date14 attribute, its low and high level parents
are the same. Backward navigating the inward edges leads
to the identification of Packet12 and Packet9 elements re-
ferring it.

XSPath employs a compositional semantic similar to that of
XPath [11] but using the names specified in declarations and
definitions as primary identification means. As in XPath,
axes are employed to identify nodes in a given relation, while
node selectors and predicates can be used to identify only
those nodes exhibiting specific properties.

Figure 2: Low level schema representation (left) and document representation (right).

Example 2. As in XPath, expressions starting with a
slash are absolute and are evaluated from the schema root.
To identify the IPAddressType type definition the XSPath
expression /HL::child::type(IPAddressType) can be used.
The axis specification HL::child identifies the nodes child
of the root in the high level graph, while the node selector
(type(IPAddressType)) selects only those types definition
named IPAddressType. An abbreviated syntax is also de-
fined, by which this XSPath expression can be equivalently
written as: /#IPAddressType. To navigate the internal struc-
ture of an element the symbol ! is used instead of /, while
predicates can be employed to select nodes meeting a condi-
tion. To select the Date attributes in any global type derived
from xs:string, the XSPath expression /#*[typeDerived-

From(xs:string)]!@Date can be specified.

2.2 Updating a Schema
The second part of an XSUpdate statement specifies the
modification primitive to apply on the identified evolution
objects. Each primitive can be applied only under specific
conditions, for instance only on simple types, or only when
a given global type exists.

Example 3. To modify the type definition IPAddressType

replacing the minLength and maxLength restrictions with a
pattern restriction the following statement can be specified:

UPDATE SCHEMA ("HTTP-Log.xsd")/#IPAddressType

REPLACE RESTRICTIONS minLength, maxLength

WITH pattern =

"[0-9]{1-3}\.[0-9]{1-3}\.[0-9]{1-3}\.[0-9]{1-3}"

Types, elements, attributes, operators or group of nodes can
be inserted specifying a position in the schema and providing
their XML definition or specifying their peculiarities.

Example 4. To insert an element declaration named Di-

rection of type xs:string in the Log declaration as the last
child of the sequence operator, assuming the last child as
the default position, the following statement can be specified:

UPDATE SCHEMA ("HTTP-Log.xsd")/Log!sequence

INSERT ELEMENT Direction OF TYPE xs:string

Types, cardinality specifications and names can be changed
as required. Any definition/declaration can be removed spec-
ifying how to deal with its effects on the rest of the schema.

Example 5. To remove the type IPAddressType and any
element or type depending on it, the following statement can
be specified:

UPDATE SCHEMA ("HTTP-Log.xsd")/#IPAddressType

REMOVE CASCADE

A global definition or declaration can be made local to the re-
ferring elements or vice-versa, while any node in the schema
can be moved simply specifying its new position.

Example 6. The global type definition LogType can be
made local to the Log element by the following statement:

UPDATE SCHEMA ("HTTP-Log.xsd")/Log

MIGRATE GLOBAL TO LOCAL

2.3 Adapting Associated Documents
The parts of documents that are affected by the schema
modification can be determined through the XSPath ex-
pression, the modification primitive and the given schema.
Whenever the XSPath expression identifies an element dec-
laration or a type definition, the counterparts in a document
are elements corresponding to such declaration/definition.
Whenever it identifies a structural component of an ele-
ment, each counterpart is composed by the set of elements
such structural component binds. In the remainder we name
instances of an evolution object any counterpart in a doc-
ument. Instances that are repetitions of the same element
declaration/type definition can be collected in sets of in-
stances.

Example 7. Suppose that the evolution object is the ele-
ment declaration Packet. Figure 2 contains a graph repre-
sentation of the document HTML-Log.xml. The correspond-
ing instances in this document are the elements highlighted
in the figure, numbered 4, 8, 11 and 16. The correspond-
ing sets of instances are three different sets containing re-
spectively the elements {4}, {8,11} and {16}. The elements
{8,11} are considered together because they are contained in
the same occurrence of the sequence operator.

Schema modifications can invalidate associated documents,
therefore XSUpdate offers three different approaches to han-
dle them. Documents can be left unmodified, an automatic
approach can be applied to minimally change the documents
in order to make them valid for the updated schema, or
the entire adaptation process can be controlled by the user
throughout XQuery Update expressions.

After the adaptation, the parts of the documents affected by
the schema evolution are revalidated and invalid documents
can be disassociated from the schema or can result in the
rollback of the whole evolution process.

2.3.1 No Adaptation
The first and simplest approach is to leave documents unal-
tered by specifying the NO ADAPT clause and simply validate
the parts of the documents affected by the modification. If
the documents are no longer valid the operation is rollback
unless the REMOVE INVALID option is specified. In this case
documents are removed from the instances of the schema. As
defined in [4, 6], analyzing the specified modification primi-
tive and schema definition we can determine that document
validity is unaffected.

Example 8. To specify the restrictions replacement spec-
ified in Example 3 and leave any document containing in-
valid IP addresses disassociated from the modified schema,
the clause NO ADAPT REMOVE INVALID can be added to the
statement in Example 3.

2.3.2 Automatic Adaptation
The automatic adaptation approach follows two major guide-
lines: (i) The smallest modification to document nodes af-
fected by the modification to re-establish the document va-
lidity are made. (ii) Insertions of new nodes, alterations
or removal of existing data are performed only if no other
alternative is viable. This approach guarantees document
validity after the adaptation.

Example 9. To change the cardinality of the Cookies el-
ement from (0,1) to (1,1), the following expression can be
specified:

UPDATE SCHEMA ("HTTP-Log.xsd")/Log/Cookies

CHANGE CARDINALITY TO 1,1

Since the adaptation approach is not specified, automatic
adaptation is carried out. Therefore a new Cookies element
is inserted in each message without one. The value of the
inserted element is an empty string (the default value for the
string type).

2.3.3 User-defined Adaptation
The automatic adaptation approach previously presented
does not allow to specify contents for new inserted elements.
Moreover, it does not allow to specify how to modify docu-
ments in order to make them valid for the new schema tak-
ing into account values of other elements, especially those
surrounding the inserted/modified/deleted element(s).

For this purpose, we propose to associate an XSUpdate
statement with XQuery Update expressions that will be
evaluated on each document instance of the schema being

modified. Since the XSUpdate statement applies a modifi-
cation primitive on the evolution objects and more than one
set of elements in a document can be one of its instances, it
is required to identify the environments where the XQuery
Update expressions should be evaluated within a document.
Therefore, the XQuery update expressions should present
free variables that will be automatically bound to values
contained in the environment.

Given an XSUpdate statement specifying a modification at
schema level, the following template can be instantiated for
a user-defined document adaptation.

FOR EACH ENVIRONMENT

REFERENCING [target AS variable]
[container AS variable]
[parent AS variable]

DO iteration query
FOR EACH DOCUMENT AS variable

DO document query

The iteration and document queries are XQuery Update ex-
pressions presenting free variables that should be automat-
ically bound relying on the specified XSUpdate statement.
Target, container, and parent are parts of the environ-
ment and they are optional. If specified, the corresponding
variable(s) should occur free in the iteration query. In what
follows we will discuss the notion of environment and the
two types of queries.

Environments. Each environment is formed by a quadru-
ple: (target, parent, container, insertPos). The first tree
components are sets of document nodes, while the last one
specifies a position in a document. Given an evolution ob-
ject eo, for insertion primitives, the target is a set of nodes
corresponding to a single instance of eo in a document. For
other primitives the target is a set of nodes corresponding
to a single set of instances of eo in a document. The dif-
ferent definition of target allows users to better formulate
the adaptation of document in case of insertion or modifi-
cation/deletion. Independently from the type of primitive,
the container and the parent are a set of nodes correspond-
ing to the single instance of the low/high level parent of eo,
respectively. insPos only appears when the invoked modi-
fication primitive is an insertion, and it represents whether
the inserted node(s) should be positioned before a child of
the parent node or as its last child. The nodes contained in
the target, parent, and container are those which values
can be used in the iteration query.

Example 10. Consider the insert operation of Example
4. The evolution object is the sequence operator ranked 4 in
Figure 2, therefore the target is composed of the elements
in a document bound by the operator. The corresponding
environments with respect to the document in Figure 1 are
reported in the following table.

target container insPos

DestIP3, Packet4 Log1 BEFORE SourceIP7

SourceIP7, Packet8, Log1 BEFORE DestIP14

Packet11

DestIP14,Cookies15, Log1 AS LAST INTO Log1

Packet16

As the instances of the low and high level parent of the evo-
lution object coincide, in each environment the container is
identical to the parent. The operators used in the definition
of the position within the children of Log have been preferred
to the after operator because of the XQuery Update process-
ing model.

Example 11. Suppose that the evolution object is the lo-
cal Packet element definition and that the primitive to in-
voke is REMOVE. The target is composed by the set of in-
stances of the evolution object Packet grouped according to
the repetition of the sequence operator that contains Packet.
The container and the parent correspond, respectively, to
the single instances of the sequence operator and the Log

element containing the Packet nodes in the target. The en-
vironments are thus the following.

target container parent

Packet4 DestIP3, Packet4 Log1

Packet8, Packet11 SourceIP7, Packet8, Log1

Packet11

Packet16 DestIP14, Cookies15 Log1

Packet16

Example 12. Suppose that the evolution object is the Date

attribute declaration and that the primitive to invoke is REMOVE.
Four environments can be identified in the HTML-Log.xml

document, one for each Date attribute. In each environment
the target is the corresponding Date attribute, the container
is the Packet element containing it.

target container

Date5 Packet4

Date9 Packet8

Date12 Packet11

Date17 Packet16

As the instances of the low and high level parent of the evo-
lution object coincide, in each environment the container

is identical to the parent.

Iteration Query. The iteration query is an XQuery Update
expression that is evaluated once for each identified environ-
ment. A user defined variable can be associated with each
component of the environment and used in the specification
of the iteration query.

Example 13. Consider the schema modification of Ex-
ample 4 and suppose we wish to adapt the associated docu-
ments inserting a Direction element where needed, whose
value is determined according to the target that will contain
the inserted element. In case the target contains a Sour-

ceIP element the value should be inbound otherwise out-

bound. The following XSUpdate statement can be specified,
where the insertAtCurrentPosition function is used to in-
sert one or more nodes at the insert position of the current
environment. The target is bound to the Message variable
at line 4 and employed in the iteration query, defined at lines
5 to 8, to inspect the current target.

1 UPDATE SCHEMA ("HTTP-Log.xsd")/Log!sequence

2 INSERT ELEMENT Direction OF TYPE xs:string

3 FOR EACH ENVIRONMENT

4 REFERENCING target AS $Message DO

5 local:insertAtCurrentPosition

6 (element Direction {

7 if ($Message/self::*:sourceIP)

8 then ("inbound") else ("outbound")})

Document Query. The document query is an XQuery Up-
date expression that is evaluated once for each document
associated with the modified schema. The document being
adapted can be bound to a variable that can be referenced
from the document query.

Example 14. Suppose we wish to remove the attribute
declaration Date from the schema and adapt associated doc-
uments concatenating the value of each removed Date at-
tribute with that of the sibling attribute Time. We also wish
to update the SchemaVersion attribute to the value 1.1. The
following XSUpdate statement can be specified, where the
container is bound to the Packet variable at line 5, the
target to the Date variable at line 6 and employed in the
iteration query, specified at lines 7 to 10, to perform the
required adaptation. The document query, specified at lines
12 and 13, updates the SchemaVersion attribute, referencing
the document with the Doc variable bound at line 11.

1 UPDATE SCHEMA ("HTTP-Log.xsd")

2 /#*[typeDerivedFrom(xs:string)]!@Date

3 REMOVE

4 FOR EACH ENVIRONMENT

5 REFERENCING container AS $Packet,

6 target AS $Date DO

7 let $Time:= $Packet/@Time

8 replace value of $Time with

9 concat($Date,’ ’,$Time),

10 delete node $Date

11 FOR EACH DOCUMENT AS $Doc DO

12 replace value of node $Doc/@schemaVersion

13 with "1.1"

3. TRANSLATING IN XQUERYUPDATE
Each XSUpdate statement can be translated into two XQuery
Update expressions whose effects, on the XML Schema and
the associated XML documents, are the intended effect of
the original statement in terms of schema update and doc-
ument adaptation, respectively. Section 3.1 presents how
an XSPath expression, employed for the evolution objects
identification, can be translated in XPath/XQuery. Section
3.2 discusses how the schema modification primitives can
be represented through XQuery Update expressions. Docu-
ment validation and the translation of user-defined adapta-
tion statements are discussed in Section 3.3. The interested
reader can find an in-depth discussion of these aspects in [4].

3.1 Evolution Objects Identification
XSPath expressions can be translated into XPath/XQuery
expressions which achieve the intended effect. Both a generic
and specific schema translation approach have been devised.

The main difference between the two approaches is that the
generic translation does not consider the XML Schema on
which the expression should be evaluated. Therefore, the ex-
pression can be evaluated on any schema. By contrast, the
specific translation approach takes advantage of the knowl-
edge of the schema peculiarities to develop a more specific
XPath/XQuery expression that can be evaluated more effi-
ciently.

The generated translation is a simple XPath/XQuery ex-
pression identifying the same set of nodes in that specific
schema. For space constrains in what follows we only detail
the generic translation approach.

The XSPath expression is split into single paths, that are
further split into steps and then into step components (level,
axis, node selector and predicate expression). Finally, pred-
icate expressions are split into single predicates. As pred-
icates can contain paths the process is recursively applied,
resulting in a list of atomic path components. For each possi-
ble component an XPath expression fragment with the same
meaning is generated; these fragments are then combined in
order to obtain the complete translation of the XSPath ex-
pression.

In case of XPath translations the fragments corresponding to
level and axis combinations are path expressions (or steps),
while node selectors and predicates are translated into pred-
icate expressions and inserted, in the appropriate position,
in the path expressions obtained in this way. Those parts
of the resulting expression which are redundant or cannot
yield to the identification of nodes due to the constraints of
schema definitions are then removed simplifying the result-
ing expression.

Even if some components of an XSPath expression can be
efficiently translated in XPath as such, most can take advan-
tage, or even require, the additional features of XQuery, es-
pecially user-defined functions and FLWOR expressions. For
instance navigating the hierarchical relation from a complex
type towards its base type may involve an arbitrary num-
ber of nodes and can therefore be more efficiently realized in
XQuery employing a recursive function. As a consequence
the XQuery translation is generally shorter and more effi-
cient than the XPath one.

Example 15. Consider the XSPath expression

/#*[typeDerivedFrom(xs:string)]!@Date

Its translation is reported in Figure 3 and discussed in the
following. The XSPath expression is split into steps and
then the steps are divided into their components.

The / at the beginning of the expression identifies an abso-
lute path, so the expression should be evaluated starting from
the schema root. As no axes has been explicitly specified, the
high level child axis, selecting declarations of elements and
attributes and type definition child of the context in the high
level representation of the schema, is considered. Therefore
it selects global (child of the root) types, elements and at-
tributes. It is thus translated in the XQuery expression at
lines 3 to 5.

1 declare function local:evoObjects() as node()*

2 {

3 doc("HTML-Log.xsd")/*:schema/child::element()

4 [self::*:element or self::*:attribute or

5 self::*:simpleType or self::*:complexType)]

6 [self::*:simpleType or self:complexType]

7 [(*:simpleContent | *:complexContent)/

8 (*:extension | *:restriction)/@base="xs:string"

9 or *:list/@itemType="xs:string" or

10 *:restriction/@base="xs:string" or

11 matches(*:union/@memberTypes,

12 "^(.*\W)?xs:string(\W.*)?$")]

13 /(. union getReferredElements())

14 /(. union getReferredTypes())

15 /(. union (*:simpleContent | *:complexContent)

16 /(*:extension | *:restriction))/

17 child::element()[self::*:element or

18 self::*:attribute or self::*:simpleType or

19 self::*:complexType or self::*:sequence

20 or self::*:choice or self::*:all)]

21 [self::*:attribute]

22 [@name="Date" or @ref="Date"]

Figure 3: Generic schema translation of the XSPath
expression /#*[typeDerivedFrom(xs:string)]!@Date

The next component of the first step is the node selector
(#*) identifying simple and complex types definitions among
those selected by the specified axis and level combination. It
is enforced by applying the predicate at line 6 to the nodes
selected by the translation of /.

The predicate [typeDerivedFrom(xs:string)] filters among
the nodes selected so far only those whose type is an exten-
sion or restriction of xs:string or, for union and list simple
types, refers xs:string in its definition. This condition is
expressed by adding to the previous condition the predicate
at lines 7 to 12. Specifically, the condition at lines 7 and 8
is true for complex types extending or restricting xs:string,
while those at lines 9 and 10 are true for xs:string-based
list and restriction simple types. Finally, the condition at
lines 11 and 12 is true for those simple union types with
a xs:string member. Thus, the XPath expression between
lines 3 and 12 forms a complete translation of the first step.

The second step starts with the low level child axis which
identifies attributes, types, elements and operators children
of the nodes identified in the first step in the low level repre-
sentation of the schema. Its translation can be found at lines
13 to 20. With respect to the starting nodes, the XPath steps
for the identification of: referred global elements (line 13)
and global or local types (line 14) are specified. If needed
the type inheritance specification in a definition must also
be navigated (line 15 and 16). Implicit links are navigated
through getReferredGlobalElements, getReferredTypes

and getDerivedTypes functions detailed in [4]. The node
selector (@Date) identifies attribute declarations named Date

and its translation is at lines 21, 22. This second step has
to be evaluated starting from the nodes identified by the first
one, thus its translation is appended to the translation of the
first step.

The removal of the redundant predicates (i.e. the predicate
at lines 4 and 5 which is implied by that of line 6) and un-
necessary expression parts yield to the following simplified
and more efficient expression:

1 declare function local:evoObjects() as node()*

2 {

3 doc("HTML-Log.xsd")/*:schema/child::element()

4 [self:complexType][(*:simpleContent |

5 *:complexContent)/(*:extension | *:restriction)

6 /@base="xs:string"’]/(*:simpleContent |

7 *:complexContent)/(*:extension | *:restriction)

8 /child::element()[self::*:attribute]

9 [@name="Date" or @ref="Date"]

10 };

The simplified expression is obtained on the fly from the orig-
inal one by keeping track of the generated predicates and
schema definition constraints contained in the XSPath ex-
pression.

The following example discusses the specific translation of
the XSPath expression of the previous example.

Example 16. By applying a specific translation of the ex-
pression of Example 15 the following expression would be
generated:

1 declare function local:evoObjects() as node()*

2 {

3 doc("HTML-Log.xsd")/xs:schema

4 /xs:complexType[@name="PacketType"]

5 /xs:simpleContent/xs:extension

6 /xs:attribute[@name="Date"]

7 };

Note that, in the specific translation we have not to specify
that the base type of the PacketType complex type should
be xs:string. Moreover, we know that the Date attribute
is not a reference to a global attribute. This knowledge can
be achieved only by considering the schema and cannot be
assumed in the generic translation.

3.2 Schema Modification
The modification primitive translation is based upon a set
of XQuery Update templates, one or more for each primi-
tive, which are instantiated according to the specified pa-
rameters. For instance, in case of an element removal, it
is checked that the no dependent declaration exists, instead
if the CASCADE parameter is specified any dependent decla-
ration is removed as well. XSUpdate generic translations
check for the applicability preconditions and employs the
generic schema translation of the XSPath expression, while
in case of specific translations the preconditions are evalu-
ated during the translation process and the specific schema
translation is adopted. In both cases the resulting expression
is simplified, using techniques similar to those of Example
15. The user can require that the preconditions are matched
by all evolution objects, or decide to modify only those evo-
lution objects matching the preconditions. In this case, the
form of the generic translation is the following:

for $eo in local:evoObjects()

where applicability preconditions hold
return modification application

where local:evoObjects() is the function obtained by the
translation of the XSPath expression.

Example 17. Consider the XSUpdate statement of Ex-
ample 14, the translation of the REMOVE primivitive, when
no parameters are specified, is very simple. The applicability
conditions are the following: it can be invoked on any node
of the schema except the root (line 3) and the node should
not be referred by element declarations (line 4) or type def-
initions (line 5). The behavior of the functions getDepen-

dentTypes and getDependentElements is trivial (details in
[4]). The modification consists in removing the identified
evolution object (line 6).

1 for $eo in local:evoObject()

2 where $eo[not(self::*:schema)] and

3 not(local:getDependentElements($eo) and

4 not(local:getDependentTypes($eo))

5 return delete node $eo

Since in this case the evolution object is a local attribute
declaration we are sure that no other declaration/definitions
depend on it and therefore the translation can be simplified
removing lines 4 and 5.

3.3 Document Adaptation
In order to translate the document adaptation specification
contained in an XSUpdate statement the modification/inser-
tion environment and, consequently, instances and set of
instances must be identified. The knowledge of the evolution
primitive employed and the fact that documents are valid for
the original schema are also exploited to perform an efficient
revalidation.

In this section we present a unified approach for dealing with
document validation and adaptation relying on the concept
of the structure of an element declaration. In the remainder
of the section we first present this concept and then detail
document validation and adaptation.

Element Structures. For each (local or global) declaration
of an element in the schema, its structure, in form of a
tree, is generated. The root of the tree is the element it-
self. For nodes corresponding to the declaration of elements
with complex type, implicit and explicit links are recursively
navigated adding a copy of the operators and the identi-
fied element/attribute declarations without considering the
structure of subelements. For nodes corresponding to the
declaration of simple type elements and attributes the infor-
mation about the type is attached to the node. A graphical
representation of the structures of the Log and the Packet

declarations are reported in Figure 4. For each node the
cardinality constraints of the corresponding declaration are
reported next to the node name between round brackets.

Each node of an element structure is also associated with
two counters, one to track the number of visited instances
and the other for the number of visited sets of instances.

Figure 4: The element structures of Log and Packet

of the HTML-Log.xsd schema.

Therefore, the structure of an element e contains all ele-
ments/attributes declarations that can appear within e along
with the information required to validate corresponding chil-
dren in a document (type definitions and cardinality con-
straints).

Document Validation. The validation of a document is
performed by visiting the entire document and by consid-
ering the generated element structures.

Starting from the document root and, recursively for each of
its descendant, the element occurrences are checked against
the corresponding structures. The cardinality constraints
associated with each element structure node allow the veri-
fication, through a single scan of the document, that manda-
tory nodes are present and that visited nodes are allowed.

We remark that validation can be restricted to the parts
of the documents affected by schema modification. In this
case, the elements of the document corresponding to the
high level parent of the evolution object are determined and
the corresponding element structure employed to check their
structure. Note that, whenever the update operation is re-
lated to the structure of an element, there is no need to
check the underlying structure of its children.

Example 18. Consider the following XSUpdate modifi-
cation primitives, applied on the Date attribute declaration,
which is a child of the Packet element.

1. CHANGE CARDINALITY TO 1,1

2. CHANGE TYPE TO xs:date

3. REMOVE

The first primitive requires the mandatory occurrence of the
attribute. Therefore, the validation process should check that
each Packet element (the instances of the parent of the evo-
lution object) contains one Date attribute.

The second primitive requires to change the type of the at-
tribute, therefore only the values of the Date attributes (the
instances of the evolution object) must be checked against the
new type definition.

The last primitive specifies to remove the attribute. The val-
idation process should thus simply check that no Date in-
stances occur in the associated documents.

The parts of a document affected by a schema modification
are determined by an XPath expression generated according
to the evolution statement and the schema definition.

Example 19. Consider the XSPath expression of Exam-
ple 14 and the HTML-Log.xsd schema. The Date attribute
can appear within the Packet element of the root element
Log or within the root element Packet. Therefore, the XPath
expressions to locate the Date attribute within a document
valid for the HTML-Log.xsd schema are /Log/Packet/@Date

and /Packet/@Date.

Enforcing document adaptation. To enforce user-defined
adaptation as specified within an XSUpdate statement, the
document and iteration queries should be translated into
XQuery Update functions.

The translation is performed as follows: we create two func-
tions (named the iteration and the document functions) whose
bodies are the iteration and document queries, respectively.
The parameters of these functions are the free variables con-
tained in the iteration and document queries.

Example 20. Consider the XSUpdate statement of Ex-
ample 14; the functions declared at line 1 and 10 are, the
iteration and the document function, respectively.

1 declare updating function local:iterationFunc

2 ($Date as node(), $Packet as node())

3 {

4 let $Time:= $Packet/@Time

5 replace value of $Time with

6 concat($Date,’ ’,$Time),

7 delete node $Date

8 };

9

10 declare updating function

11 local:documentFunc($Doc as node())

12 {

13 replace value of node $Doc/@schemaVersion

14 with "1.1"

15 };

The document function is evaluated once for each docu-
ment instance of the original schema. The iteration func-
tion is evaluated once for each environment within a doc-
ument. The environments are determined by means of the
identifyEnvironments function that depends on the kind
of modification primitive invoked on the schema.

In case of modification, the behavior of this function de-
pends on the evolution object (identified by means of an XS-
Path expression), the document to adapt, and the original
schema. Each element structure corresponding to one of the
high level parents of the evolution object is annotated, mark-
ing the nodes belonging to the environment. The function
then analyzes the document contents against the schema
definition and the XSUpdate statement specified. When an
environment is detected, the iteration function is evaluated
with the parts of the environment which have been bound
in the XSUpdate statement as parameters.

In case of insertion, this function also determines the po-
sition where the new element(s) should be inserted. For
this purpose the element structure is further annotated with
place-holders representing the position within the element
structure where the new element(s) should be inserted. By
checking at the same time the annotated element structure
and the content of the document element where the new el-
ement(s) should be inserted, the position of new elements
are determined.

Example 21. Continuing Example 20 the following trans-
lation will be produced. The body of the query iterates on all
the documents associated with the modified schema, identi-
fied by means of the documentCollection variable (line 5).
For each document, the document function is evaluated (line
6). In each document the environments are then identified
by means of the identifyEnvironments function (line 7),
which analyzes the document contents against the schema
definition and the XSUpdate statement specified. In each de-
tected environment, the iteration function is evaluated with
the parts of the environment which have been bound in the
XSUpdate statement as parameters (line 9 and 10).

1 let $evoObject :=

2 "/#*[typeDerivedFrom(xs:string)]!@Date"

3 let $modPrimitive= "REMOVE"

4 let $schema := doc("HTML-Log.xsd")

5 for $document in $documentCollection

6 local:documentFunction($document),

7 for $env in local:identifyEnvironments

8 ($schema, $doc, $evoObject,$modPrimitive)

9 local:iterationFunc(local:getTarget($env),

10 local:getContainer($env))

4. EXUP
EXup is a Java application for the translation and evalua-
tion of XSUpdate statements. EXup offers two user inter-
faces, one applet-based for Web use and one for local use. As
EXup fully implements the algorithms presented in Section
3 it can also be used to validate XML documents or parts
of them and to translate XSPath expressions. Other im-
portant features include detailed syntactic or semantic error
reporting and visual analysis of the modifications performed
on a schema or its associated documents. A comprehensive
set of APIs is also available, offering all features of the user
interfaces and additional implementation-related options.

Document collections and schemas can be loaded from files
or from an XML native or enabled DBMS. The translation
of XSUpdate evolution statements on documents employs
external Java functions to perform the environments iden-
tification processes described above. An effort has been
made to support all common Java XQuery Update libraries
supporting external functions: Saxon EE1, MXQuery2 and
Qizx/open3. Due to the different features and character-
istics offered by these libraries, the actual translations may
have a different structure than that reported in Example 20.
The EXup architecture is reported in Figure 5.

1http://www.saxonica.com
2http://mxquery.org
3http://www.xmlmind.com/qizx/

Figure 5: EXup architecture.

We plan to conduct an extensive analysis of the performance
of EXup and introduce further optimizations in the near fu-
ture, nonetheless some considerations, based on preliminary
experimental results can be made.

Without any optimization, the translation process of XS-
Path expressions in both XQuery and XPath, with respect
to their length, requires linear time to be generated and
produces expression of linear length. The translation of a
schema modification, with respect to the XSUpdate state-
ment length, has linear length and requires linear time. To
translate and evaluate an XSUpdate statement against a
schema usually no more than a tenth of a second is required
(with schemas of size 100KB). We also contrasted the per-
formance of the translation and evaluation of the document
adaptation specified in an XSUpdate statement with a sim-
ilar hand-written XQuery Update expression. Note that,
especially when optional surrounding elements have to be
considered, a similar expression might be too complex for
most XQuery users. Even if the translation on average is
no more than 20% slower, we are working to enhance the
performance of the translation using XPath expressions to
identify the environments whenever possible and employing
the algorithm of Section 3.3 only when needed.

5. CONCLUSIONS AND FUTURE WORK
XSUpdate expressions allow to specify a schema evolution,
defining both the schema modification and the document
adaptation to carry out. In this paper we have proposed
EXup, a tool for translating and evaluating XSUpdate state-
ments, locally, over the network and from within other ap-
plications. Several translation approaches and algorithms
have been presented and implemented, to ensure a sound
and reasonably fast evaluation.

We have focused on the key features of XML Schema (global
and local element declarations, simple and complex type
definitions, references, arbitrary nesting of sequence, all,
choice grouping operators). However, specific support should
be included for other XML Schema peculiarities (like derived
types, group elements, substitution groups, abstract defini-
tions, uniqueness and keys).

As the update primitives that can be applied on the schema
are low-level, the specification of a complex schema modifi-
cation different XSUpdate statements may be required. The
need arises to consider a sequence of evolution statements
with a robust transaction mechanism including rollbacks and
commits.

Efficient dynamic techniques for checking that atomic up-
dates preserve validity with respect to a schema have been
proposed in [1, 2]. These techniques are exact, but im-
pose run-time overhead on all updates and do not deal with
changes to schemas. Raghavachari and Shmueli [8] study
the problem of XML documents (known to conform to one
schema) that must be validated with respect to another
schema. They propose an algorithm that take advantage
of similarities between the schemas to avoid validating por-
tions of the documents explicitly. The algorithm, however,
does not take advantage of any knowledge of the updates
leading from the first schema to the second one in revalida-
tion.

These approaches can be introduced into our incremental
validation algorithm, also exploiting the knowledge of the
modification primitive applied to the schema.

Currently, after the execution of the document adaptation
through the iteration and document queries, the validity of
the new document is checked. This is strictly needed because
starting from the nodes in the environment the user can re-
quire to modify any part of the document. It would be nice
to statically determine whether the execution of the docu-
ment and iteration queries would lead to documents valid
for the updated schema. For this purpose a static analy-
sis of the nodes affected by an XQuery Update expression,
extending that proposed in [3], can be profitably exploited.

Despite the implemented query optimizations, the transla-
tions of XSPath/XSUpdate statements sometimes is longer
than needed. We believe that the XML Schema constraints
and a formal type system for XSPath can be profitably ex-
ploited to further reduce translated expression length.

6. REFERENCES
[1] A. Balmin, Y. Papakonstantinou, and V. Vianu.

Incremental Validation of XML Documents. ACM
Trans. Database Syst., 29(4):710–751, 2004.

[2] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient Incremental Validation of
XML Documents. In ICDE, pages 671–682. 2004.

[3] M. Benedikt and J. Cheney. Semantics, Types and
Effects for XML Updates. In DBPL, LNCS(5708),
pages 1–17. 2009.

[4] F. Cavalieri, G. Guerrini, and M. Mesiti. Querying
and Evolution of XML Schemas and Related
Documents Master’s thesis, University of Genoa, 2009,
URL: http://www.disi.unige.it/person/GuerriniG/
2009Cavalieri.pdf.

[5] F. Cavalieri, G. Guerrini, and M. Mesiti. Navigational
Path Expressions on XML Schemas. In DEXA,
LNCS(5181), pages 718–726. 2008.

[6] F. Cavalieri, G. Guerrini, and M. Mesiti.
XSchemaUpdate: Schema Evolution and Document
Adaptation. Technical report, University of Genova,
2008.

[7] D. Colazzo, G. Guerrini, M. Mesiti, B. Oliboni, and
E. Waller. Document and Schema XML Updates. In C.
Li and T.W. Ling editors, Advanced Applications and
Structures in XML Processing: Label Streams,
Semantics.. IGI Global, Information Science
Reference, USA/UK, 2009.

[8] M. Raghavachari and O. Shmueli. Efficient
Revalidation of XML Documents. IEEE Trans.
Knowl. Data Eng., 19(4):554–567, 2007.

[9] J. F. Roddick. A Survey of Schema Versioning Issues
for Database Systems. Information and Software
Technology, 37(7):383–393, 1995.

[10] W3C. Document Object Model (DOM), 1998.

[11] W3C. XML Path Language (XPath) 2.0, 2007.

[12] W3C. XQuery Update Facility, 2008.

[13] W3C. XML 1.0, Fifth Edition, 2008.

[14] W3C. XML Schema 1.0, 2004.

