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line is onneted) of given perimeter has been obtained in [2℄, whereas theenumeration problem for some sublasses of onvex permutominoes has beensolved in [5℄. In this paper, we provide an expliit formula for the numberof onvex permutominoes of a given perimeter. Inidentally, we notie thatan equivalent formula has been independently obtained in [4℄, using a totallydi�erent tehnique based on the ECO method.Our ounting tehnique is based on two basi fats. First, the boundary ofevery onvex permutomino an be deomposed into four subpaths desribing,in this order, a down/rightward, up/rightward, up/leftward, down/leftwardstepwise movement. Seond, for eah absissa (ordinate) there is exatly onevertial (horizontal) segment in the boundary with that oordinate. Atually,these two onstraints hold not only for the boundary of onvex permutominoes,but for a larger lass of iruits we all admissible: in Setion 3 we desribeadmissible iruits and we obtain their number An in Setion 5. In Setion 4we haraterize admissible iruits that do not de�ne a permutomino: againwe obtain their number Bn in Setion 5. As a onsequene, we get the numberof onvex permutominoes as the di�erene An − Bn.2 PreliminariesIn this setion, we shall reall some basi de�nitions and properties of poly-ominoes, permutominoes and generating funtions.2.1 Polyominoes and permutominoesA ell is a losed subset of R2 of the form [a, a+1]× [b, b+1], where a, b ∈ Z;we shall identify suh a ell with the pair (a, b). Let us de�ne a binary relation
∼ of adjaeny between ells by letting (a, b) ∼ (a′, b′) if and only if a = a′ and
|b− b′| = 1, or |a− a′| = 1 and b = b′. A subset P of R

2 is a polyomino if andonly if it is a �nite nonempty union of ells that is onneted by adjaeny,i.e., suh that if (a, b), (a′, b′) ∈ P then there exist (a1, b1), . . . , (ak, bk) ∈ Psuh that (a, b) = (a1, b1) ∼ (a2, b2) ∼ · · · ∼ (ak, bk) = (a′, b′). See Figure 1(a) for an example. A polyomino is de�ned up to translations; without loss ofgenerality, we assume that the lowest leftmost vertex of the mininal boundingretangle of the polyomino is plaed at the point (1, 1).Speial types of polyominoes P are the following:
• P is row-onvex if and only if (a, b), (a′, b) ∈ P and a ≤ a′′ ≤ a′ imply

(a′′, b) ∈ P ; 2



• P is olumn-onvex if and only if (a, b), (a, b′) ∈ P and b ≤ b′′ ≤ b′ imply
(a, b′′) ∈ P ;

• P is onvex if and only if it is both row- and olumn-onvex;
• P is direted if and only if it ontains at least one of the orner ells of itsminimal bounding retangle;
• P is parallelogram if and only if it is onvex and ontains at least a pairof opposite orner ells of its minimal bounding retangle (e.g., both thelower-left and upper-right ells).The (topologial) border of a polyomino P is a disjoint union of simple losedurves; in partiular, if there is only one urve, we say that P has no holes:all polyominoes in this work will have no holes. The border is a simple losedurve made of alternating vertial and horizontal nontrivial segments whoseendpoints (verties) have integral oordinates; onversely, every suh a losedurve is the border of a polyomino without holes, so we shall freely identifypolyominoes with their borders.We say that P is a permutomino of size n if and only if its minimal boundingretangle is a square of size n−1, and the border of P has exatly one vertialsegment of absissa z and one horizontal segment of ordinate z, for every
z ∈ {1, . . . , n}. Notie that, sine onvex polyominoes have the same perimeteras their minimal bounding retangle, a onvex permutomino of size n hasperimeter 4(n − 1).In order to handle polyominoes we introdue the following de�nitions. A (step-wise) simple path is a sequene P1 = (x1, y1), P ′

1 = (x′
1, y

′
1), P2 = (x2, y2),

P ′
2 = (x′

2, y
′
2) . . . , Pm = (xm, ym), P ′

m = (x′
m, y′

m) of distint points with in-teger oordinates suh that, for all i ∈ {1, . . . , m}, xi = x′
i, and y′

i = yi+1if i < m; notie that the segments PiP
′
i are vertial, whereas the segments

P ′
iPi+1 are horizontal. More generaly, a path is a sequene of points P1, P ′

1,. . . , Pk, P ′
k suh that, for some m ≤ k, P1, P ′

1, . . . , Pm, P ′
m is a simple path,and for all i > m, Pi = Pi−m and P ′

i = P ′
i−m. A iruit is a simple path suhthat y′

m = y1; when dealing with iruits, we shall impliitly assume that thesubsripts are treated modulo m; so, for example Pm+1 is just P1. A point isa (self-)rossing point of a simple path if and only if it is the intersetion oftwo segments, say PiP
′
i and P ′

jPj+1; we also say that the path has a rossingat indies (i, j).Clearly, visiting the border of a polyomino P ounter-lokwise and start-ing from the highest vertex of the leftmost edge, we identify a iruit with-out rossing points: we all it the boundary of P and denote it by P1 =
A, P ′

1, P2, P
′
2, . . . , Pm, P ′

m (see Figure 1 (a)). Notie that if P is a permutomino,then m = n.In partiular we onsider four speial points in the boundary of any polyomino3
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(a) (b) ()Figure 1. (a) The boundary of a polyomino. (b) The extreme points of a polyomino.() The extreme points of a onvex polyomino.
P : let A = P1 be the highest vertex of the leftmost edge, B be the leftmostvertex of the lowest edge, C be the lowest vertex of the rightmost edge, Dbe the rightmost of the highest edge (see Figure 1 (b)). Notie that, if P isonvex, then the subsequene of verties between A and B (B and C, C and
D, D and P ′

m, respetively) is a path direted down/rightward (up/rightward,up/leftward, down/leftward, respetively); see Figure 1 ().2.2 Generating funtionsThe generating funtion f(z) of the sequene {an}n is de�ned as [10℄ f(z) =
∑

n anz
n; it is well-known that
zf ′(z) =

∑

n

nanz
n and f(z) · g(z) =

∑

n

(

n
∑

k=0

anbn−k

)

zn,where g(z) =
∑

n bnzn. Some examples of generating funtions that we willneed in the following are:
1√

1 − 4z
=
∑

n

(

2n

n

)

zn and 1

1 − 4z
=
∑

n

4nzn.As a onsequene of the previous fats, we have that
n
∑

k=0

(

2k

k

)(

2(n − k)

n − k

)

= 4n. (1)4



(a) (b) ()Figure 2. (a) The permutomino of size n = 7 de�ned by σ = (5, 7, 4, 1, 6, 3, 2) and
τ = (4, 5, 1, 2, 7, 6, 3) (squares represent σ, whereas lozenges represent τ). (b) Thepath of σ = (3, 2, 1, 4, 7, 5, 6) and τ = (2, 1, 7, 3, 6, 4, 5), whih does not de�ne apermutomino. () The path of σ = (3, 2, 1, 4, 6, 5, 7) and τ = (2, 1, 3, 7, 5, 4, 6), whihdoes not de�ne a permutomino of size n = 7.3 Permutominoes, permutations, and transformIn this setion we illustrate the relationship between the set of permutominoesof size n and the set

Πn = {(σ, τ) | σ, τ ∈ S(n), σ(x) 6= τ(x) for every x, and σ(1) > τ(1)}.Consider a permutomino P of size n and let P1, P
′
1, P2, P

′
2, . . . , Pn, P ′

n be itsboundary. By de�nition, for any z ∈ {1, . . . , n} there is exatly one index i suhthat Pi and P ′
i have absissa z and there is exatly one index j suh that P ′

j and
Pj+1 have ordinate z. Thus, a permutomino P of size n uniquely determinesa pair of permutations (σ, τ) ∈ Πn (whih we all the permutation pair of P ):
σ(x) and τ(x) are de�ned as the respetive ordinates of the (unique) points
Pi and P ′

i with absissa x. In partiular, observe that A = P1 = (1, σ(1)),
B = (τ−1(1), 1), C = (n, σ(n)), D = (τ−1(n), n).Conversely, a pair (σ, τ) ∈ Πn does not always de�ne a permutomino. However,one an always onsider the set of points (i ∈ {1, . . . , n})

Si = (xi, σ(xi)) and Ti = (xi, τ(xi)),where, for every i < n,
x1 = 1, xi = σ−1(τ(xi−1)),We de�ne the path of (σ, τ) as the path S1, T1, S2, T2, . . . , Sn, Tn. Notie thatthis path needs not be simple, as Figure 2 () illustrates. However, if the 2npoints are all distint, the path is indeed a iruit with exatly one vertial(and horizontal) segment for every absissa (and ordinate), see Figure 2 (a);yet, the iruit may ontain rossing points (see Figure 2 (b)).5



Remark 1 A pair of permutations in Πn is the permutation pair of a permu-tomino P if and only if its path has exatly 2n distint verties and has norossing points. In this ase its path oinides with the boundary of P , that is
Si = Pi and Ti = P ′

i for every i.We notie that this remark is atually the de�nition of permutomino as in-trodued in [7℄. Indeed, our de�nition of path of a pair of permutation reallsthe geometri ontrution used in [7℄, even though there are some di�erenes(for instane in the ase of Figure 2 ()).We now introdue a map Fn : Πn → Φn where Φn is the set of pairs ofendofuntions of {1, . . . , n}. For any pair (σ, τ) ∈ Πn we set Fn(σ, τ) = (v, h)where
v(1) = 1, v(i + 1) = σ−1(τ(v(i)))

h(1) = τ(1), h(i + 1) = τ(σ−1(h(i)))for every i ∈ {1, . . . , n − 1}. The pair (v, h) is alled the transform of (σ, τ);Figure 3 shows an example of permutomino and the transform (v, h) of itspermutation path (σ, τ). The transform Fn has the following geometri inter-pretation: v(i) is the absissa of the i-th vertial edge along the path of (σ, τ),whereas h(i) is the ordinate of the i-th horizontal edge along the same path.Indeed, the following proposition holds:Remark 2 Let (σ, τ) be a pair of permutations, S1, T1, S2, T2, . . . , Sn, Tn beits path and (v, h) = Fn(σ, τ) be its transform. Then one has
Si = (v(i), h(i − 1)) and Ti = (v(i), h(i)) (2)for every i ∈ {1, . . . , n}, where we let h(0) = h(n) for the sake of simpliity.Notie that the path goes rightwards (resp. leftwards) aording to whether

v is inreasing or dereasing and goes upwards (resp. downwards) aordingto whether h is inreasing or dereasing (see Figure 3 for an example). Alsoobserve that the funtions v and h need not to be permutations; for instanethis is the ase for the permutation pair of Figure 2 ().The transform of the permutation pair of a onvex permutomino has speialproperties, that an be observed in Figure 3 (right). To illustrate them, weintrodue the following de�nition.De�nition 3 The pair (v, h) ∈ Φn is said to be admissible whenever (v, h) ∈
S(n) × S(n) and, setting v∗ = v−1(1), h∗ = h−1(1), v∗ = v−1(n), and h∗ =
h−1(n), one has
• 1 = v∗ ≤ h∗ < v∗ ≤ h∗,
• v is inreasing in {1, . . . , v∗} and dereasing in {v∗, . . . , n},6



• h is dereasing in {1, . . . , h∗}, inreasing in {h∗, . . . , h
∗}, dereasing in {h∗, . . . , n},with h(n) > h(1).The set of admissible pairs in Φn shall be denoted by ΦA
n .This de�nition is justi�ed by the following fat:Remark 4 Let (σ, τ) ∈ Πn be a pair of permutations. Then Fn(σ, τ) is admis-sible if and only if the path of (σ, τ) is a iruit that an be deomposed into foursubpaths direted, in this order, down/rightward, up/rightward, up/leftward,down/leftward.The previous proposition leads us to de�ne a iruit as admissible if it anbe deomposed as in the statement (see, for example, Figure 3 and 4), and tointrodue the set

ΠA

n = {(σ, τ) ∈ Πn | the path of (σ, τ) is an admissible iruit}.Indeed, the previous proposition an be extended as follows:Proposition 5 The sets ΠA
n and ΦA

n are in bijetion via Fn.PROOF. Remark 4 implies that Fn(ΠA
n ) ⊆ ΦA

n ; we need to prove bijetivity.Given two permutations (v, h) with v(1) = 1, set
σ(x) = h(v−1(x) − 1) and τ(x) = h(v−1(x)).Letting Fn(σ, τ) = (v′, h′), one an easily verify that v(i) = v′(i) and h(i) =

h′(i) by indution on i. For uniqueness, it is su�ient to use the de�nition of
Fn and Remark 2. 2The preimage (σ, τ) ∈ ΠA

n of a (v, h) ∈ ΦA
n is alled the antitransform of

(v, h), and the path of (σ, τ) is alled the antiiruit of (v, h).In partiular, sine the boundary of a onvex permutomino is an admissibleiruit, we obtain:Corollary 6 If (σ, τ) is the permutation pair of a onvex permutomino P ,then its transform (v, h) is admissible. Moreover, A = Sv∗ , B = Th∗
, C = Sv∗and D = Th∗.Observe however that, in general, the onverse of the previous orollary is nottrue, beause an admissible iruit may ontain rossing points, as shown inFigure 4 (Left). 7



Figure 3. (Left) A onvex permutomino P . (Right) The diagram of the transform
(v, h) (irles represent h, whereas rosses represent v) of the permutation pair of
P .4 Crossing pointsAt this point, it should be lear that, if (σ, τ) ∈ ΠA

n , then either its path is apermutomino or it has rossing points. Suh points an ensue only from one ofthe following two ases: the up/rightward subpath intersets the down/leftwardsubpath (rossing point of the �rst type, as in Figure 4), or the down/rightwardsubpath intersets the up/leftward subpath (rossing point of the seond type,as in Figure 5). Atually, we will show that the rossing points do satisfystronger onditions.Lemma 7 Let (v, h) ∈ ΦA
n and P be its antiiruit. Then, the rossing pointsof P (if any) are all of the same type.PROOF. Let X be a rossing point of �rst type. Then the down/rightwardsubpath of P is all inluded in the square with verties (1, 1) and X; analo-gously, the up/leftward subpath of P is all inluded in the square with verties

X and (n, n). This implies that these subpaths never ross eah other, so anyother rossing point must be of the �rst type. 2Now onsider the sequene of rossing points of P, ordered so that their ab-sissas are (stritly) inreasing. Clearly, the iruit P passes through all thesepoints one in this order and then again in the reverse order. Notie that alsothe ordinates turns out to be ordered: if the rossing points are of the �rst(resp. seond) type, then they are stritly inreasing (resp. dereasing).8



v∗ h∗h∗

h(1)
h(n)

Figure 4. (Left) An admissible iruit whih is not a permutomino. (Right) Thediagram of the pair of funtions (v, h) orresponding to the iruit (irles represent
h, whereas rosses represent v).

Figure 5. The antiiruit of (v, h), whih is not a permutomino and has rossingpoints of the seond type.For the sake of simpliity, thanks to Lemma 7, we now fous on admissiblepairs whose antiiruit P has only rossing points (if any) of the �rst type. Theother ase an be dealt with by simmetry. Under this hypothesis, the rossingpoints of P an be lassi�ed into two groups, as illustrated in Figure 6.
• A rossing point X is UL if it is the intersetion of an upward segment

SµTµsubpath of P) (where h∗ < µ < v∗) with a leftward segment TλSλ+1P)(where λ > h∗); in this ase, X = (v(µ), h(λ)) by Remark 2.9



X = (v(µ), h(λ))

Sµ

Tµ

Sλ+1 Tλ

X = (v(δ), h(ρ))

Sδ

Tδ

Sρ+1Tρ(a) (b)Figure 6. (a) A UL rossing point at indies (µ, λ); (b) A RD rossing point atindies (δ, ρ).
• A rossing point X is RD if it is the intersetion of a righward segment

TρSρ+1 (where h∗ < ρ < v∗) with a downward segment SδTδ (where δ > h∗);in this ase X = (v(δ), h(ρ)) by Remark 2.It is easy to see that the �rst rossing point of P is UL, the last one is RD,whereas the inner ones alternate. In partiular this implies that the numberof rossing points is always even. Thus, letting X1, X2, . . . , X2k−1, X2k be theordered sequene of rossing points of P, there exists a sequene of indies
µ1 ≤ ρ1 < µ2 ≤ ρ2 < · · · < µk ≤ ρk < δk ≤ λk < δk−1 ≤ · · · < δ1 ≤ λ1suh that, for every i = 1, . . . , k,

X2i−1 = (v(µi), h(λi)) and X2i = (v(δi), h(ρi));note that the rossing points with odd indies are UL whereas those with evenindies are RD. Sine the absissa �and the ordinates� are inreasing, wealso have
v(µ1) < v(δ1) < v(µ2) < · · · < v(µk) < v(δk)and
h(λ1) < h(ρ1) < h(λ2) < · · · < h(λk) < h(ρk).Atually, the points Xj's all lay on the diagonal with endpoints (1, 1) and

(n, n). (On the other hand, if the rossing points are of the seond type, itturns out that they all lay on the diagonal with endpoints (1, n) and (n, 1).)Indeed, we show that the previous hains of inequalities oinide, that isLemma 8 For every i, v(µi) = h(λi) and v(δi) = h(ρi).PROOF. Consider any UL rossing point X2i−1 = (v(µi), h(λi)), and thenew iruits (that, in general, may themselves ontain rossing points):
S1, T1, . . . , Sh∗

, Th∗
, . . . , Sµi

, X2i−1, Sλi+1, Tλi+1, . . . , Sn, Tn

X2i−1, Tµi
, Sµi+1, Tµi+1 . . . , Sv∗ , Tv∗ , . . . , Sh∗ , Th∗ , . . . , Sλi

Tλi
.10



X1

X2

X3

X4

P0

P1

P2

P3

P4

Sµ1

Sρ1+1

Sµ2

Sρ2+1

Sδ2

Sλ2+1

Sδ1

Sλ1+1

Tµ1

Tρ1

Tµ2
= Tρ2

Tδ2
= Tλ2

Tδ1
= Tλ1

Figure 7. How the rossing points split a iruit into a sequene of permutominoes.Observe that, by Corollary 6, the �rst iruit ontains A and B and is inludedin the square with verties (1, 1) and X2i−1, whereas the seond iruit ontains
C and D and is inluded in the square with verties X2i−1 and (n, n). Also,by Remark 2, the seond iruit is the antiiruit of the restritions of v and
h to the set {µi, . . . , λi} (up to suitable translations). Hene, suh restritionsare bijetions onto the sets {v(µi), . . . , n} and {h(λi), . . . , n}, respetively,and hene one gets v(µi) = h(λi). Similarly, any RD rossing point X2i =
(v(δi), h(ρi)) splits the iruit P into two iruits: the one inluded in thesquare with endpoints (1, 1) and X2i, and the other inluded in the squarewith endpoints X2i and (n, n). Thus, one obtains v(δi) = h(ρi) for every
i = 1, . . . , k. 2Hene, the rossing points split the iruit P into 2k + 1 new iruits Pj , for
j = 0, . . . , 2k (see Figure 7). Eah of them has no rossing point, thus it isthe boundary of a onvex polyomino. Atually, reasoning as above, one anprove that eah Pj is the boundary of the permutomino whose permutationpair (σj , τj) is de�ned as follows (setting δ0 = 1, µk+1 = v∗, and up to suitabletraslations of domains and odomains):
• σ2i is the restrition of σ to the domain {v(δi), . . . , v(µi+1)} for every i =

0, 1, . . . , k;
• τ2i is the restrition of τ to the domain {v(δi), . . . , v(µi+1)}, exept for

τ0(v(µ1)) = v(µ1), τ2k(v(δk)) = v(δk), τ2i(v(δi)) = v(δi) for every i =
1, 2, . . . , k, and τ2i(v(µi+1)) = v(µi+1), for every i = 0, 1, . . . , k − 1;

• σ2i−1 is the restrition of σ to the domain {v(µi), . . . , v(δi)} for every i =11



1, 2 . . . , k, exept for σ2i−1(v(µi)) = v(µi) and σ2i−1(v(δi)) = v(δi);
• τ2i−1 is the restrition of τ to the domain {v(µi), . . . , v(δi)} for every i =

1, 2 . . . , k.Intuitively, the pairs (σj, τj) are the restritions of (σ, τ) to suitable subin-tervals of {1, . . . , n}, exept for the interval endpoints in orrespondene withrossing points. permutominoes with boundaries P0 and P2k are both direted-onvex, while the other ones are parallelograms. So, we have proved the fol-lowing theorem.Theorem 9 Let (v, h) ∈ ΦA
n and P be its antiiruit. Then, either P is theboundary of a onvex permutomino, or P has an even number 2k of rossingpoints of the same type. In the latter ase, either all rossing points lay onthe diagonal with endpoint (1, 1) and (n, n), or they all lay on the diagonalwith endpoints (1, n) and (n, 1). Moreover, P determines 2k + 1 new iruits,eah of whih is the boundary of a onvex permutomino: the 2k − 1 innerpermutominoes are parallelogram, whereas the two outer ones are direted-onvex.5 Counting onvex permutominoesTheorem 9 provides a preise haraterization of the admissible pairs havingrossing points. We will all them bad pairs, sine they do not de�ne a per-mutomino. Hene, in order to ount the number Cn of onvex permutominoesof size n, we �rst obtain the number An of admissible pairs and then thenumber Bn of the bad ones. Our main result is hene given by a subtration

Cn = An − Bn.To this aim, we reall that in [5℄ the authors sueeded in giving an expliitformula for ounting the number of some sublasses of onvex permutominoes;more preisely, they proved that the number dn of direted-onvex permutomi-noes with size n is
dn =

1

2

(

2(n − 1)

n − 1

)

, (3)whereas the number of parallelogram permutominoes of size n equals the (n−
1)-th Catalan number

pn = cn−1 =
1

n

(

2n − 2

n − 1

)

. (4)We start by omputing the number of admissible pairs:12



Theorem 10 For every n ≥ 2, the number of admissible pairs is
An =

n−2
∑

s=0

s
∑

t=0

t
∑

u=0

(

n − 2

t

)(

n − 2

u + s − t

)

.PROOF. By the de�nition of admissible pair, we �rst have to hoose thevalues h∗, v∗ and h∗ suh that 1 ≤ h∗ < v∗ ≤ h∗ ≤ n. One these values are�xed, take any two subsets of {2, . . . , n− 1}, say V and H , with ardinalities
v∗ − 2 and h∗ − h∗ − 1, respetively. Let now v be the unique permutationsuh that v(1) = 1, v(v∗) = n, v({2, . . . , v∗ − 1}) = V , with v inreasingin suh an interval, and dereasing in the remaining interval {v∗ + 1, . . . , n};similarly, let h be the unique permutation suh that h(h∗) = 1, h(h∗) =
n, h({h∗ + 1, . . . , h∗ − 1}) = H , with h inreasing in suh an interval, anddereasing (ylially) in the remaining interval {h∗+1, . . . , n}∪{1, . . . , h∗−1}.This is learly an admissible pair, and it is uniquely determined by the hoieof V and H . So, the number of admissible pairs is

An =
∑

1≤h∗<v∗≤h∗≤n

(

n − 2

v∗ − 2

)(

n − 2

h∗ − h∗ − 1

)

.Substituting s = h∗ − 2, t = v∗ − 2 and u = v∗ − h∗ − 1 in the previoussummation, we obtain the result. 2As proved in a separate work [1℄, the previous summation an be rewritten toobtain
An = 2n4n−3 − (n − 2)

(

2(n − 2)

n − 2

)

. (5)As shown in the previous setion, bad admissible pairs an be depited aspartiular sequenes of parallelogram and diret onvex permutominoes. Weproeed with two ounting lemmata that will lead to an expliit formula for
Bn in Theorem 13.Lemma 11 For every m ≥ 0, we have

∑

k

∑

t1,...,t2k−1>0

t1+···+t2k−1=m+1

ct1 · · · ct2k−1
=

(

2m

m

)

.PROOF. The Catalan number ct ounts the number of trees 1 with 2t edgeswhose internal nodes have exatly two hildren. So, the left-hand side of theformula ounts the number of ordered forests made by an odd number of trees,
1 Here and heneforth, by tree we mean ordered rooted tree.13



eah being non-trivial and with all internal nodes having two hildren exatly,where the overall number of edges is 2m + 2.The set F2m+2 of suh forests is in bijetion with the set T2m+2 of the treeswith 2m + 2 edges, all internal nodes with exatly two hildren, and the rootwith 4i + 2 hildren for some integer i. Indeed, let T1, . . . , T2k−1 be any forestin F2m+2 and onsider, for every i, the two subtrees T ′
i and T ′′

i rooted at thetwo hildren of the root of Ti. The orresponding tree in T2m+2 is obtainedby attahing T ′
1, T

′′
1 , . . . , T ′

2k−1, T
′′
2k−1 at a new root. Conversely, every tree in

T2m+2 an be obtained from a suitable forest in F2m+2. Thus, the result isproved if we show that the ardinality of T2m+2 is exatly (2m
m

).This follows from the general formula of [3℄, with R = {2, 6, 10, 14, . . .}, N =
{2} and L = {1}, that yields the generating funtion T (z) = 1 + z2/

√
1 − 4z2of the sequene {|Tm|}. Sine G(z) = 1/

√
1 − 4z is the generating funtion forthe entral binomial oe�ient (2m

m

), we obtain that
T (z) = 1 + z2G(z2) = 1 +

∑

m≥0

(

2m

m

)

z2m+2. 2Lemma 12 For every m ≥ 0, we have
m
∑

s=0

4s

(

2(m − s)

m − s

)

=

(

2m

m

)

(2m + 1).PROOF. We prove that the generating funtion for the left-hand side is thesame as the one for the right-hand side. The left-hand side is a onvolution,whose generating funtion is the produt of 1/(1 − 4z) and 1/
√

1 − 4z, i.e.,
(1 − 4z)−3/2. For the right-hand side, notie that

∞
∑

m=0

(2m + 1)

(

2m

m

)

zm = 2
∞
∑

m=0

m

(

2m

m

)

zm +
∞
∑

m=0

(

2m

m

)

zm =

= 2z
d

dz

(

1√
1 − 4z

)

+
1√

1 − 4z
= (1 − 4z)−3/2. 2Theorem 13 For every n ≥ 3, the number of admissible pairs that do notde�ne a permutomino is

Bn = (n − 1)

(

2(n − 2)

n − 2

)

− 4n−2.14



PROOF. By Theorem 9, if an admissible pair does not de�ne a permutomino,then it de�nes a sequene of 2k + 1 permutominoes P0,P1, . . . ,P2k where
P0 and P2k are diret-onvex and P1, . . . ,P2k−1 are parallelogram. Letting
ni be the size of Pi, we have ∑i ni = n + 2k, sine eah rossing point Xi(i ∈ {1, . . . , 2k}) oinides with both the upper-rightmost orner of Pi−1 andlower-leftmost orner of Pi. Hene the number of admissible pairs that do notde�ne a permutomino are

Bn = 2 ·
⌊n/2⌋
∑

k=1

∑

n0,...,n2k≥2

n0+···+n2k=n+2k

dn0
pn1

· · · pn2k−1
dn2kwhere dn and pn are the numbers of diret-onvex and parallelogram per-mutominoes of size n, respetively. The fator 2 aounts for the symmetrybetween rossing points of the �rst and seond type. Now, set r = n0 − 1,

s = r − 1 + n2k and ti = ni − 1 for every i ∈ {1, . . . , 2k − 1}. ReallingEquations (3) and (4), we have
Bn = 2 ·

n−2
∑

s=2









⌊n/2⌋
∑

k=1

∑

t1,...,t2k−1≥1

t1+···+t2k−1=n−1−s

ct1 · · · ct2k−1









(

1

4

s−1
∑

r=1

(

2r

r

)(

2(s − r)

s − r

))

.Applying Lemma 11 with m = n − 2 − s and Equation (1) with n = s, weobtain
Bn =

1

2
·

n−2
∑

s=2

(

2(n − s − 2)

n − s − 2

)(

4s − 2

(

2s

s

))

=

=
1

2
·

n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)(

4s − 2

(

2s

s

))

+
1

2

(

2(n − 2)

n − 2

)

=

=
1

2
·

n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)

4s −
n−2
∑

s=0

(

2(n − s − 2)

n − s − 2

)(

2s

s

)

+
1

2

(

2(n − 2)

n − 2

)

.Now, applying Lemma 12 with m = n − 2 to the �rst summand, and usingagain Equation (1), we obtain the result. 2From Theorems 10 and 13 and equation (5), we are now able to show the mainresult.Corollary 14 The number of onvex permutominoes of size n ≥ 2 is
Cn = An − Bn = 2(n + 2)4n−3 − (2n − 3)

(

2(n − 2)

n − 2

)

15



Table 1The number An of admissible pairs, the number Bn of admissible pairs with ross-ings and the number Cn of onvex permutominoes of size n.
n 2 3 4 5 6 7 8 9 10
An 1 4 20 100 488 2324 10840 49704 224720
Bn 0 0 2 16 94 488 2372 11072 50294
Cn 1 4 18 84 394 1836 8468 38632 174426The �rst few terms of the sequenes An, Bn and Cn are given in Table 1.6 ConlusionsIn this paper we have presented a novel tehnique to study permutominoes:we de�ned the transform of a pair of permutations that an be thought of asa sort of duality. More preisely, even though the set of pairs of permutations

(σ, τ) de�ning a onvex permutomino is di�ult to be desribed diretly, itsimage through the transform Fn an be fully haraterized. As a onsequene,we were able to obtain an expliit formula for the number Cn of onvex permu-tominoes (Corollary 14). We point out that a reursive generation tehnique(namely, the ECO method) has been independently proposed in [4℄, where anequivalent formula ounting the number of onvex permutominoes has beenfound.We onlude remarking that the generating funtion of {Cn}n is algebrai, asit happens also for unambiguous ontext-free languages [9℄. Hene, it would beinteresting to investigate if there is a bijetion ϕ between the lass of onvexpermutominoes and some natural unambiguous ontext-free language, where
ϕ maps permutominoes of size n to words of length n.AknowledgementsWe would like to thank Simone Rinaldi for introduing us to the problem, andSebastiano Vigna and Alberto Bertoni for some useful disussions.Referenes[1℄ Alberto Bertoni and Roberto Radiioni. A result on some reurrene relationsontaining the minimum funtion. Tehnial Report 312-07, Dipartimento di16



Sienze dell'Informazione, Università degli Studi di Milano, 2007.[2℄ Marie-Pierre Delest and Gérard Viennot. Algebrai languages and polyominoesenumeration. Theoret. Comput. Si., 34(1-2):169�206, 1984.[3℄ Emeri Deutsh. Ordered trees with presribed root degrees, node degrees, andbranh lengths. Disrete Math., 282(1-3):89�94, 2004.[4℄ Filippo Disanto, Andrea Frosini, Renzo Pinzani, and Simone Rinaldi. A losedformula for the number of onvex permutominoes. Eletron. J. Combin., 14(1),August 2007.[5℄ Irene Fanti, Andrea Frosini, Elisabetta Grazzini, Renzo Pinzani, and SimoneRinaldi. Polyominoes determined by permutations. In Fourth Colloquiumon Mathematis and Computer Siene Algorithms, Trees, Combinatoris andProbabilities, pages 381�390, 2006.[6℄ Federio Initti. On the ombinatorial invariane of Kazhdan-Lusztigpolynomials. Journal of Combinatorial Theory, Series A, 113(7):1332�1350,2006.[7℄ Federio Initti. Permutation diagrams, �xed points and Kazhdan-Lusztig R-polynomials. Annals of Combinatoris, 10:369�387(19), Deember 2006.[8℄ Christian Kassel, Alain Lasoux, and Christophe Reutenauer. The singular lousof a Shubert variety. J. Algebra, 269(1):74�108, 2003.[9℄ Arto Salomaa and M. Soittola. Automata: Theoreti Aspets of Formal PowerSeries. Springer-Verlag New York, In., Seauus, NJ, USA, 1978.[10℄ Robert Sedgewik and Philippe Flajolet. An introdution to the analysis ofalgorithms. Addison-Wesley Longman Publishing Co., In., Boston, MA, USA,1996.
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