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tPermutominoes are polyominoes de�ned by suitable pairs of permutations. In thispaper we provide a formula to 
ount the number of 
onvex permutominoes of givenperimeter. To this aim we de�ne the transform of a generi
 pair of permutations, we
hara
terize the transform of any pair de�ning a 
onvex permutomino, and we solvethe 
ounting problem in the transformed spa
e.
1 Introdu
tionA polyomino (also known as latti
e animal) is a �nite 
olle
tion of square
ells of equal size arranged with 
oin
ident sides. In this paper we 
onsidera spe
ial 
lass of polyominoes, namely the permutominoes, that we de�ne ina purely geometri
 way. A
tually, the term �permutomino� arises from thefa
t that this obje
t 
an be de�ned by a diagram on the plane representing apair of permutations. Su
h diagrams were introdu
ed in [8℄ as a tool to studyS
hubert varieties and used in [7℄ (where the term �permutaomino� appearedfor the �rst time) and [6℄ in relation to Kazhdan-Lusztig R-polynomials.Counting the number of polyominoes and permutominoes is an interesting
ombinatorial problem, still open in its more general form; yet, for some sub-
lasses of polyominoes, exa
t formulae are known. For instan
e, the numberof 
onvex polyominoes (i.e., whose interse
tion with any verti
al or horizontal
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line is 
onne
ted) of given perimeter has been obtained in [2℄, whereas theenumeration problem for some sub
lasses of 
onvex permutominoes has beensolved in [5℄. In this paper, we provide an expli
it formula for the numberof 
onvex permutominoes of a given perimeter. In
identally, we noti
e thatan equivalent formula has been independently obtained in [4℄, using a totallydi�erent te
hnique based on the ECO method.Our 
ounting te
hnique is based on two basi
 fa
ts. First, the boundary ofevery 
onvex permutomino 
an be de
omposed into four subpaths des
ribing,in this order, a down/rightward, up/rightward, up/leftward, down/leftwardstepwise movement. Se
ond, for ea
h abs
issa (ordinate) there is exa
tly oneverti
al (horizontal) segment in the boundary with that 
oordinate. A
tually,these two 
onstraints hold not only for the boundary of 
onvex permutominoes,but for a larger 
lass of 
ir
uits we 
all admissible: in Se
tion 3 we des
ribeadmissible 
ir
uits and we obtain their number An in Se
tion 5. In Se
tion 4we 
hara
terize admissible 
ir
uits that do not de�ne a permutomino: againwe obtain their number Bn in Se
tion 5. As a 
onsequen
e, we get the numberof 
onvex permutominoes as the di�eren
e An − Bn.2 PreliminariesIn this se
tion, we shall re
all some basi
 de�nitions and properties of poly-ominoes, permutominoes and generating fun
tions.2.1 Polyominoes and permutominoesA 
ell is a 
losed subset of R2 of the form [a, a+1]× [b, b+1], where a, b ∈ Z;we shall identify su
h a 
ell with the pair (a, b). Let us de�ne a binary relation
∼ of adja
en
y between 
ells by letting (a, b) ∼ (a′, b′) if and only if a = a′ and
|b− b′| = 1, or |a− a′| = 1 and b = b′. A subset P of R

2 is a polyomino if andonly if it is a �nite nonempty union of 
ells that is 
onne
ted by adja
en
y,i.e., su
h that if (a, b), (a′, b′) ∈ P then there exist (a1, b1), . . . , (ak, bk) ∈ Psu
h that (a, b) = (a1, b1) ∼ (a2, b2) ∼ · · · ∼ (ak, bk) = (a′, b′). See Figure 1(a) for an example. A polyomino is de�ned up to translations; without loss ofgenerality, we assume that the lowest leftmost vertex of the mininal boundingre
tangle of the polyomino is pla
ed at the point (1, 1).Spe
ial types of polyominoes P are the following:
• P is row-
onvex if and only if (a, b), (a′, b) ∈ P and a ≤ a′′ ≤ a′ imply

(a′′, b) ∈ P ; 2



• P is 
olumn-
onvex if and only if (a, b), (a, b′) ∈ P and b ≤ b′′ ≤ b′ imply
(a, b′′) ∈ P ;

• P is 
onvex if and only if it is both row- and 
olumn-
onvex;
• P is dire
ted if and only if it 
ontains at least one of the 
orner 
ells of itsminimal bounding re
tangle;
• P is parallelogram if and only if it is 
onvex and 
ontains at least a pairof opposite 
orner 
ells of its minimal bounding re
tangle (e.g., both thelower-left and upper-right 
ells).The (topologi
al) border of a polyomino P is a disjoint union of simple 
losed
urves; in parti
ular, if there is only one 
urve, we say that P has no holes:all polyominoes in this work will have no holes. The border is a simple 
losed
urve made of alternating verti
al and horizontal nontrivial segments whoseendpoints (verti
es) have integral 
oordinates; 
onversely, every su
h a 
losed
urve is the border of a polyomino without holes, so we shall freely identifypolyominoes with their borders.We say that P is a permutomino of size n if and only if its minimal boundingre
tangle is a square of size n−1, and the border of P has exa
tly one verti
alsegment of abs
issa z and one horizontal segment of ordinate z, for every
z ∈ {1, . . . , n}. Noti
e that, sin
e 
onvex polyominoes have the same perimeteras their minimal bounding re
tangle, a 
onvex permutomino of size n hasperimeter 4(n − 1).In order to handle polyominoes we introdu
e the following de�nitions. A (step-wise) simple path is a sequen
e P1 = (x1, y1), P ′

1 = (x′
1, y

′
1), P2 = (x2, y2),

P ′
2 = (x′

2, y
′
2) . . . , Pm = (xm, ym), P ′

m = (x′
m, y′

m) of distin
t points with in-teger 
oordinates su
h that, for all i ∈ {1, . . . , m}, xi = x′
i, and y′

i = yi+1if i < m; noti
e that the segments PiP
′
i are verti
al, whereas the segments

P ′
iPi+1 are horizontal. More generaly, a path is a sequen
e of points P1, P ′

1,. . . , Pk, P ′
k su
h that, for some m ≤ k, P1, P ′

1, . . . , Pm, P ′
m is a simple path,and for all i > m, Pi = Pi−m and P ′

i = P ′
i−m. A 
ir
uit is a simple path su
hthat y′

m = y1; when dealing with 
ir
uits, we shall impli
itly assume that thesubs
ripts are treated modulo m; so, for example Pm+1 is just P1. A point isa (self-)
rossing point of a simple path if and only if it is the interse
tion oftwo segments, say PiP
′
i and P ′

jPj+1; we also say that the path has a 
rossingat indi
es (i, j).Clearly, visiting the border of a polyomino P 
ounter-
lo
kwise and start-ing from the highest vertex of the leftmost edge, we identify a 
ir
uit with-out 
rossing points: we 
all it the boundary of P and denote it by P1 =
A, P ′

1, P2, P
′
2, . . . , Pm, P ′

m (see Figure 1 (a)). Noti
e that if P is a permutomino,then m = n.In parti
ular we 
onsider four spe
ial points in the boundary of any polyomino3
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(a) (b) (
)Figure 1. (a) The boundary of a polyomino. (b) The extreme points of a polyomino.(
) The extreme points of a 
onvex polyomino.
P : let A = P1 be the highest vertex of the leftmost edge, B be the leftmostvertex of the lowest edge, C be the lowest vertex of the rightmost edge, Dbe the rightmost of the highest edge (see Figure 1 (b)). Noti
e that, if P is
onvex, then the subsequen
e of verti
es between A and B (B and C, C and
D, D and P ′

m, respe
tively) is a path dire
ted down/rightward (up/rightward,up/leftward, down/leftward, respe
tively); see Figure 1 (
).2.2 Generating fun
tionsThe generating fun
tion f(z) of the sequen
e {an}n is de�ned as [10℄ f(z) =
∑

n anz
n; it is well-known that
zf ′(z) =

∑

n

nanz
n and f(z) · g(z) =

∑

n

(

n
∑

k=0

anbn−k

)

zn,where g(z) =
∑

n bnzn. Some examples of generating fun
tions that we willneed in the following are:
1√

1 − 4z
=
∑

n

(

2n

n

)

zn and 1

1 − 4z
=
∑

n

4nzn.As a 
onsequen
e of the previous fa
ts, we have that
n
∑

k=0

(

2k

k

)(

2(n − k)

n − k

)

= 4n. (1)4



(a) (b) (
)Figure 2. (a) The permutomino of size n = 7 de�ned by σ = (5, 7, 4, 1, 6, 3, 2) and
τ = (4, 5, 1, 2, 7, 6, 3) (squares represent σ, whereas lozenges represent τ). (b) Thepath of σ = (3, 2, 1, 4, 7, 5, 6) and τ = (2, 1, 7, 3, 6, 4, 5), whi
h does not de�ne apermutomino. (
) The path of σ = (3, 2, 1, 4, 6, 5, 7) and τ = (2, 1, 3, 7, 5, 4, 6), whi
hdoes not de�ne a permutomino of size n = 7.3 Permutominoes, permutations, and transformIn this se
tion we illustrate the relationship between the set of permutominoesof size n and the set

Πn = {(σ, τ) | σ, τ ∈ S(n), σ(x) 6= τ(x) for every x, and σ(1) > τ(1)}.Consider a permutomino P of size n and let P1, P
′
1, P2, P

′
2, . . . , Pn, P ′

n be itsboundary. By de�nition, for any z ∈ {1, . . . , n} there is exa
tly one index i su
hthat Pi and P ′
i have abs
issa z and there is exa
tly one index j su
h that P ′

j and
Pj+1 have ordinate z. Thus, a permutomino P of size n uniquely determinesa pair of permutations (σ, τ) ∈ Πn (whi
h we 
all the permutation pair of P ):
σ(x) and τ(x) are de�ned as the respe
tive ordinates of the (unique) points
Pi and P ′

i with abs
issa x. In parti
ular, observe that A = P1 = (1, σ(1)),
B = (τ−1(1), 1), C = (n, σ(n)), D = (τ−1(n), n).Conversely, a pair (σ, τ) ∈ Πn does not always de�ne a permutomino. However,one 
an always 
onsider the set of points (i ∈ {1, . . . , n})

Si = (xi, σ(xi)) and Ti = (xi, τ(xi)),where, for every i < n,
x1 = 1, xi = σ−1(τ(xi−1)),We de�ne the path of (σ, τ) as the path S1, T1, S2, T2, . . . , Sn, Tn. Noti
e thatthis path needs not be simple, as Figure 2 (
) illustrates. However, if the 2npoints are all distin
t, the path is indeed a 
ir
uit with exa
tly one verti
al(and horizontal) segment for every abs
issa (and ordinate), see Figure 2 (a);yet, the 
ir
uit may 
ontain 
rossing points (see Figure 2 (b)).5



Remark 1 A pair of permutations in Πn is the permutation pair of a permu-tomino P if and only if its path has exa
tly 2n distin
t verti
es and has no
rossing points. In this 
ase its path 
oin
ides with the boundary of P , that is
Si = Pi and Ti = P ′

i for every i.We noti
e that this remark is a
tually the de�nition of permutomino as in-trodu
ed in [7℄. Indeed, our de�nition of path of a pair of permutation re
allsthe geometri
 
ontru
tion used in [7℄, even though there are some di�eren
es(for instan
e in the 
ase of Figure 2 (
)).We now introdu
e a map Fn : Πn → Φn where Φn is the set of pairs ofendofun
tions of {1, . . . , n}. For any pair (σ, τ) ∈ Πn we set Fn(σ, τ) = (v, h)where
v(1) = 1, v(i + 1) = σ−1(τ(v(i)))

h(1) = τ(1), h(i + 1) = τ(σ−1(h(i)))for every i ∈ {1, . . . , n − 1}. The pair (v, h) is 
alled the transform of (σ, τ);Figure 3 shows an example of permutomino and the transform (v, h) of itspermutation path (σ, τ). The transform Fn has the following geometri
 inter-pretation: v(i) is the abs
issa of the i-th verti
al edge along the path of (σ, τ),whereas h(i) is the ordinate of the i-th horizontal edge along the same path.Indeed, the following proposition holds:Remark 2 Let (σ, τ) be a pair of permutations, S1, T1, S2, T2, . . . , Sn, Tn beits path and (v, h) = Fn(σ, τ) be its transform. Then one has
Si = (v(i), h(i − 1)) and Ti = (v(i), h(i)) (2)for every i ∈ {1, . . . , n}, where we let h(0) = h(n) for the sake of simpli
ity.Noti
e that the path goes rightwards (resp. leftwards) a

ording to whether

v is in
reasing or de
reasing and goes upwards (resp. downwards) a

ordingto whether h is in
reasing or de
reasing (see Figure 3 for an example). Alsoobserve that the fun
tions v and h need not to be permutations; for instan
ethis is the 
ase for the permutation pair of Figure 2 (
).The transform of the permutation pair of a 
onvex permutomino has spe
ialproperties, that 
an be observed in Figure 3 (right). To illustrate them, weintrodu
e the following de�nition.De�nition 3 The pair (v, h) ∈ Φn is said to be admissible whenever (v, h) ∈
S(n) × S(n) and, setting v∗ = v−1(1), h∗ = h−1(1), v∗ = v−1(n), and h∗ =
h−1(n), one has
• 1 = v∗ ≤ h∗ < v∗ ≤ h∗,
• v is in
reasing in {1, . . . , v∗} and de
reasing in {v∗, . . . , n},6



• h is de
reasing in {1, . . . , h∗}, in
reasing in {h∗, . . . , h
∗}, de
reasing in {h∗, . . . , n},with h(n) > h(1).The set of admissible pairs in Φn shall be denoted by ΦA
n .This de�nition is justi�ed by the following fa
t:Remark 4 Let (σ, τ) ∈ Πn be a pair of permutations. Then Fn(σ, τ) is admis-sible if and only if the path of (σ, τ) is a 
ir
uit that 
an be de
omposed into foursubpaths dire
ted, in this order, down/rightward, up/rightward, up/leftward,down/leftward.The previous proposition leads us to de�ne a 
ir
uit as admissible if it 
anbe de
omposed as in the statement (see, for example, Figure 3 and 4), and tointrodu
e the set

ΠA

n = {(σ, τ) ∈ Πn | the path of (σ, τ) is an admissible 
ir
uit}.Indeed, the previous proposition 
an be extended as follows:Proposition 5 The sets ΠA
n and ΦA

n are in bije
tion via Fn.PROOF. Remark 4 implies that Fn(ΠA
n ) ⊆ ΦA

n ; we need to prove bije
tivity.Given two permutations (v, h) with v(1) = 1, set
σ(x) = h(v−1(x) − 1) and τ(x) = h(v−1(x)).Letting Fn(σ, τ) = (v′, h′), one 
an easily verify that v(i) = v′(i) and h(i) =

h′(i) by indu
tion on i. For uniqueness, it is su�
ient to use the de�nition of
Fn and Remark 2. 2The preimage (σ, τ) ∈ ΠA

n of a (v, h) ∈ ΦA
n is 
alled the antitransform of

(v, h), and the path of (σ, τ) is 
alled the anti
ir
uit of (v, h).In parti
ular, sin
e the boundary of a 
onvex permutomino is an admissible
ir
uit, we obtain:Corollary 6 If (σ, τ) is the permutation pair of a 
onvex permutomino P ,then its transform (v, h) is admissible. Moreover, A = Sv∗ , B = Th∗
, C = Sv∗and D = Th∗.Observe however that, in general, the 
onverse of the previous 
orollary is nottrue, be
ause an admissible 
ir
uit may 
ontain 
rossing points, as shown inFigure 4 (Left). 7



Figure 3. (Left) A 
onvex permutomino P . (Right) The diagram of the transform
(v, h) (
ir
les represent h, whereas 
rosses represent v) of the permutation pair of
P .4 Crossing pointsAt this point, it should be 
lear that, if (σ, τ) ∈ ΠA

n , then either its path is apermutomino or it has 
rossing points. Su
h points 
an ensue only from one ofthe following two 
ases: the up/rightward subpath interse
ts the down/leftwardsubpath (
rossing point of the �rst type, as in Figure 4), or the down/rightwardsubpath interse
ts the up/leftward subpath (
rossing point of the se
ond type,as in Figure 5). A
tually, we will show that the 
rossing points do satisfystronger 
onditions.Lemma 7 Let (v, h) ∈ ΦA
n and P be its anti
ir
uit. Then, the 
rossing pointsof P (if any) are all of the same type.PROOF. Let X be a 
rossing point of �rst type. Then the down/rightwardsubpath of P is all in
luded in the square with verti
es (1, 1) and X; analo-gously, the up/leftward subpath of P is all in
luded in the square with verti
es

X and (n, n). This implies that these subpaths never 
ross ea
h other, so anyother 
rossing point must be of the �rst type. 2Now 
onsider the sequen
e of 
rossing points of P, ordered so that their ab-s
issas are (stri
tly) in
reasing. Clearly, the 
ir
uit P passes through all thesepoints on
e in this order and then again in the reverse order. Noti
e that alsothe ordinates turns out to be ordered: if the 
rossing points are of the �rst(resp. se
ond) type, then they are stri
tly in
reasing (resp. de
reasing).8



v∗ h∗h∗

h(1)
h(n)

Figure 4. (Left) An admissible 
ir
uit whi
h is not a permutomino. (Right) Thediagram of the pair of fun
tions (v, h) 
orresponding to the 
ir
uit (
ir
les represent
h, whereas 
rosses represent v).

Figure 5. The anti
ir
uit of (v, h), whi
h is not a permutomino and has 
rossingpoints of the se
ond type.For the sake of simpli
ity, thanks to Lemma 7, we now fo
us on admissiblepairs whose anti
ir
uit P has only 
rossing points (if any) of the �rst type. Theother 
ase 
an be dealt with by simmetry. Under this hypothesis, the 
rossingpoints of P 
an be 
lassi�ed into two groups, as illustrated in Figure 6.
• A 
rossing point X is UL if it is the interse
tion of an upward segment

SµTµsubpath of P) (where h∗ < µ < v∗) with a leftward segment TλSλ+1P)(where λ > h∗); in this 
ase, X = (v(µ), h(λ)) by Remark 2.9



X = (v(µ), h(λ))

Sµ

Tµ

Sλ+1 Tλ

X = (v(δ), h(ρ))

Sδ

Tδ

Sρ+1Tρ(a) (b)Figure 6. (a) A UL 
rossing point at indi
es (µ, λ); (b) A RD 
rossing point atindi
es (δ, ρ).
• A 
rossing point X is RD if it is the interse
tion of a righward segment

TρSρ+1 (where h∗ < ρ < v∗) with a downward segment SδTδ (where δ > h∗);in this 
ase X = (v(δ), h(ρ)) by Remark 2.It is easy to see that the �rst 
rossing point of P is UL, the last one is RD,whereas the inner ones alternate. In parti
ular this implies that the numberof 
rossing points is always even. Thus, letting X1, X2, . . . , X2k−1, X2k be theordered sequen
e of 
rossing points of P, there exists a sequen
e of indi
es
µ1 ≤ ρ1 < µ2 ≤ ρ2 < · · · < µk ≤ ρk < δk ≤ λk < δk−1 ≤ · · · < δ1 ≤ λ1su
h that, for every i = 1, . . . , k,

X2i−1 = (v(µi), h(λi)) and X2i = (v(δi), h(ρi));note that the 
rossing points with odd indi
es are UL whereas those with evenindi
es are RD. Sin
e the abs
issa �and the ordinates� are in
reasing, wealso have
v(µ1) < v(δ1) < v(µ2) < · · · < v(µk) < v(δk)and
h(λ1) < h(ρ1) < h(λ2) < · · · < h(λk) < h(ρk).A
tually, the points Xj's all lay on the diagonal with endpoints (1, 1) and

(n, n). (On the other hand, if the 
rossing points are of the se
ond type, itturns out that they all lay on the diagonal with endpoints (1, n) and (n, 1).)Indeed, we show that the previous 
hains of inequalities 
oin
ide, that isLemma 8 For every i, v(µi) = h(λi) and v(δi) = h(ρi).PROOF. Consider any UL 
rossing point X2i−1 = (v(µi), h(λi)), and thenew 
ir
uits (that, in general, may themselves 
ontain 
rossing points):
S1, T1, . . . , Sh∗

, Th∗
, . . . , Sµi

, X2i−1, Sλi+1, Tλi+1, . . . , Sn, Tn

X2i−1, Tµi
, Sµi+1, Tµi+1 . . . , Sv∗ , Tv∗ , . . . , Sh∗ , Th∗ , . . . , Sλi

Tλi
.10
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Figure 7. How the 
rossing points split a 
ir
uit into a sequen
e of permutominoes.Observe that, by Corollary 6, the �rst 
ir
uit 
ontains A and B and is in
ludedin the square with verti
es (1, 1) and X2i−1, whereas the se
ond 
ir
uit 
ontains
C and D and is in
luded in the square with verti
es X2i−1 and (n, n). Also,by Remark 2, the se
ond 
ir
uit is the anti
ir
uit of the restri
tions of v and
h to the set {µi, . . . , λi} (up to suitable translations). Hen
e, su
h restri
tionsare bije
tions onto the sets {v(µi), . . . , n} and {h(λi), . . . , n}, respe
tively,and hen
e one gets v(µi) = h(λi). Similarly, any RD 
rossing point X2i =
(v(δi), h(ρi)) splits the 
ir
uit P into two 
ir
uits: the one in
luded in thesquare with endpoints (1, 1) and X2i, and the other in
luded in the squarewith endpoints X2i and (n, n). Thus, one obtains v(δi) = h(ρi) for every
i = 1, . . . , k. 2Hen
e, the 
rossing points split the 
ir
uit P into 2k + 1 new 
ir
uits Pj , for
j = 0, . . . , 2k (see Figure 7). Ea
h of them has no 
rossing point, thus it isthe boundary of a 
onvex polyomino. A
tually, reasoning as above, one 
anprove that ea
h Pj is the boundary of the permutomino whose permutationpair (σj , τj) is de�ned as follows (setting δ0 = 1, µk+1 = v∗, and up to suitabletraslations of domains and 
odomains):
• σ2i is the restri
tion of σ to the domain {v(δi), . . . , v(µi+1)} for every i =

0, 1, . . . , k;
• τ2i is the restri
tion of τ to the domain {v(δi), . . . , v(µi+1)}, ex
ept for

τ0(v(µ1)) = v(µ1), τ2k(v(δk)) = v(δk), τ2i(v(δi)) = v(δi) for every i =
1, 2, . . . , k, and τ2i(v(µi+1)) = v(µi+1), for every i = 0, 1, . . . , k − 1;

• σ2i−1 is the restri
tion of σ to the domain {v(µi), . . . , v(δi)} for every i =11



1, 2 . . . , k, ex
ept for σ2i−1(v(µi)) = v(µi) and σ2i−1(v(δi)) = v(δi);
• τ2i−1 is the restri
tion of τ to the domain {v(µi), . . . , v(δi)} for every i =

1, 2 . . . , k.Intuitively, the pairs (σj, τj) are the restri
tions of (σ, τ) to suitable subin-tervals of {1, . . . , n}, ex
ept for the interval endpoints in 
orresponden
e with
rossing points. permutominoes with boundaries P0 and P2k are both dire
ted-
onvex, while the other ones are parallelograms. So, we have proved the fol-lowing theorem.Theorem 9 Let (v, h) ∈ ΦA
n and P be its anti
ir
uit. Then, either P is theboundary of a 
onvex permutomino, or P has an even number 2k of 
rossingpoints of the same type. In the latter 
ase, either all 
rossing points lay onthe diagonal with endpoint (1, 1) and (n, n), or they all lay on the diagonalwith endpoints (1, n) and (n, 1). Moreover, P determines 2k + 1 new 
ir
uits,ea
h of whi
h is the boundary of a 
onvex permutomino: the 2k − 1 innerpermutominoes are parallelogram, whereas the two outer ones are dire
ted-
onvex.5 Counting 
onvex permutominoesTheorem 9 provides a pre
ise 
hara
terization of the admissible pairs having
rossing points. We will 
all them bad pairs, sin
e they do not de�ne a per-mutomino. Hen
e, in order to 
ount the number Cn of 
onvex permutominoesof size n, we �rst obtain the number An of admissible pairs and then thenumber Bn of the bad ones. Our main result is hen
e given by a subtra
tion

Cn = An − Bn.To this aim, we re
all that in [5℄ the authors su

eeded in giving an expli
itformula for 
ounting the number of some sub
lasses of 
onvex permutominoes;more pre
isely, they proved that the number dn of dire
ted-
onvex permutomi-noes with size n is
dn =

1

2

(

2(n − 1)

n − 1

)

, (3)whereas the number of parallelogram permutominoes of size n equals the (n−
1)-th Catalan number

pn = cn−1 =
1

n

(

2n − 2

n − 1

)

. (4)We start by 
omputing the number of admissible pairs:12



Theorem 10 For every n ≥ 2, the number of admissible pairs is
An =

n−2
∑

s=0

s
∑

t=0

t
∑

u=0

(

n − 2

t

)(

n − 2

u + s − t

)

.PROOF. By the de�nition of admissible pair, we �rst have to 
hoose thevalues h∗, v∗ and h∗ su
h that 1 ≤ h∗ < v∗ ≤ h∗ ≤ n. On
e these values are�xed, take any two subsets of {2, . . . , n− 1}, say V and H , with 
ardinalities
v∗ − 2 and h∗ − h∗ − 1, respe
tively. Let now v be the unique permutationsu
h that v(1) = 1, v(v∗) = n, v({2, . . . , v∗ − 1}) = V , with v in
reasingin su
h an interval, and de
reasing in the remaining interval {v∗ + 1, . . . , n};similarly, let h be the unique permutation su
h that h(h∗) = 1, h(h∗) =
n, h({h∗ + 1, . . . , h∗ − 1}) = H , with h in
reasing in su
h an interval, andde
reasing (
y
li
ally) in the remaining interval {h∗+1, . . . , n}∪{1, . . . , h∗−1}.This is 
learly an admissible pair, and it is uniquely determined by the 
hoi
eof V and H . So, the number of admissible pairs is

An =
∑

1≤h∗<v∗≤h∗≤n

(

n − 2

v∗ − 2

)(

n − 2

h∗ − h∗ − 1

)

.Substituting s = h∗ − 2, t = v∗ − 2 and u = v∗ − h∗ − 1 in the previoussummation, we obtain the result. 2As proved in a separate work [1℄, the previous summation 
an be rewritten toobtain
An = 2n4n−3 − (n − 2)

(

2(n − 2)

n − 2

)

. (5)As shown in the previous se
tion, bad admissible pairs 
an be depi
ted asparti
ular sequen
es of parallelogram and dire
t 
onvex permutominoes. Wepro
eed with two 
ounting lemmata that will lead to an expli
it formula for
Bn in Theorem 13.Lemma 11 For every m ≥ 0, we have

∑

k

∑

t1,...,t2k−1>0

t1+···+t2k−1=m+1

ct1 · · · ct2k−1
=

(

2m

m

)

.PROOF. The Catalan number ct 
ounts the number of trees 1 with 2t edgeswhose internal nodes have exa
tly two 
hildren. So, the left-hand side of theformula 
ounts the number of ordered forests made by an odd number of trees,
1 Here and hen
eforth, by tree we mean ordered rooted tree.13



ea
h being non-trivial and with all internal nodes having two 
hildren exa
tly,where the overall number of edges is 2m + 2.The set F2m+2 of su
h forests is in bije
tion with the set T2m+2 of the treeswith 2m + 2 edges, all internal nodes with exa
tly two 
hildren, and the rootwith 4i + 2 
hildren for some integer i. Indeed, let T1, . . . , T2k−1 be any forestin F2m+2 and 
onsider, for every i, the two subtrees T ′
i and T ′′

i rooted at thetwo 
hildren of the root of Ti. The 
orresponding tree in T2m+2 is obtainedby atta
hing T ′
1, T

′′
1 , . . . , T ′

2k−1, T
′′
2k−1 at a new root. Conversely, every tree in

T2m+2 
an be obtained from a suitable forest in F2m+2. Thus, the result isproved if we show that the 
ardinality of T2m+2 is exa
tly (2m
m

).This follows from the general formula of [3℄, with R = {2, 6, 10, 14, . . .}, N =
{2} and L = {1}, that yields the generating fun
tion T (z) = 1 + z2/

√
1 − 4z2of the sequen
e {|Tm|}. Sin
e G(z) = 1/

√
1 − 4z is the generating fun
tion forthe 
entral binomial 
oe�
ient (2m

m

), we obtain that
T (z) = 1 + z2G(z2) = 1 +

∑

m≥0

(

2m

m

)

z2m+2. 2Lemma 12 For every m ≥ 0, we have
m
∑

s=0

4s

(

2(m − s)

m − s

)

=

(

2m

m

)

(2m + 1).PROOF. We prove that the generating fun
tion for the left-hand side is thesame as the one for the right-hand side. The left-hand side is a 
onvolution,whose generating fun
tion is the produ
t of 1/(1 − 4z) and 1/
√

1 − 4z, i.e.,
(1 − 4z)−3/2. For the right-hand side, noti
e that

∞
∑

m=0

(2m + 1)

(

2m

m

)

zm = 2
∞
∑

m=0

m

(

2m

m

)

zm +
∞
∑

m=0

(

2m

m

)

zm =

= 2z
d

dz

(

1√
1 − 4z

)

+
1√

1 − 4z
= (1 − 4z)−3/2. 2Theorem 13 For every n ≥ 3, the number of admissible pairs that do notde�ne a permutomino is

Bn = (n − 1)

(

2(n − 2)

n − 2

)

− 4n−2.14



PROOF. By Theorem 9, if an admissible pair does not de�ne a permutomino,then it de�nes a sequen
e of 2k + 1 permutominoes P0,P1, . . . ,P2k where
P0 and P2k are dire
t-
onvex and P1, . . . ,P2k−1 are parallelogram. Letting
ni be the size of Pi, we have ∑i ni = n + 2k, sin
e ea
h 
rossing point Xi(i ∈ {1, . . . , 2k}) 
oin
ides with both the upper-rightmost 
orner of Pi−1 andlower-leftmost 
orner of Pi. Hen
e the number of admissible pairs that do notde�ne a permutomino are

Bn = 2 ·
⌊n/2⌋
∑

k=1

∑

n0,...,n2k≥2

n0+···+n2k=n+2k

dn0
pn1

· · · pn2k−1
dn2kwhere dn and pn are the numbers of dire
t-
onvex and parallelogram per-mutominoes of size n, respe
tively. The fa
tor 2 a

ounts for the symmetrybetween 
rossing points of the �rst and se
ond type. Now, set r = n0 − 1,

s = r − 1 + n2k and ti = ni − 1 for every i ∈ {1, . . . , 2k − 1}. Re
allingEquations (3) and (4), we have
Bn = 2 ·

n−2
∑

s=2









⌊n/2⌋
∑

k=1

∑

t1,...,t2k−1≥1

t1+···+t2k−1=n−1−s

ct1 · · · ct2k−1









(

1

4

s−1
∑

r=1

(

2r

r

)(

2(s − r)

s − r

))

.Applying Lemma 11 with m = n − 2 − s and Equation (1) with n = s, weobtain
Bn =

1

2
·

n−2
∑

s=2

(

2(n − s − 2)

n − s − 2

)(

4s − 2

(

2s

s

))

=

=
1

2
·

n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)(

4s − 2

(

2s

s

))

+
1

2

(

2(n − 2)

n − 2

)

=

=
1

2
·

n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)

4s −
n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)(

2s

s

)

+
1

2

(

2(n − 2)

n − 2

)

.Now, applying Lemma 12 with m = n − 2 to the �rst summand, and usingagain Equation (1), we obtain the result. 2From Theorems 10 and 13 and equation (5), we are now able to show the mainresult.Corollary 14 The number of 
onvex permutominoes of size n ≥ 2 is
Cn = An − Bn = 2(n + 2)4n−3 − (2n − 3)

(

2(n − 2)

n − 2

)

15



Table 1The number An of admissible pairs, the number Bn of admissible pairs with 
ross-ings and the number Cn of 
onvex permutominoes of size n.
n 2 3 4 5 6 7 8 9 10
An 1 4 20 100 488 2324 10840 49704 224720
Bn 0 0 2 16 94 488 2372 11072 50294
Cn 1 4 18 84 394 1836 8468 38632 174426The �rst few terms of the sequen
es An, Bn and Cn are given in Table 1.6 Con
lusionsIn this paper we have presented a novel te
hnique to study permutominoes:we de�ned the transform of a pair of permutations that 
an be thought of asa sort of duality. More pre
isely, even though the set of pairs of permutations

(σ, τ) de�ning a 
onvex permutomino is di�
ult to be des
ribed dire
tly, itsimage through the transform Fn 
an be fully 
hara
terized. As a 
onsequen
e,we were able to obtain an expli
it formula for the number Cn of 
onvex permu-tominoes (Corollary 14). We point out that a re
ursive generation te
hnique(namely, the ECO method) has been independently proposed in [4℄, where anequivalent formula 
ounting the number of 
onvex permutominoes has beenfound.We 
on
lude remarking that the generating fun
tion of {Cn}n is algebrai
, asit happens also for unambiguous 
ontext-free languages [9℄. Hen
e, it would beinteresting to investigate if there is a bije
tion ϕ between the 
lass of 
onvexpermutominoes and some natural unambiguous 
ontext-free language, where
ϕ maps permutominoes of size n to words of length n.A
knowledgementsWe would like to thank Simone Rinaldi for introdu
ing us to the problem, andSebastiano Vigna and Alberto Bertoni for some useful dis
ussions.Referen
es[1℄ Alberto Bertoni and Roberto Radi
ioni. A result on some re
urren
e relations
ontaining the minimum fun
tion. Te
hni
al Report 312-07, Dipartimento di16



S
ienze dell'Informazione, Università degli Studi di Milano, 2007.[2℄ Marie-Pierre Delest and Gérard Viennot. Algebrai
 languages and polyominoesenumeration. Theoret. Comput. S
i., 34(1-2):169�206, 1984.[3℄ Emeri
 Deuts
h. Ordered trees with pres
ribed root degrees, node degrees, andbran
h lengths. Dis
rete Math., 282(1-3):89�94, 2004.[4℄ Filippo Disanto, Andrea Frosini, Renzo Pinzani, and Simone Rinaldi. A 
losedformula for the number of 
onvex permutominoes. Ele
tron. J. Combin., 14(1),August 2007.[5℄ Irene Fanti, Andrea Frosini, Elisabetta Grazzini, Renzo Pinzani, and SimoneRinaldi. Polyominoes determined by permutations. In Fourth Colloquiumon Mathemati
s and Computer S
ien
e Algorithms, Trees, Combinatori
s andProbabilities, pages 381�390, 2006.[6℄ Federi
o In
itti. On the 
ombinatorial invarian
e of Kazhdan-Lusztigpolynomials. Journal of Combinatorial Theory, Series A, 113(7):1332�1350,2006.[7℄ Federi
o In
itti. Permutation diagrams, �xed points and Kazhdan-Lusztig R-polynomials. Annals of Combinatori
s, 10:369�387(19), De
ember 2006.[8℄ Christian Kassel, Alain Las
oux, and Christophe Reutenauer. The singular lo
usof a S
hubert variety. J. Algebra, 269(1):74�108, 2003.[9℄ Arto Salomaa and M. Soittola. Automata: Theoreti
 Aspe
ts of Formal PowerSeries. Springer-Verlag New York, In
., Se
au
us, NJ, USA, 1978.[10℄ Robert Sedgewi
k and Philippe Flajolet. An introdu
tion to the analysis ofalgorithms. Addison-Wesley Longman Publishing Co., In
., Boston, MA, USA,1996.

17


