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Abstract. If a context-free language enjoys the local parsability property then,
no matter how the source string is segmented, each segment can be parsed in-
dependently, and an efficient parallel parsing algorithm becomes possible. The
new class of locally chain-parsable languages (LCPL), included in deterministic
context-free languages, is here defined by means of the chain-driven automa-
ton and characterized by decidable properties of grammar derivations. Such au-
tomaton decides to reduce or not a factor in a way purely driven by the terminal
characters, thus extending the well-known concept of Input-Driven (ID) (visibly)
pushdown machines. LCPL extend and improve the practically relevant operator-
precedence languages (Floyd), which are known to strictly include the ID lan-
guages, and for which a parallel-parser generator exists. Consistently with the
classical results for ID, chain-compatible LCPL are closed under reversal and
Boolean operations, and language inclusion is decidable.

1 Introduction

Syntax analysis or parsing of context-free (CF) languages is a mature research area,
and good parsing algorithms are available for the whole CF family and for the deter-
ministic subfamily (DCFL) that is of concern here. Yet the classical parsers are strictly
serial and cannot profit from the parallelism of current computers. An exception is the
parallel deterministic parser [2,3] based on Floyd’s [7] operator-precedence grammars
(OPG) and their languages (OPL), which are included in DCFL. This is a data-parallel
algorithm that is based on a theoretical property of OPG, called local parsability: any
arbitrary factor of a sentence can be deterministically parsed, returning the unique par-
tial syntax-tree whose frontier is the input string.

LL(k) and LR(k) grammars do not have this property, and their parsers must scan
the input left-to-right to build leftmost derivations (or reversed-rightmost ones). On the
contrary, the abstract recognizer of a locally parsable language, called a local parser,
repeatedly looks in some arbitrary position inside the input string for a production right-
hand side (RHS) and reduces it. The local parsability property ensures the correctness
of the syntax tree thus obtained, no matter the position of reduction applications.

The informal idea of local parsability is occasionally mentioned in old research
on parallel parsing, and has been formalized for OPG in [2]. Our first contribution is to
propose the definition of a new and more general class of locally parsable languages: the
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language family to be called Locally Chain-Parsable (LCPL), which gains in generative
capacity and bypasses some inconveniences of OPG.

The other contribution is towards a generalization of the well-known family of
input-driven (alias visibly push-down) languages (IDL) [11,1], which are characterized
by push-down machines that choose to perform a push/pop/stay operation depending on
the alphabetic class (opening/closing/internal) of the current input character, without a
need to check the top of stack symbol. Since the attention IDL have recently attracted
is due to their rich closure and decidability properties, we hope that the introduction of
a larger family of languages with similar properties may be also of interest.

To understand in what sense our LCPL are input-driven, we first recall that IDL
generalize parenthesis languages, by taking the opening/closing characters as parenthe-
ses to be balanced, while the internal characters are handled by a finite-state automaton.
It suffices a little thought to see that IDL have the local parsability property, a fact also
stemming from the fact that IDL are included in OPL [6]. Yet, the rigid alphabetic
3-partition severely reduces their generative capacity. If we allow the parser decision
whether to push, pop, or stay, to be based on a pair of adjacent terminal characters
(more precisely on the precedence relation <, >, = between them), instead of just one
as in the IDL, we obtain the OPL family, which has essentially the same closure and
decidability properties [6,9]. Loosely speaking, we may say that the input that drives
the automaton for OPL is a terminal string of length two.

With the LCPL definition, we move further: the automaton bases its decision whether
to reduce or not a factor (which may contain nonterminals) on the purely terminal string
orderly containing: the preceding terminal, the terminals of the factor, and the following
terminal. Such triplet will be called a chain and the machine a chain-driven automaton.
For a given CF grammar, the length of chains has an upper bound, which bounds the
input portion that drives the choice of a move by the recognizer.

The paper is organized as follows. After the Preliminaries, Sect. 3 introduces the
chain-driven machine as a recognizer for CF. Sect. 4 defines local chain parsability for
chain-driven automata and for grammars, and proves the two notions to be equivalent;
Sect. 4.1 extends the definition of chains and formulates a decidability condition for
local chain parsability based on the absence of conflicts; Sect. 4.2 proves, among oth-
ers, the Boolean closure and decidability properties of LCPL. Sect. 5 establishes the
strict inclusion of OPL (and hence also IDL) within LCPL, and claims through a prac-
tical example that LCPG are more suitable than OPG for specifying real programming
languages. Sect. 6 is on related work and draw some conclusions.

2 Preliminaries

For terms not defined here, we refer to any textbook on formal languages, e.g. [8]. The
terminal alphabet is denoted by 2'; it includes the letter # used as start and end of text.
Let 4 be an alphabet disjoint from 2. A string 8 € (X' U 4)* is in operator form if it
contains one or more terminals and does not contain a factor from 42, i.e., no adjacent
symbols from 4; OF(4) denotes the set of all operator form strings over X' U 4.

A context-free grammar is a 4-tuple G = (Vy, 2, P, S), where Vy is the nonterminal
alphabet, P the set of rules, and S C Vy is the set of axioms. The toral alphabet is
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V = Vy U2X. The stencil of arule A — « is the rule N — o(a), where o : Vy — {N}
maps every nonterminal to the new symbol N ¢ V.

The derivation relation for a grammar G is denoted as usual by = and its reflex-
ive and transitive closure by =*>G, The set of sentential forms (s.f.) generated by G is
SFg ={aeV*|T —%G a, T € S} and the language generated is L(G) = SFg N 2™,
A grammar is invertible if no two rules have identical r.h.s. A grammar is an operator
grammar (OG) if all r.h.s’s are in OF(Vy). Any CF grammar that does not generate &
admits an equivalent OG, which can be assumed to be invertible [8]. Clearly, every s.f.
of an OP grammar is in OF(Vy). In this paper we deal only with reduced OG.

The following naming convention is adopted, unless otherwise specified: lowercase
Latin letters a, b, ... denote terminal characters; uppercase Latin letters A, B, ... de-
note nonterminal characters; lowercase Latin letters x,y,z... denote terminal strings;
and Greek lowercase letters a, . . ., w denote strings over 2’ U Vy.

We use bold symbols to denote strings over an alphabet that includes the square brack-
ets,e.g. x € QU{[L1)", @ € CUVyU{[,1})*. We introduce the following short notation
for frequently used operations based on projections: for erasing all nonterminal sym-
bols in a string @, we write @; for erasing all square brackets, we write @; moreover,
a £ B stands for @ = E and @ = B stands for a@ = E Also, we use @y and aj,g for
taking the first or last symbol in 2 from a string @. The same notation is applied when
Vy is replaced by the state set of a machine.

For a CF grammar G, the associated parenthesis grammar, denoted by [G], is obtained
by bracketing with ‘[* and ‘]” each r.h.s. of a rule of G. A grammar G is structurally
ambiguous if there exists x; # x» € L([G]) such that x| = x;,. Two grammars G, G’ are
structurally equivalent if L([G]) = L([G']).

3 Chain-driven automata

In this section, we present the core formalism of this paper, i.e., the chain-driven au-
tomaton, that can be seen as an abstract parser for CF languages. As stated in the in-
troduction such type of abstract parser is particularly well-suited to exploit parallel
implementation. First we give and illustrate by example the formal definition of chain-
driven automaton, then we prove the equivalence between chain-driven automata and
CF grammars.

The key driver in the search for a string to be reduced is the concept of chain. Ac-
cording with the general philosophy of input-driven languages and other similar fam-
ilies, such as, e.g., OPL, where the parsing actions by the recognizing automata are
determined exclusively on the basis of terminal characters, the chains driving our au-
tomata contain only terminal characters

Definition 1. A chain is a triple a{y)b with a,b € X and y € X2*; (a, b) is the context
and y the body of the chain.

A chain-driven automaton works by reducing the input string through a sequence of
reductions driven by a given set of chains; the automaton finds a given chain within the
input string and replaces its body with a state; then the mechanism is applied recursively
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to the obtained string. Hence during the reduction steps the input string is shortened and
simultaneously enriched by the computed states; chains being defined over the input
alphabet, the portion of the input factor to be reduced is detected depending on input
symbols only; enriching states are used then to (nondeterministically) determine which
state will replace the detected factor.

Definition 2. A chain-driven automaton is a tuple (X, Q, C, 6, F) where

— X is the input alphabet;

— Q is a finite set of states;

— C is a finite set of chains;

6 : 2 X OF(Q) X2 — P(Q) is the reduce function, where 5(a,y,b) # 0 implies

a{y)b € C.
— F C Qs the set of final states.

A configuration of the automaton is a string y € OF(Q). The initial configuration
on input x € 2™ is defined as #x#; a configuration #g# with g € F is called an accepting
configuration. The reduction move is defined as follows: the automaton may perform
the move

a(y)b
aaybf—aagbp

where ¥ = y, and 6(a,y,b) 3 g. Hence, a move of the automaton deletes a factor in
OF(Q) (corresponding to the body of the chain in C, possibly enriched with states in Q)
and replaces it with a state.

A computation of the automaton is a sequence Kj K 1 = K> — K,
where K; are configurations, ¢; are chains. When not relevant we omit the chain and
write simply K| —— K,. We also use —— to denote the reflexive and transitive closure
of ——. The language accepted by the automaton is defined as L(A) = {x € 2* |
#xt —— #q# with ¢ € F).

Example 1. Consider the language of arithmetic expressions on {e, +, *} with the obvi-
ous meaning of symbols. A chain-driven automaton recognizing such expressions can
be defined as follows: C contains chains #{+)#, #(+)+, #()#, #(x)+, +HH, +(x)+,
+(x)*, #(x)*, and all chains a{e)b with a,b € {#, %, +}; O = {qe, g+, ¢}, F = Q, and § is
given in the following table, where the first column collects the contexts (a, b), and the
second row specifies the strings in OF(Q) gathered according to their projection.

| 7= | 7o+ =
qetqe q+%qe|detqe qstde g+tqde et g Gitqs q4+qs| €
(#7#) (#’ +) Q* CI+ q<3
(+7#) (+’ +) (+’ *) (#’ *) CI* ‘Ie
(e, #) (x,%) (x,+) 9e

Here are two accepting computations for e + e * e:
#(e)+ +(e)* w(e)# +(x)# #(+)#
#e+exe# —— #Hq, +exet —— #q,+q.x et —— #q,+q.*qH —— #q.+q.# — #q.H#;

+e)x (e #(e)+ +()# H+)#
#e+exelt —— H#He+ g x et —— H#He+q.xq.H —— #q. +q.*q M —— #q.+q.H# — H#q.#.
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In general, the syntactic structure is not uniquely determined, since different com-
putations may associate different structures with the same accepted string.

As for grammars, we can formalize a notion of structural ambiguity by using paren-
thesis automata.

Definition 3. For a chain-driven automaton A = (X, Q,C, 9, F), the associated paren-
thesis automaton is the chain-driven automaton [A] = (X U{[, 1}, Q,[C], ", F) where
[C] is the set of chains a{[y])b such that a{y)b € C, and &' is defined by setting
&' (a,[y],b) = 6(a,y, b) whenever 6(a,y, b) + 0.

A chain-driven automaton A is structurally ambiguous if L([A]) contains two strings
X1 # X3 such that x1 = x».

For instance, consider a variant of the automaton of Example 1, where the context
(+, #) is moved from the second row to the first, and a new body ¢, + ¢ is added to the
second column. This automaton can perform two structurally different computations for
the input string e + e + e, namely, starting from configuration #q, + g, + q.#:

# #+# . - .
#q. + g + q.# nﬁr #q. + q.H# & #q.#, i.e. where the string is assigned the structure

[[[e] + [e]] + [e]]; and #q, + q. + q.# |+<;># #q. + q# w #q.#, where the structure is
[[e] + [[e] + [e]l].

Definition 4. A chain-driven automaton A = (X, Q,C, 6, F) is reduced if every chain
in C is used in some accepting computation.

W.Lo.g. in what follows we consider only reduced automata.

We are going to see that chain-driven automata recognize CF languages, and can be
seen as parsers for CF grammars: states of the automaton correspond to nonterminals
of the grammar; any string reduced by the automaton corresponds to the r.h.s of some
rule of the grammar, and any state computed by the reduction function corresponds to
the nonterminal at the L.h.s of the same rule.

Definition 5. The chain a{y)b is a grammatical chain associated with G if there exists
a derivation .
#T# ? a aAb ? aaybp N

withy =y, T € S. The set of grammatical chains associated with G is denoted by Cg.
Theorem 1. Chain-driven automata recognize the class of CF languages.

Proof. We prove that the language recognized by any chain-driven automaton can be
generated by a grammar, and vice versa. We first need the concept of labeled transition
system (LTS), which is a triple (S, A, 7) where S is an infinite set of LTS states, A is a
set of labels, and 7 is a set of labelled state transitions (i.e., 7C S X A X §).

Notice that both grammars and chain-driven automata can be seen as LTS. Formally,
a grammar can be seen as the LTS (Vy U OF(Vy), C, <) where the LTS states are all
strings in operator forms, the labels are all chains over 2, and <= is defined by setting
aaybf = aaAbpB where ¢ = a{y)b, A — v is a production of G andy = y. A chain-
driven automaton can be seen as the LTS (OF(Q), C,——) where labels are the chains
that drive the automaton, and —— 1is the relation defined by the reduction moves.
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Let G = (Vy,2, P,S). Define the chain-driven automaton Ag = (&, Q,Cg, 06, F)
where: O = Vy; F = § is the set of axioms; Cg is the set of grammatical chains
associated with G; ¢ is defined by setting B € d(a, y, b) for each production B — 7y such
that a[y]b € Cg. Both G and A define the same LTS, except that for G the set of LTS
states is SF(Vy) whereas for A the LTS states are the configurations of the automaton,
i.e., strings #y# € SF(Vy). In particular, this means that the derivations T = xof G
with T € § are in bijection with the computations #x# —— #T# and this implies that
L(Ag) = L(G).

Conversely, let A = (X, 0, C, 4, F). Define the grammar G4 = (Vy, 2, P, S) where:
Vy =2x0x2S ={#4q,#) | q € F} P is the set of productions (ag,q,an+1) = ¥
where g € d(ag,y, ay+1). Both A and G 4 define the same LTS, except that for A the
LTS states are configurations #qoa qa; . . . a,q,# (any g; may be missing), whereas for
G 4 the LTS states are written in the form (#, g, a;)a (a1, q1,az)a; . . . an—1(ay, g, #). In
particular, this means that computations #x# — #q# of A with g € F are in bijection

with the derivations (#, g, #) = x of G and this implies that L(G #) = L(A). Notice that
Cg =C. O

Traditional general CF parsers proceed always left to right and produce a unique
representation of the syntax trees associated with the input string; our chain-driven au-
tomata, instead, may nondeterministically produce any bottom-up possible traversal of
the grammar’s trees, as it is illustrated by the parser of Example 1 and by its struc-
turally ambiguous modification. Clearly, A is structurally unambiguous iff the equiva-
lent grammar G # defined in the proof of Theorem 1 is structurally unambiguous, and
vice versa.

4 Locally chain-parsable languages

The following definitions formalize our intuitive idea of local parsability.

Definition 6. A local chain parser (LCPA) is a chain-driven automaton such that, for
every chain a{y)b, the following condition holds: if y = vy, then every computation

a ayb B — #qr# with qr € F can be decomposed as a ayb 8 —; ayb 8/ —
o agb — #qr# with suitable o, B, and q.

Definition 7. A grammar is locally chain-parsable (LCPG) if, for every grammatical
chain a{y)b, the following condition holds: if v =y, then each derivation #T# =

aaybB with T € S can be decomposed as #T# = a’aAb B = daybp =
a ayb B. A language L is locally chain-parsable (LCPL) if it is generated by a LCPG.

In other terms, for a grammar to be LCPG, we require what follows: for every y
appearing with terminal context (a, b) at the end of some derivation starting from #7#,
v has to be generated with a single production A — vy and such a production has to be
applied to a string where the nonterminal A already has (a, b) as context.

Theorem 2. A language is LCPL if and only if it is recognized by a LCPA. An LCPA
recognizes any string in linear time.
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Proof. The statement is a consequence of the fact the both constructions in the proof of
Theorem 1 preserve locality properties.

Concerning time complexity, it is well-known that every grammar can be automat-
ically transformed into a structurally equivalent invertible one [8]; thus, if we apply
such a procedure to a locally parsable grammar, the corresponding local parser defined
by Theorem 1 has a deterministic reduction function ¢. It is therefore a simple ex-
ercise to derive a traditional deterministic pushdown automaton from a deterministic
local parser: the former one simply restricts the set of computations of the latter one to
the reverse of the rightmost visit of syntax trees. Thus, LCPL are (strictly) included in
DCFL. O

Example 2. The following grammar G, which generates the same arithmetic expres-
sions recognized by the chain-driven automaton of Example 1, is locally parsable.

E—-E+T|T*xFle F—>e
T—->TxFle S ={E,T,F}

In fact, consider a generic derivation such as #E# = #E +T# = #E+ T + T# =

BE+ T« F+T# = #he + e+ F + e# = #e + ¢ * ¢ + e#. The result of any derivation step
is such that each terminal character is enclosed within a context of a pair of terminals
which univocally determines the stencil of the last step of the derivation that produced
it, independently on the non-terminals involved in the derivation: e.g., every e can only
be produced by a rule with stencil N — e; the only * in the context (+, +) can only be
produced through a rule with stencil N — N = N; the first + is produced by the rule
E — E +T in the context (#, +) but there is no way to produce the second + within any
of the contexts (+, #), (x, #), (*, e), and (e, e), by means of an immediate derivation with
stencil N - N + N.

Thus, a possible bottom up parser can always decide which terminal part of any
r.h.s. to reduce by only inspecting the terminal parts of any sentential form of length 3
plus its context: if it finds the terminal part @ of a rule A — « within a context where G
can generate any 8 with 8 = « through an immediate step of derivation B = g, then it
can reduce the r.h.s to the corresponding 1.h.s. with the certainty that the same @ cannot
be obtained as part of a more complex derivation that does not produce it in a single
step; notice also that the reduction could be fully deterministic if G were invertible.

On the contrary, the following grammar G, generating only additive expressions,
is not locally parsable.

X>FE+X|E+E E—e
Y>Y+E|E+E S ={X,Y}

The grammatical chains associated with G, are #(+)#, #(+)+, #(e)+, +({e)+, +(e)#, and
+(+)#. For instance, chain +(+)# is obtained by applying rule X — E + E in the last
step of the following derivation: #X# SHE+E+X# > H#E+E+E + E#

Now consider the following derivation: #Y# = #Y + E# = #Y + E + E# =
#E + E + E + E#. The factor v = E + E occurs in context (+, #) but it is not reduced in
any step of the derivation. Hence, G, is not locally parsable.
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Informally, a possible parser, after having reduced all es to E, would be confronted
with the sentential form #E + E + E + E# and would not have any indication to decide
whether to apply X — E + E reducing the last +, or ¥ — E + E reducing the first +.

4.1 Extended chains, conflicts and decidability of the LCP property

Both LCPA and LCPG give a unique structure to each string of their respective lan-
guages. To formalize this point, we first introduce the notion of extended chain, that
generalizes Definition 1.

Definition 8. Structured strings are special well-parenthesized strings over X U {[, I},
defined recursively as follows:

— y € X% are atomic structured strings;
— ifa; € Y andy; = € ory; = [v;] for some structured strings v;, then ypay1a . .. @, ¥n
is a composed structured string if at least one y; is different from &.

An extended chain (briefly xchain) is a string #[y# where y is the body of the xchain.

Any grammar or chain-driven automaton determines a set of xchains which have an
important role w.r.t the local parsability property.

Definition 9. Let A be a chain-driven automaton and G a grammar. An xchain #[yl#
is an A-xchain or a G-xchain, respectively, if there exist y such thaty =y and

#y# E #qr# withqr € F or  #T# ﬁ #yl# withT €S.

The sets of A-xchains and G-xchains are denoted respectively by X # and Xg.

Remark 1. 1f G # is the grammar equivalent to the chain-driven automaton A, as defined
in the proof of Theorem 1, then X, = X#; vice versa the chain-driven automaton Ag
equivalent to a grammar G is such that Xz, = X;.

Example 3. Consider grammar G; of Example 2. The sentential form [E + [[e] * [e]]]
is derived by the associated parenthesis grammar [G] with the following derivation
HE# = #[E+ T1# = #[E + [T = FJ# = #[E + [T = [e]]]# = #[E + [[e] * [e]]]#; hence
#[+[[e] = [e]]]# is a G1-xchain. Other G-xchains are #[[+] + [x[e]]1#, #[[[e] = [e]] = [e]]#,
#[+[[*[e]]+]]#. Similarly, let A be the the chain-driven automaton of Example 1; both
computations for the string e + e * e presented in the same example define the xchain
#[[e] + [[e] = [e]]]#. One can easily guess that A-xchains are the same as G;’s ones. No-
tice also that both G| and A are such that, for each string y they can generate/recognize,
there is only one G1/A-xchain y such thaty = y.

The next definition introduces the concept of conflict between an xchain and a chain.
Intuitively, an xchain ¢ conflicts with a chain s = a(y)b if ¢ contains the string ayb but
such occurrence of y does not correspond to the body of a “subchain” of s.

Definition 10. An xchain conflicts with a chain a{y)b iff it can be decomposed as xaybz
wherey = yandy ¢ [*y]*. A set X of xchains and a set C of chains are conflictual iff
there is an xchain in X that conflicts with some chain in C.
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Example 4. The xchain #[+[+[+[+]]]]# conflicts with the chain #(+)+ since the prefix
#[+[+ of the xchain projects onto # + +, but the first occurrence of symbol + in the
xchain is not bracketed; formally, the definition is satisfied with x = ¢, y = [+[, and
z = [+[+]]]]#. Otherwise, #[[[+]+]+]+]# does not conflict with #(+)+ since when #+ +
occurs in the xchain (once, as a prefix), the first occurrence of symbol + is bracketed.

Example 5. By referring again to Example 2, with a little patience it can be verified
that the set of G-xchains does not exhibit any conflict with Cg,, whereas X, and Cg,
are conflictual. We next show that the property of having nonconflictual X and Cg
is decidable for any grammar G (and is supported by an automatic tool.?) Also, G, is
locally parsable, whereas G is not. These remarks leads to the main property stated in
Theorem 4.

Theorem 3. The fact that X and Cg are nonconflictual is decidable for every gram-
mar G; the fact that X 4 and C are nonconflictual is decidable for every automaton A
driven by the set of chains C.

Proof. Let G be (Vy,2,P,S). We first introduce a grammar G’ = (Vy U {T'},2 U
{ILI}, P’,{T’}), such that T* ¢ Vy and

P ={A—>[d]|A > a€P, where @’ = @ or & is obtained from «
by erasing some (or every) nonterminals} U {T" — #[T# | T € S}.

It is easy to see that G’ defines the language of all the G-xchains. For a grammatical
chain ¢, we can define a regular language R(c) = C U{[L1)" -a-~(["-y]")-b-(Z U
{[, 1)* that is the language of all the possible xchains that conflict with c. Clearly, R’ :=
Ueec, R(c) is also a regular language. G is conflictual iff L(G)NR’ # 0; since L(G")NR’
is context-free, its emptiness problem is decidable.

The statement for the automaton follows from Theorem 1 and Remark 1. a

Theorem 4. A chain-driven automaton A is a local parser if and only if X4 and the
set C of chains driving A are not conflictual. A grammar G is locally parsable if and
only if Xg and C¢ are not conflictual.

Theorems 4 and 3 imply the following result.
Corollary 1. The fact that a grammar is LCPG is decidable; the fact that a chain-
driven automaton is LCPA is decidable.
4.2 Basic properties of local chain-parsable languages

LCP grammars and parsers associate a unique structure with each generated/accepted
string x; such a structure is represented by an xchain #[x]# with x = x.

Theorem 5. LCP grammars and parsers are structurally unambiguous.

3 https://github.com/bzoto/chainsaw.
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Proof. Both properties can be proved similarly reasoning by contradiction. Assume that
A is structurally ambiguous; then one can show that X # and the set of chains that drive
A are conflictual. By Theorem 4 this means that A is not LCPA. For grammars the
same results can be proved by using Corollary 1.

Definition 11. Two LCPA A, = (2,0:,C1,61,F1) and A, = (X, Q,,C5,0,, F») are
compatible if Xz, U X, and C| U C; are not conflictual. Two LCPL L\ and L, are
compatible if they are recognized by compatible LCPA.

Theorem 6. Let L be LCPL. Then its reversal LX is LCPL.

Theorem 7. Let A, = (2, 0,,C1,61,F1) and A, = (X, 02, Cr, 82, F7) be compatible
chain-driven automata recognizing respectively Ly and L,. Then L1 U Ly, Ly N Ly, and
L\ L, are LCPL.

Proof. W.l.o.g. we may assume that the set of states O, and O, are disjoint. Let C =
CrU Gy, and Q = (Q1 U {L,ger}) X (Q2 U {L,Gerr}), With L, gerr ¢ O1 U Q. For
each strings y € OF(Q), say ¥ = qoai1qi1a2qz> - - - a,g, with g¢; € Q U {g}, define y; =
poaipi1axps - - - app, Where p; is empty whenever ¢; is empty or has L as first compo-
nent, and p; is the first component of ¢; in the other cases; y; is defined symmetrically.
Then 6(a, y, b) is as follows:
— d(a,y, D) is the set of all pairs (g, g,) with g; € 6(a,y1,b) and g, € d:(a,y2, b), if
both 6;(a, vy, b) and 8;(a, y,, b) are nonempty;
- d(a,y,b) = 0, if both d;(a, y;, b) and 6,(a, y», b) are undefined or empty;
— o(a,v,b) is the set of all pairs (g.,, g2) With g» € 62(a, y2, b), if only 81(a,y1,b) is
undefined or empty, and similarly for the symmetric case.
We remark that independent moves of a LCPA (i.e., moves that reduce non-overlapping
factors of the input string) can be applied in any order. For ¢ € {N, U, \}, the automaton
for L; o Ly is given by (2, O, C, 6, F,,), where: Fn = Fy X Fp, Fy = F1 X (Q2 U {ger ) U
(@1 Y {gerrh) X F2), F\ = F1 X (Q\ F2 U {ger}). a

Corollary 2. The inclusion problem for compatible LCPL is decidable.

5 LCPL versus Operator-Precedence and Input-Driven languages

It is worthwhile to examine the LCPL as an outgrowth of the classical OPL [7], whose
knowledge, both theoretically ([6,9] and for application to parallel parsing [2]), has
much progressed in recent years. OPL is a subfamily of DCFL having the local parsabil-
ity property and characterized by a bottom-up parser that is driven by three binary prece-
dence relations between terminals of the grammar, defined as follows. Let a be a r.h.s.:

— ais equal in precedence to b (a = b), if ab is a factor of @;

— ayields precedence to b (a < b), if b = aj5; and some s.f. contains aa as factor;

— a takes precedence over b (a > b), if a = a1, and some s.f. contains ab as factor.
For a grammar to be an OPG, at most one relation may hold between a pair of terminals.
For instance, the relations for G| in Example 2 are: + > +, + <, + <e, >+, % > %, x <e,
e » +,e > x. The language L3 = {c"d" | n > 0}, generated e.g. by A — cAd | cd,
necessarily has the relations ¢ < ¢, c=d, d > d. Its reversal L3R (generated by the mirror
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grammar) has the symmetric relations ¢ > ¢, d=c, d < d; therefore the language L4 =
L3 U L3R has precedence conflicts such as ¢ < ¢ and ¢ > ¢ and is easily proved not to be
an OPL.

Next, after proving that OPL is strictly contained within LCPL, we argue that the extra
generative capacity of LCPG has practical value.

Theorem 8. The OPL family is strictly contained within the LCPL family. Moreover
every OPG is locally chain-parsable.

Proof. To prove that every OPG G is LCP: the grammatical chains Cg are determined
by the precedence relations of G, as follows: a{c; - - - cx)b € Cg iff a < ¢y, ¢; = ¢iy1 for
every 1 <i<k,and ¢ > b.

Consider now any G’s derivation of type #T# =* aaybB withy = y, a(y)b € Cg;
since for each pair of terminals at most one precedence relation holds, it is necessarily
a < Vsrst, Viast > b and = holds between any pair of consecutive terminals in y. Thus, the
above derivation must be decomposed into #T# =* &’'aAbS’ =" 'aybB =" aaybf:
in fact deriving vy in separate steps (e.g.: #T# =" o&’ay|0 =" o’ay;y.b3 =" aaybp,
with vy, = 7, y1 and ¥, # €) would imply the existence of a < or of a > relation within
v in conflict with the = relation (in this example y11, > Y26irs0)-

The strict inclusion OPL ¢ LCPL is witnessed by the previous language, Ly = {c"d" |
n > 1} U {d"c" | n > 1}, which is recognized by the obviously local automaton driven
by the chains: #{cd)#, #(dc)#, c(cd)d, d{dc)c. O

Useful generative capacity of LCPG. LCPG permit to define relevant syntactic con-
structs beyond the capacity of OPG. As an argument we present a well-known practical
construct: arithmetic expressions containing both unary and binary minus signs, which
notoriously introduce precedence conflicts. To keep the example small, the next gram-
mar features only subtraction and multiplication and e as operand, but other operators
and parentheses would be straightforward to add. E is the only axiom:

E—e|l-e|leX|—-eX|E—e|E——-e|E—-eX|E—-—-eX
X o xe|s—e|*xeX|x—eX

To prove that this grammar has the LCP property, we have used the previously men-
tioned tool. While traditional precedence parsers are forced to use some trick (like di-
versifying the two types of minus in the preceding phase of lexical analysis), our LCPG
permits a pure syntactic approach.

6 Related work and conclusions

In addition to the mentioned relations of our work to the IDL, other classical lines
of research present conceptual analogies to be briefly presented, and have somewhat
inspired our effort. Brevity forces us to limit explanations and citations.

The NTS languages [5] are defined by the nonterminal separation property. They
enjoy the local parsability property in the following sense: if a factor (with terminals and
nonterminals) occurs in a sentence as a constituent, i.e., is generated by a nonterminal
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symbol, then, for every sentence, the same factor can be reduced to the same symbol.
NTS languages, however, are not input-driven, because they rely on the presence of
nonterminals for localizing the position of a reduction.

Moving to another research area, the local parsability property is remindful of
the confluence property of Church-Rosser languages (also called McNaughton lan-
guages): they are defined by string rewriting rules [10,4]. Such systems, under the
length-reducing hypothesis that ensures that the length of reduction chains is not in-
finite, bear some similarity to our approach. But they are more powerful than ours,
because they define also deterministic context-sensitive languages. Moreover, they are
not input-driven in any sense, since the rules contain also nonterminal symbols.

To sum up, to our knowledge, our class of automata and grammars differs from all
existing, somewhat related, models, either, or both, with respect to the local parsability
property and to the input-driven aspects.

This class properly extends the known input-driven classes, preserving important
closure properties, and maintains the decidability of the containment problem. This in-
creased generative power can be exploited to define practical languages and to obtain
efficient parallel parsers, thus extending the algorithm presented in [3] for OPL and
replicating the obtained benefits in terms of time complexity and speed up. Further clo-
sure properties, in particular concatenation and Kleene’s star, are still to be investigated.

The present paper represents a new step in the long term path towards a general
theory of local deterministic parsing.
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