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ABSTRACT
Given an XML functional dependency fd and a class of up-
dates U , we say that fd is independent with respect to U
if and only if any XML document satisfies fd after any up-
date q of U , as soon as it did it before q. In this paper we
study the following problem: is it possible to detect if an
XML functional dependency fd is independent with respect
to a class of updates U? We address this problem when the
functional dependency and the class of updates are specified
with a same formalism: the regular tree patterns. We first
show that the use of regular tree patterns federates most of
the known approaches for expressing XML functional depen-
dencies while allowing to capture some of constraints not so
far expressible. Then we show that in general the addressed
problem is PSPACE-hard, but we exhibit a sufficient condi-
tion testable in polynomial time ensuring the independence
of a functional dependency with respect to a class of updates.

Keywords
XML, Functional dependency, Regular tree pattern, Update
query

1. INTRODUCTION
Many topics have been intensively studied in the literature
on XML: at the beginning schema definitions have been in-
vestigated to control the structural type of XML data, as
well as query languages design to extract the desired in-
formation from these data. More recently, much effort has
been done on (i) the definition of update languages to man-
age the inherent changing nature of XML data and on (ii)
the enhancement of XML semantics expressiveness.

This last topic has becoming an important research topic
and a lot of works can be found in the XML literature about
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integrity constraints ([7, 6]), general XML functional depen-
dencies and more specifically XML keys ([4, 3, 5, 1, 16, 19,
17]). All these proposals differ the ones from the others de-
pending on (a) they are or not independent from any schema
such as DTDs or XSDs, (b) the ways they are accessing and
comparing XML elements, and (c) their expressiveness and
tractability. The challenge of most of these works has been
to define specific classes of constraints (XML functional de-
pendencies or XML key fragments) for which the implication
problem is tractable, an axiomatization and normalization
theory can be done, and efficient algorithms for constraint
validation or reasoning about keys can be designed ([5, 13]).
A clear survey about XML keys can be found in [12] as well
as an interesting attempt in [8] to get an uniform formalism
for expressing XML functional dependencies.

Because XML data can be frequently changed on the Web,
another important issue regarding XML integrity constraints
is the preservation of their validation on an XML document
after one or more update operations. To our knowledge,
very few works have addressed this issue in the literature:
we can mention [5] where a method to maintain key indexes
after an update is proposed and [14] where the impact of a
set of updates on a set of XML functional dependencies has
been investigated.

In this paper we study the preservation of the validation of
a functional dependency on an XML document after a set
of updates. We choose to express functional dependencies
(FDs for short) as well as update queries through a same
expressive formalism: the regular tree patterns. We show
how this formalism federates most of previous approaches
for XML FD designing and allows also to capture more kinds
of constraints not so far expressible. In a previous work [9]
we showed how the use of regular tree patterns for specifying
view queries as well as update queries can be exploited to
get an efficient algorithm detecting cases of independence
of a view query with respect to a class of updates. We
show in this paper that a similar algorithm can be designed
to detect cases of independence of a set of FDs with re-
spect to a class of updates, while this problem is in general
PSPACE-hard. To our knowledge, only [14] has addressed
the same problem. However in [14] the author supposes that
the XML document is available, as well as extra stored in-
formation produced by previous FD verification passes. The
uniforming notion of regular tree pattern allows us to get
here a quite different approach dealing only with the FDs
and update queries definitions and detecting non-violation



situations. More precisely, we exhibit a condition testable
in polynomial time (in the sizes of the class of updates U
and of the functional dependency fd) that ensures, for each
XML document D satisfying fd, the non-violation of fd by
q(D) after any update q of U .

The paper is organized as follows: Section 2 is devoted to
preliminaries on XML and to the presentation of the regular
tree pattern formalism. In Section 3 we show how regular
tree patterns can be used to express functional dependencies
on XML data. Section 4 is devoted to the use of regular
tree patterns to define class of updates on XML documents.
Finally in Section 5 we analyze the impact of a set of updates
on some given FD when both are designed with regular tree
patterns. We conclude in Section 6.

2. PRELIMINARIES
In this section we give our representation of XML documents
and some preliminary definitions about the regular tree pat-
tern formalism that we are using throughout the paper.

2.1 Representation of XML documents
XML documents are modelized by unranked ordered trees,
labeled on some alphabet Σ (as shown on Figure 1) and
we represent textual information such as attribute values or
text contents by strings over another alphabet I. Then we
consider that nodes of the document have one of the three
types: element node(e), attribute node(a) or text node(t).
Also we suppose that Σ is partitioned into three disjoint
sets of labels, Σ = El ∪A∪ {S}, where labels from El label
element nodes, labels from A label attribute nodes and S
(indicating text) labels text nodes. Formally, a document D
is a triplet D=(D, λ, val) where:

• D is a tree domain, i.e. D is a subset of N∗ containing
the empty word and satisfying ∀i ∈ N, wi ∈ D ⇒ (w ∈
D and wj ∈ D, ∀j < i) . Furthermore each internal
node w of D has the type e and each leaf node of D
has the type a or t. In the following, the domain D of
D=(D, λ, val) is also denoted by N (D).

• λ associates a label l ∈ Σ with each node w of D
according to its type as explained above. In particular
λ(w) ∈ A ∪ {S} if and only if w is a leaf node of D.

• val is a valuation function from D to D∪I∗ that is the
identity on element nodes (∀w ∈ D, val(w) = w if and
only if λ(w) ∈ El) and that associates a string value of
I∗ to each leaf node i.e. if and only if λ(w) ∈ A∪{S}.

For technical reasons, we adopt the convention that the root
ε is labeled with the symbol ’/’ of El in every document D.
Given two nodes w and w′, a path p from w to w′ is a
sequence p = (w1, w2, ..., wn) of nodes such that: w1 = w,
wn = w′ and ∀i = 1, .., n − 1, ∃ji ∈ N s.t. wi+1 = wiji.

For each node w in N (D), we denote by D(w), the sub-tree
rooted at w in D and defined by D(w) = (Dw, λw, valw)
with Dw = {wv/v ∈ N∗} ∩ D and λw (respectively valw)

is the restriction of λ (respectively of val) to Dw. If
−→
T

is a tuple (D(w1),D(w2), ...,D(wn)) of sub-trees of D then

N (
−→
T ) denotes the subset Dw1 ∪ Dw2 ... ∪ Dwn of N (D).

Figure 1 shows an XML document D storing data about an
exam session. Each candidate is identified by its attribute
@IDN: he has taken exams of different disciplines at different
dates and has received for each of them a mark and a rank.
Depending on the marks he received to the different exams,
a global level (ranged from ’A’ to ’E’) is attributed to the
candidate. Furthermore if the candidate didn’t pass at least
one exam, a child node toBePassed is added regrouping the
remaining disciplines to be passed. On the contrary if all
exams have been passed, the candidate is graduated and a
child node firstJob-Year is added storing the year of his first
job.

2.2 Regular tree patterns
We present here preliminary notions about regular tree pat-
terns that we need later. Intuitively, an n-ary regular tree
pattern is a formalism to select in an XML document, tuples
of nodes satisfying a particular condition. Roughly speak-
ing this condition requires the existence, in the document,
of a tree-shaped sub-structure (a so-called trace of the reg-
ular tree pattern) conforming to a particular template and
carrying the tuple of nodes to be selected.

If Σ is a finite alphabet, REG(Σ) denotes the set of regular
expressions over Σ. A regular expression is said proper if
and only if its associated regular language of words does not
contain the empty word ε.

Definition 1 (N-ary regular tree pattern). Let Σ
be a finite alphabet of labels. An n-ary regular tree pattern
over Σ is defined by R = (T ,−→s ) where

• T = (Σ, N, E, E) is the regular tree template of R com-
posed of:

- a tree (N, E) where N is a tree domain and E ⊆
N × N is the set of edges given by the natural child
relation on words of N∗.
- an application E : E −→ REG(Σ) which associates
each edge (w, w′) of E with a proper regular expression
of REG(Σ), denoted by E(w,w′)

• −→s =(w1, ..., wn) is the selected tuple of R composed of
nodes of N . When n = 1, R is called a monadic reg-
ular tree pattern.

The size of R denoted by |R| is defined by: |R| = |N | +
Σe∈E |Ae| where Ae is a word automaton associated to the
regular expression Ee and |Ae| denotes the size of Ae.

The evaluation of an n-ary regular tree pattern on an XML
document D consists in (a) identifying in D all tuples of
nodes that satisfy the conditions expressed by the tree pat-
tern and (b) returning the tuples of subtrees in D rooted
at these nodes. Formally the identifying phase (a) of the
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Figure 1: An XML document

evaluation uses the concept of mapping. In the next defini-
tion ”<” denotes the natural document order (equivalently
descendant or following order) between two nodes of a doc-
ument D.

Definition 2 (Mapping of a regular tree pattern).
A mapping on an XML document D of an n-ary regular tree
pattern R = (T , ~s) where T = (Σ, N, E, E), is an application
π from N to N (D) such that:

• If r is the root node of T then π(r) is the root node of
D labeled with ’/’

• ∀w, w′ ∈ N , if w < w′ then π(w) < π(w′)

• ∀e = (w, w′) ∈ E, there exists in D a path πe from
π(w) to π(w′), such that:
(a) the sequence, denoted by λ(πe), of the concatenated
labels occurring on πe (λ(π(w)) excluded and λ(π(w′))
included) is a word of the language associated to Ee

and,
(b) if e1 = (w, w1) and e2 = (w, w2) are two distinct
outgoing edges from a node w of N then paths πe1 and
πe2 must not have common prefixes in D.

Trace of a regular tree pattern with respect to a
mapping The trace of the regular tree pattern R in D with
respect to the mapping π is the smallest sub-tree of D con-
taining the image π(N). We denote it by traceπ(R,D).

Evaluation of a regular tree pattern on a document
Let P be the set of all mappings of the regular tree pattern
R on the document D.

• The result, denoted by
−−−−→
Rπ(D), of the evaluation of

R on D with respect to the mapping π of P, is the

tuple of sub-trees
−−−−→
Rπ(D) = (D(π(w1)), . . . ,D(π(wn)))

where −→s = (w1, ..., wn) is the selected tuple of R.

• The result of the evaluation of R on D is denoted R(D)

and defined by: R(D) =
S

π∈P
−−−−→
Rπ(D)
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Figure 2: Regular Tree Patterns

Let us consider the regular tree patterns R1 = (T1, (s1, s2))
and R2 = (T2, (s1, s2)) of Figure 2 where the selected nodes
s1 and s2 are grayed. Their evaluations on document D
of Figure 1 are quite different. On the one hand, be-
cause of condition (b) of Definition 2, the meaning of R1

is ”Select pairs of sub-trees rooted at exam nodes taken by
two different candidates”. Therefore there are four map-
pings of R1 on D and four pairs selected by R1 on D:
R1(D) = {(D(002),D(012)), (D(002),D(013)),
(D(003),D(012)), (D(003),D(013))}. On the other hand,
the meaning of R2 is ”Select pairs of sub-trees rooted at exam
nodes taken by a same candidate”. So there are only two
mappings of R2 on D and two pairs selected by R2 on D:
R2(D) = {(D(002),D(003)), (D(012),D(013))}.
A trace of R1 (respectively R2 ) can be seen on Figure 1
drawn with a dotted (respectively dashed) line.

Let us also notice that a mapping of a regular tree pattern
R must respect the order of the nodes in R. As illustration,
the evaluation of the regular tree pattern R3 = (T3, (s))
of Figure 3 on document D of Figure 1 returns ”Sub-trees
rooted at level nodes for the candidates having passed at least
one exam” while the evaluation of the regular tree pattern
R4 = (T4, (s)) of Figure 3 on the same document D is
empty.
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3. FUNCTIONAL DEPENDENCIES AS REG-
ULAR TREE PATTERNS

3.1 Example 1
Let us consider the XML document of Figure 1 and the func-
tional dependency fd1: In a session, two exams concerning
the same discipline and evaluated with the same mark, share
the same rank value.

We express the functional dependency fd1 with the pair
(FD1, c) where FD1 = (T1,

−→s1 = (p1, p2, q)) is the regular
tree pattern of Figure 4, and the nodes c, p1, p2 and q of
N (T1) have the following meaning:
- c (grayed on Figure 4) is the context node under which
fd1 must be verified
- nodes p1 and p2 of −→s1 are the condition nodes
- node q of −→s1 is the target node

Semantically a document D satisfies fd1 if and only if, for
two different traces of FD1 in D, τ1 = traceπ1(FD1,D) and
τ2 = traceπ2(FD1,D), that are in the same session (π1(c)
and π2(c) are the same node) and whose exams concern
the same discipline and are evaluated with the same mark
(π1(p1) and π2(p1), as well as π1(p2) and π2(p2), share the
same value), the attributed ranks coincide (π1(q) and π2(q)
share the same value too).

This example shows how regular tree patterns are well adapted
to express functional dependencies. We give next a formal
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definition of XML functional dependencies using regular tree
patterns.

3.2 Functional dependencies on XML docu-
ments

In the previous example we used two kinds of equality for
nodes: a node equality (identification) for the context node
and a value equality to compare the condition and target
nodes. We precise below these notions.

Definition 3 (value equality). Two nodes, w1 and
w2, of a document D=(D, λ, val) are value-equal if and only
if:
- λ(w1) = λ(w2) (they have the same label)
- w1 and w2 have the same type τ
- if τ is a (attribute type) or t (text type), then val(w1) =
val(w2)
- if τ is e (element type), then |{w1i/w1i ∈ D ∧ i ∈ N}| =
|{w2i/w2i ∈ D ∧ i ∈ N}| and for each w1i in D, w1i and
w2i are value-equal

We use the following notations:
- w1 =V w2 if w1 and w2 are value-equal
- w1 =N w2 if w1 and w2 are the same node

Many proposals for defining XML functional dependencies
can be found in the literature ([1, 16, 19, 17]). However we
think that the use of regular tree patterns (a) makes uni-
form most of the main proposals in the sense that it allows
to concisely and precisely define the relationship between
the specifications of the condition and target nodes and (b)
enhances their expressive power as we will see later through
some examples.

Definition 4. (XML functional dependency) An XML
functional dependency is an expression fd = (FD, c) where:

• FD = (T ,−→s = {p1[E1], p2[E2], ..., pn[En], q[En+1]})
is a regular tree pattern whose each selected node p1, ..., pn

and q is associated with an equality type Ei ∈ {V, N}
(i=1,..., n+1)

• c is an ancestor node of each node p1, p2, ..., pn and q

c is the context node, the pi’s are the condition nodes and q
is the target node

For sake of simplicity, when omitted, the equality types Eis
are set by default to V. So we write pi instead of pi[V ].

Definition 5. (Satisfaction of a functional dependency)
A document D satisfies the functional dependency (FD, c)
if and only if for two traces, τ1 = traceπ1(FD,D) and τ2 =
traceπ2(FD,D), of FD in D satisfying
(a) π1(c) =N π2(c) (the context node images are the same)
and (b) ∀i = 1, ..., n, π1(pi) =Ei π2(pi),
the equality π1(q) =En+1 π2(q) holds as well.



Example 2: Let us consider the functional dependency fd2

for the XML document of Figure 1: A candidate can not
take at the same date two different exams concerning the
same discipline
In our formalism, fd2= (FD2, c) where FD2 is the regular
tree pattern of Figure 4. The context node c is grayed.
When equal to N, the equality type is written next to the
associated condition or target node.

Also in [8], the authors propose a formalism to make uni-
form most of the previous proposals for expressing XML
functional dependencies. So to compare our approach with
the previous proposals, we choose to compare it with those
of [8]. Following the formalism of [8] a functional depen-
dency fd is an expression with the form
(C, ({P1[E1], P2[E2], ..., Pn[En]} → Q[En+1])): C is an ab-
solute simple linear path specifying the context node,
P1[E1], ..., Pn[En] and Q[En+1] are simple linear paths rela-
tive to the context node and specify the condition and target
nodes of fd with their equality types. As examples, the func-
tional dependencies fd1 and fd2 are expressed in [8] with
the following expressions expr1 and expr2:
expr1: (/session, ({candidate/exam/discipline,
candidate/exam/mark } → candidate/exam/rank ) )
expr2: (/session/candidate, ({exam/date, exam/discipline }
→ exam[N]))
The semantics associated in [8] to (C, ({P1[E1], P2[E2],
..., Pn[En]} → Q[En+1])) is mainly the same as those we as-
sociate to (FD, c) where FD = (T , (p1, p2, ..., pn, q)) is the
regular tree pattern built from the paths C, P1, ..., Pn, Q as
follows: roughly speaking, the construction of FD translates
the paths C, P1, ...,Pn, Q into words wc, wp1 ,...,wpn ,wq of la-
bels of Σ, and uses these words to label edges in the template
T ; wc labels an edge from the root node to the context node
c, and the words wp1 ,...,wpn and wq label paths from the con-
text node c to the condition and target nodes p1, p2, ..., pn

and q. Furthermore a particular policy is followed that intro-
duces additional nodes between the context node c and the
pis or q nodes, to factorize when it exists, the longest com-
mon prefix between two any words of {wp1 , wp2 , ..., wpn , wq}.
For example, the regular tree patterns built from expr1 and
expr2 give back the regular tree patterns FD1 and FD2 of
Figure 4.
The only difference between the semantics associated in [8]
to (C, ({P1[E1], P2[E2], ..., Pn[En]} → Q[En+1])) and the se-
mantics we associate to (FD, c) is the fact that no order is
required in [8] between the paths P1, ..., Pn, Q while our se-
mantics requires each mapping of FD to respect the order
between sibling nodes of T .
Thus the regular tree pattern formalism allows to express
the functional dependencies expressed with the formalism
of [8], adding however node ordering requirements. It also
allows us to express more kinds of functional dependencies
as shown by the next example.

Example 3: Here we suppose that, in the documents we are
working on, the ’exam’ nodes of each candidate are sorted
by discipline and each candidate has at least one exam in a
given discipline. Given such documents, we want to express
the following functional dependencies:
(fd3) Two candidates with the same mark in at least two
disciplines receive the same level

(fd4) Two candidates with the same mark in at least two
disciplines and also having some remaining exams to pass,
receive the same level

In our formalism, fd3 = (FD3, c) and fd4 = (FD4, c) where
FD3 and FD4 are the regular tree patterns of Figure 5.
However neither fd3 nor fd4 can be expressed by the for-
malism of [8]. Indeed, the regular tree pattern FD built
from (C, ({P1[E1], P2[E2], ..., Pn[En]} → Q[En+1])) with the
above detailed construction, satisfies particular properties
that keep it from expressing such dependencies:

• Labels of two edges outgoing from a same node can
not have a common prefix. Therefore fd3 can not be
expressed by such a pattern. On the contrary, fd3

can be expressed with the regular tree pattern FD3

thanks to its sibling edges labeled by exam and thanks
to condition (b) of Definition 2: indeed condition (b)
ensures that any mapping captures marks from two
different exams taken by a same candidate.

• Leaves of FD are only condition or target nodes. There-
fore fd4 that requires the existence of another leaf node
(namely a node labeled by toBePassed) can not be ex-
pressed by such a pattern. On the contrary, fd4 is
clearly expressed by the regular tree pattern FD4 of
Figure 5.

Finally regular tree patterns are a very simple and concise
formalism to express XML functional dependencies support-
ing most of the previous proposals. Furthermore they en-
hance their expressive power allowing to precise ordering
requirements and to express more complex dependencies
thanks to the use of (a) regular expressions as labels and
(b) general tree templates.

4. XML UPDATE CLASSES AS REGULAR
TREE PATTERNS

As already mentioned, the formalism of n-ary regular tree
pattern allows to select from an XML document, tuples of
nodes satisfying particular conditions. Therefore this for-
malism is also well-adapted to query XML documents. In a
previous work [10] we showed that, as an XML query lan-
guage, the regular tree pattern formalism is incomparable
(regarding the expressive power) with Full XPATH as de-
fined in [18] . However it can express all queries of the
positive fragment of CoreXPATH ([11]).
Regular tree patterns are also well adapted to express up-
dates on XML documents. Indeed an update on an XML
document D consists in (1) selecting a set of nodes in D
to be updated and (2) replacing the sub-tree D(w) rooted
at each selected node w by a new sub-tree. This modelling
covers most of current update operations, including insert-
ing/deleting sub-tree operations: actually such operations
can be viewed as updating the father nodes of the inser-
tion/deletion positions. Hence an update q of an XML doc-
ument is defined in this paper as the composition q = u ◦ U
of two applications u and U : application U selects the set of
nodes w to be updated and application u performs the up-
dates by replacement of the sub-trees D(w) rooted at these
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nodes w. Application U represents in fact a class of up-
dates: two updates belong to the same class U if and only
if they are defined with the same node selecting application
U . Therefore a class of updates U can be expressed through
a regular tree pattern that only defines the set of nodes to
be updated without performing the precise updates at these
nodes.

Example 4 The regular tree pattern U = (TU , sU ) of Figure
6 defines a class of updates that update levels of candidates
still having to pass some remaining exams. Here only one
node (sU ) is selected to be updated. The update queries
q1: ”For each candidate still having to pass some remain-
ing exams, decrease his level to the level just below” and q2:
”For each candidate still having to pass some remaining ex-
ams, add a child node ’comment’ to the ’level’ node” are two
updates belonging to the class U . When evaluated on the
document D of Figure 1, the class U returns only the node
’001’ to be updated because there is only one mapping of U
on D.

5. INDEPENDENCE BETWEEN UPDATES
AND FUNCTIONAL DEPENDENCIES

Impact We say that an update q has an impact on an XML
functional dependency fd if and only if there is a document
D such that D satisfies fd and q(D) doesn’t satisfy fd.

Example 5: The update q1 of Example 4 has an impact
on the functional dependency fd3. Indeed a document D
satisfying fd3 can contain two candidates γ1 and γ2 with
the same marks in at least two disciplines and the same
level but γ1 has a child toBePassed while γ2 not: so q1 only
updates γ1’s level and fd3 is becoming violated in q1(D).

Update-FD Independence Our goal is to analyze both
the functional dependency fd and the update query q in or-
der to detect an eventual impact of q on fd. It is important

level

session.candidate
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c

session

candidate

level firstJob−Year

Class of updates U

sU
p q

FD5

Figure 6: Updates and FDs

to notice here that our objective is to detect this impact
independently of any source document that is not supposed
available during the analysis. In addition, in order to sim-
plify the problem, we suppose that the detailed specification
of the function u, performing the update, is unknown and
therefore that u can be of any type. Hence we choose to
focus on the detection of impacts of a whole class U of up-
dates (rather than of a particular update q) on a functional
dependency. The Update-FD independence problem is thus
formally stated as follows: the functional dependency fd is
independent with respect to a class of updates U if and only
if for every update q in U , q doesn’t impact fd.

Update-FD Independence in the context of a schema
In many cases, the availability of a schema constraining the
source documents can improve the independence analysis.
Let us denote by valid(Sc) the set of valid documents with
respect to a schema Sc. In this context the independence
definition is modified as follows: the functional dependency



fd is independent with respect to a class of updates U in the
context of the schema Sc if and only if: ∀ D ∈ valid(Sc),
∀ q ∈ U with q(D) ∈ valid(Sc), if D satisfies fd then q(D)
satisfies fd as well.

Example 6: Let us consider Figure 6 and suppose we are
in the context of a schema Sc that requires each candidate
to have a child toBePassed or a child firstJob-Year but not
both. Then fd5 = (FD5, c) is independent with respect to
the class of updates U (where U and FD5 are shown on
Figure 6): indeed any update of U modifies levels only of
candidates having a child toBePassed and therefore, that
are not concerned by fd5.

We show now how the choice of a uniform formalism to
express functional dependencies and classes of updates can
be useful in the analysis of the independence problem of a
functional dependency with respect to a class of updates.

Let fd = (FD, c) be an XML functional dependency with
context node c and tree pattern
FD = (T ,−→s = (p1[E1], p2[E2], ..., pn[En], q[En+1])).
Let U = (TU ,−→s U ) be an update class. We restrict our ap-
proach to update classes expressed by regular tree patterns
whose updated nodes (nodes of N (−→s U )) are leaves of TU .
As we will see later, this condition allows us to get a poly-
nomial sufficient criterion ensuring the independence of fd
with respect to U .
Finally let Sc be a schema requiring some structure con-
straints on XML documents. In this work Sc is supposed to
be given by some regular Bottom-Up tree automaton ASc.
We start by giving in the next section a general complexity
result about the Update-FD independence problem.

5.1 PSPACE-hardness
Proposition 1. Deciding whether a functional dependency

fd is independent with respect to a class of updates U is a
PSPACE-hard problem .

Proof. We reduce the well-known PSPACE-hard prob-
lem of the inclusion of two regular expressions, into the prob-
lem of independence. Let us consider the label alphabet
Σ = {A, B, C, D, F, G, #} and two expressions η and η′ of
REG(Σ) where label ’#’ does not occur. We define the two
regular tree patterns FD and U = (TU , sU ) as in Figure 7
and prove that fd = (FD, c) is impacted by U iff η * η′.
Suppose that fd is impacted by U . There exists a document
D satisfying fd and an update q ∈ U such that q(D) does
not satisfy fd . Therefore there are:
- two mappings π1 and π2 of FD on q(D) whose traces τ1

FD

and τ2
FD are witnesses of the violation of fd in q(D),

- a mapping π of U on D, whose trace τ selects the updated
node: notice that τ remains on q(D) because sU is a leaf of
TU .
Now if π(µ) is distinct from both π1(ν) and π2(ν) in q(D)
(where µ and ν are the nodes shown on Figure 7) then τ1

FD

and τ2
FD would already be witnesses of the violation of fd

in D. So let us suppose π(µ) = π1(ν): then q does not mod-
ify any node of τ2

FD nor ascendants or descendants nodes
of π1(p) and π1(q). Therefore, if η ⊆ η′, a witness of the
violation of fd in D can be obtained from τ and τ2

FD.
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Figure 7: Reduction schema
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Conversely if η * η′, we consider the document D shown on
Figure 8 where the sequence of labels encountered on the
path from the ’C’ node to the ′#′ node is a word w of L(η)
that does not belong to L(η′). Because w does not belong
to L(η′), D satisfies fd. Now because w belongs to L(η),
node 001 is updated by any update of U . Let us consider an
update q of U that adds a descendant path w′# to the node
001, where w′ is a word of L(η′). Now clearly q(D) does not
satisfy fd because the two nodes labeled by G have different
values while the ones labeled by F are value-equal.

5.2 An independence criterion
We define a language L of XML documents satisfying par-
ticular conditions, and we establish a relationship between
the vacuity of L and the independence of fd with respect to
U in the context of Sc.

Definition 6. Let L be the language of XML documents
D satisfying:
(i) D ∈ valid(Sc)
(ii) There is in D a trace of FD, τFD = traceπ(FD,D),



with respect to a mapping π of FD on D,
and there is in D a trace of U , τU = traceπ′(U ,D), with
respect to a mapping π′ of U on D, such that:
N (π′(−→s U ))

T

(N (traceπ(FD,D)) ∪N (FDπ(D))) 6= ∅

Roughly speaking XML documents of L are Sc-valid docu-
ments that contain a trace τFD of FD and a trace τU of U
such that there is at least a selected node of τU (a node of
N (π′(−→s U ))) that is a node of τFD (i.e. of N (traceπ(FD,D))
or a node of the sub-trees rooted at condition or target nodes
of fd (i.e. nodes of N (FDπ(D)) selected by FD).

Proposition 2 (Independence criterion IC). If L
is empty then fd is independent with respect to U in the
context of Sc.

Proof. Suppose that fd is not independent with respect
to U in the context of Sc, then there is an update q of
U , a document D of valid(Sc) such that q(D) is also in
valid(Sc) and, D satisfies fd while q(D) does not satisfy
fd. Therefore there is at least a node n updated by q whose
update generates a witness of the violation of fd in q(D).
Two cases can occur:

• (a) The violation of fd in q(D) involves a trace τFD

of FD in q(D), that already was in D but has not
been touched by q (τFD = traceπ(FD,D)). Thus
necessarily n is a node of one of the sub-trees rooted
at condition or target nodes and its update modifies
the values of this sub-tree generating the violation of
fd in q(D) (case 1 Figure 9). So n is a node of
N (π′(−→s U )) ∩N (FDπ(D)) and D is a document of L.

• (b) The update of n creates a new trace τFD of FD
in q(D) (with respect to some mapping π), that is a
witness of the violation of fd in q(D): therefore n is,
in q(D), a node of τFD (case 2 Figure 9 ). Now be-
cause any node of N (−→s U ) is a leaf of TU , the trace
of U in D carrying n, remains in q(D): so n is also
a node of a trace τU of U in q(D) (with respect to
some mapping π’). Finally n belongs to N (π′(−→s U ))∩
N (traceπ(FD, q(D))) and q(D) is a document of L.

We now give a method to check the independence criterion
IC.

Proposition 3 (Checking criterion IC). Given an
XML functional dependency fd = (FD, c), a class of up-
dates U = (TU ,−→s U ) and a regular Bottom-Up automaton
ASc specifying a schema Sc,

• A regular Bottom-Up automaton A recognizing L can
be built from the automaton ASc and the regular tree
patterns FD and U

p

p
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qq
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Case 1

sub−tree

q

updated node n

Updated node

Trace of U

Trace of FD

Condition or

XML document

Tree D
(before the update)

Tree q(D)
(after the update)

target sub-tree

updated node n

modified

(before the update)
Tree D

(after the update)
Tree q(D)

Figure 9: Impact analysis

• The size |A| of the automaton A is in O(aUaFD ×
|Σ|2 × |ASc| × |U| × |FD|), where aU and aFD are the
maximal arities of U and FD respectively

• The independence criterion IC is polynomial: more
precisely, the emptiness of the language L is testable
in O(a2

U a2
FD × |Σ|4 × |ASc|2 × |U|2 × |FD|2) time.

Sketch of the proof : For sake of space, we only give here an
idea of the construction of the automaton A. Firstly, given
a regular tree pattern R we define an automaton AR that
recognizes the language of documents containing a trace of
R. Secondly, given the functional dependency fd = (FD, c)
and the class of updates U = (TU ,−→s U ), we combine the
automata AFD and AU built from the regular patterns FD
and U respectively, in order to get another automaton B
recognizing the language of documents satisfying conditions
(ii) of Definition 6. Finally, the automaton A is built as a
product automaton between the automata ASc and B.

Related work

The problem of independence between XML functional de-
pendencies and classes of updates is very close to the one of
independence between XML views and updates, that has al-
ready been studied in different previous works [15, 2, 9]. In
[9] we also used regular tree patterns to define views and up-
dates on XML documents and adopted the same approach
as here to analyze their independence. So our contribution
here is to show how the regular tree pattern formalism, that
is independent from any standard, is well adapted to express
XML functional dependencies and is also useful for discov-
ering cases of independence of XML FDs with respect to
classes of updates as soon as both are expressed with regu-
lar tree patterns.

To our knowledge only the work of [14] has already addressed
the problem of XML functional dependencies verification af-
ter a set of updates. The approach followed in [14] is however
quite different from ours: (a) firstly it uses the source docu-
ment as well as additional information stored from previous



verification passes on the document, (b) secondly the set of
updates is given through a set of positions in the source doc-
ument and finally, (c) the updates to apply are completely
detailed for each selected node.
Therefore when the independence criterion IC is satisfied
our solution is more efficient because it only uses the def-
initions of FDs, of the class of updates and possibly of a
schema: it avoids the whole parsing of the source document
performed in [14] that can be expensive in case of huge doc-
uments.
However when the independence criterion IC is not satisfied,
we can not conclude about an eventual impact of the class of
updates on the functional dependency, while the algorithm
of [14] is more precise and concludes in any case using the
source document, the additional stored information and the
details of the performed updates.
Finally another difference with the work of [14] is our ability
to treat more complex FDs on XML documents thanks to
the use of regular tree patterns.

6. CONCLUSION
In this paper we proposed to express functional dependencies
on XML documents with the regular tree pattern formalism.
We showed how this formalism can federate most of the pre-
vious approaches for XML functional dependency designing
while capturing other kinds of constraints not expressible so
far.

Also we showed that, as soon as classes of updates are spec-
ified with regular tree patterns too, it is possible to define
a sufficient criterion testable in polynomial time that en-
sures the independence of a functional dependency fd with
respect to a class U of updates (possibly in presence of a
schema). However, the problem of independence is in gen-
eral PSPACE-hard. In [10] we showed that the regular tree
pattern formalism can express all queries of the positive frag-
ment of CoreXPath. Our results can thus be applied when
the classes of updates are specified with positive queries of
CoreXPath.

Obviously we are aware that the choice of regular tree pat-
terns to express functional dependencies brings to a class of
XML constraints whose associated axiomatisation and ver-
ification problems remain to be studied but are probably
untractable in general. However we showed that, for some
problems like the one addressed in this paper, efficient algo-
rithms can be designed to detect particular situations where
answers can be found. The PSPACE-hardness of the update-
FD independence does not give an upper bound for its com-
plexity. We conjecture that the problem is in PSPACE but
a precise proof remains to be given.

Finally an implementation of our independence criterion and
an experimental study are of course still missing and remain
to be carried out, particularly in order to estimate how much
time it saves to launch the independence criterion instead of
verifying the functional dependency again.
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