Asymptotic evaluation in a regular language of the number of words of given length with a fixed number of occurrences of a symbol

Alberto Bertoni ${ }^{(*)}$, Christian Choffrut ${ }^{(+)}$, Massimiliano Goldwurm ${ }^{(*)}$, Violetta Lonati ${ }^{(*)}$
${ }^{(*)}$ Università degli Studi di Milano, Dipartimento di Scienze dell'Informazione, via Comelico 39, 20135 Milano, Italy
${ }^{(+)}$Université Paris VII, L.I.A.F.A.,
2 Place Jussieu, 75221 Paris, France

Abstract

Given a regular language $L \subseteq\{a, b\}^{*}$, let $N_{L}^{n}(k)$ be the cardinality of the set $\{w \in L \mid$ $\left.|w|=n,|w|_{a}=k\right\}$ and $d_{L}(n)=\max \left\{N_{L}^{n}(k) \mid k=0,1, \ldots, n\right\}$. Our aim is to give an asymptotic evaluation of $N_{L}^{n}(k)$ and $d_{L}(n)$. In this work we solve the problem for a subclass of regular languages which can be defined as follows.

Consider the minimum deterministic automaton recognizing L having say m states and let A and B be the $m \times m$ transition matrices associated with symbols a and b, respectively. For every integer $h>0$ and every $1 \leq i \leq m$, consider the polynomial in the variable x $$
\left((A x+B)^{h}\right)_{i i}=\eta_{k_{1}} x^{k_{1}}+\cdots+\eta_{k_{\ell}} x^{k_{\ell}}
$$ where $k_{1}<k_{2}<\cdots<k_{\ell}$ and $0<\eta_{k_{j}}$ for every $j=1,2, \ldots, \ell$. If $\ell>1$ we define $M_{L}(h, i)=\operatorname{GCD}\left\{k_{j}-k_{1} \mid j=2, \ldots, \ell\right\}$.

We prove that, if $A+B$ is a primitive matrix and $M_{L}(h, i)=1$ for some integers h and i, then there exist positive constants a, b, c, λ such that: 1. $N_{L}^{n}(k) \approx \frac{c n^{n}}{\sqrt{2 \pi a n}} \cdot e^{-\frac{(k-b n)^{2}}{2 a n}} \quad$ for $n \rightarrow+\infty$, 2. $d_{L}(n)=\Theta\left(\frac{\lambda^{n}}{\sqrt{n}}\right) \quad$ for $n \rightarrow+\infty$.

To obtain this result, we compute the Discrete Fourier Transform of the array ($N_{L}^{n}(0), N_{L}^{n}(1)$, $\left.\ldots, N_{L}^{n}(n)\right)$ giving a suitable approximation based on Perron-Frobenius theory. This method seems to be applicable also to solve the problem for arbitrary regular languages.

