
Fundamenta Informaticae X (2) 1–20 1

IOS Press

The complexity of unary tiling recognizable picture languages:
nondeterministic and unambiguous cases ∗

Alberto Bertoni

Massimiliano Goldwurm

Violetta Lonati

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Via Comelico 39/41, 20135 Milano – Italy

{bertoni, goldwurm, lonati}@dsi.unimi.it

Abstract. In this paper we consider the classes REC1 and UREC1 of unary picture languages that
are tiling recognizable and unambiguously tiling recognizable, respectively. By representing unary
pictures by quasi-unary strings we characterize REC1 (resp. UREC1) as the class of quasi-unary
languages recognized by nondeterministic (resp. unambiguous) linearly space-bounded one-tape
Turing machines with constraint on the number of head reversals. We apply such a characterization
in two directions. First we prove that the binary string languages encoding tiling recognizable unary
square languages lies between NTIME(2n) and NTIME(4n); by separation results, this implies there
exists a non-tiling recognizable unary square language whose binary representation is a language in
NTIME(4n log n). In the other direction, by means of results on picture languages, we are able to
compare the power of deterministic, unambiguous and nondeterministic one-tape Turing machines
that are linearly space-bounded and have constraint on the number of head reversals.

Keywords: two-dimensional languages, tiling systems, linearly space-bounded Turing machine,
head reversal-bounded computation.

Address for correspondence: M. Goldwurm, Dip. Scienze dell’Informazione, Università degli Studi di Milano, Via Comelico
39/41, 20135 Milano, Italy
∗Partially appeared in Proc. 24th STACS, W. Thomas and P. Pascal eds, LNCS 4393, 381–392, Springer, 2007.

2 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

1. Introduction

Picture languages have been introduced in the literature as two-dimensional extension of traditional string
languages, a picture being a two-dimensional array of elements from a finite alphabet. They have been
originally considered as formal models for image processing in connection with problems of pattern
recognition. Several classical tools and concepts have been used to classify picture languages and study
their properties: regular expressions [10], grammars [16], automata [8], logic formulas [7].

One of the main effort in this area is to capture the notion of recognizability. In particular, various
notions of two-dimensional finite automaton have been proposed and studied in the literature [8, 9]. An
interesting formal model for the recognition of picture languages is given by the so-called tiling systems
introduced in [5], which are based on projection of local properties. A tiling system τ is defined by a
finite set Θ of square pictures of size 2 together with a projection between alphabets. Roughly speaking,
a language is recognized by τ if each of its elements can be obtained as a projection of a picture whose
subpictures of size 2×2 belong to Θ. The class of picture languages recognized by such systems satisfies
relevant properties, which resemble classical properties of regular string languages [6].

A special case is represented by pictures over a one-letter alphabet: in this case only the shape of
the picture is relevant, and hence a unary picture is simply identified by a pair of positive integers. In
this context, a general goal is to define techniques to describe families of recognizable languages, or to
construct examples of non-recognizable languages [6, 9]. For instance, families of tiling-recognizable
unary picture languages are introduced in [6] by means of integer functions or in [2] by means of special
regular expressions, whereas in [9] two-dimensional automata are used to recognize unary languages and
several strategies to explore pictures are presented.

In this work we give a complexity result concerning the unary picture languages recognized by tiling
systems and by unambiguous tiling systems. We characterize these two classes respectively by means
of nondeterministic and unambiguous Turing machines that are space and head reversal-bounded. More
precisely, we introduce a notion of quasi-unary string to represent pairs of positive numbers and we prove
that a unary picture language L is tiling recognizable (unambiguous tiling recognizable, respectively) if
and only if the set of all quasi-unary strings encoding the sizes of the elements of L is recognizable by
a nondeterministic (unambiguous, resp.) one-tape Turing machine that works within max(n,m) space
and executes at most min(n,m) head reversals, on the input representing the pair (n,m).

In particular for the case of squares, this result allows us to relate the recognizability of unary square
pictures to nondeterministic time complexity bounds. Informally, it shows that the complexity of the bi-
nary encodings of tiling recognizable unary square picture languages is located between NTIME(2n) and
NTIME(4n). This yields a large variety of examples of picture languages that are tiling recognizable. For
instance, all binary languages in NP correspond to tiling recognizable (unary square) picture languages.
The same holds for the binary languages that are NEXPTIME-complete [14].

Also, our characterization allows us to use separating results on time complexity classes as a tool
for defining recognizable and non-recognizable unary picture languages. In particular, using a property
proved in [15], we show the existence of a unary square language that is not tiling recognizable, but
corresponds to a binary string language recognizable in nondeterministic time O(4n log n).

Finally, we use properties of unambiguous and nondeterministic unary tiling recognizable picture
languages to separate complexity classes. In particular, we consider the classes DSPACEREVQ,
USPACEREVQ and NSPACEREVQ of quasi-unary languages accepted, respectively, by deterministic,
unambiguous and nondeterministic one-tape Turing machines working in linear space with constraint on

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 3

the number of head reversals. Here, our main result is that the inclusions

DSPACEREVQ ⊂ USPACEREVQ ⊂ NSPACEREVQ

are strict. The second strict inclusion is a consequence of a recent result appeared in [4], while the
first one follows from a sort of iteration lemma for pictures of crossing sequences of Turing machine
computations.

2. Preliminaries on picture languages

Given a finite alphabet Σ, a picture (or two-dimensional string) over Σ is either a two-dimensional array
(i.e., a matrix) of elements of Σ or the empty picture λ. The set of all pictures over Σ is denoted by Σ∗∗;
a picture language (or two-dimensional language) over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, we use rp and cp to denote the number of rows and columns of p, respec-
tively. The pair (rp, cp) is called the size of p. By definition we have rp > 0 and cp > 0, except for the
empty picture λ that has size (0, 0). The symbol in p with coordinates (i, j) is denoted by p(i, j), for
every 1 ≤ i ≤ rp and 1 ≤ j ≤ cp. We say that an element p ∈ Σ∗∗ is a horizontal rectangle, a vertical
rectangle, or a square according whether rp < cp, rp > cp, or rp = cp, respectively. If p is a square, then
the size of p is simply rp. A square language is a picture language containing only square pictures. If the
alphabet Σ is a singleton, then the pictures over Σ∗∗ are called unary pictures. A unary picture language
is a subset of Σ∗∗, where Σ is a singleton.

For any picture p ∈ Σ∗∗ of size (m,n), we use p̂ to denote a new picture of size (m + 2, n + 2)
obtained by surrounding p with a special boundary symbol] 6∈ Σ. Such boundary will be useful when
describing scanning strategies for pictures.

Many operations can be defined between pictures or picture languages. In particular, we recall the
operations of row and column concatenation. Let p and q be pictures over Σ∗∗ of size (rp, cp) and (rq, cq),
respectively. If rp = rq, we define the column concatenation p� q between p and q as the picture of size
(rp, cp + cq) whose i-th row equals the concatenation of the i-th rows of p and q, for every 1 ≤ i ≤ rp. If
cp = cq, we define the row concatenation p�q analogously. Clearly, � and � are partial operations over
the set Σ∗∗. These definitions can be extended to picture languages and then iterated: for every language
L ⊆ Σ∗∗, we set L0� = L0� = {λ}, Li� = L � L(i−1)� and Li� = L � L(i−1)�, for every i ≥ 1.
Thus, one can define the row and column closures as the transitive closures of � and �:

L∗� =
⋃
i≥0

Li� L∗� =
⋃
i≥0

Li�,

which can be seen as a sort of two-dimensional Kleene star. Another useful operation is the so-called
rotation: given p ∈ Σ∗∗, its rotation pR is the picture of size (cp, rp) defined by

pR(i, j) = p(rp + 1− j, i) for every i, j.

Several approaches have been proposed to capture the notion of recognizability of picture languages.
Here we consider the class REC and its definition in terms of tiling systems [5, 6]. First, we recall the
definition of local picture language.

4 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

Definition 2.1. A tile is a square picture of size 2; for every picture p, T (p) denotes the set of all tiles
that are subpictures of p. A picture language L ⊆ Γ∗∗ is called local if there exists a finite set Θ of tiles
over the alphabet Γ ∪ {]} such that L = {p ∈ Γ∗∗ | T (p̂) ⊆ Θ}. In this case we write L = L(Θ).

We also need the notion of projection of pictures and picture languages. Let π : Γ → Σ be a mapping
between two alphabets. Given a picture p ∈ Γ∗∗, the projection of p by π is the picture π(p) ∈ Σ∗∗ such
that π(p) (i, j) = π(p(i, j)) for every pair of coordinates i, j. Analogously, the projection of a language
L ⊆ Γ∗∗ by π is the set π(L) = {π(p) | p ∈ Γ∗∗} ⊆ Σ∗∗.

Definition 2.2. A tiling system is a 4-tuple τ = 〈Σ,Γ,Θ, π〉where Σ and Γ are two finite alphabets, Θ is
a finite set of tiles over the alphabet Γ∪ {]} and π : Γ→ Σ is a projection. A picture language L ⊆ Σ∗∗

is tiling recognizable if there exists a tiling system 〈Σ,Γ,Θ, π〉 such that L = π(L(Θ)). We say that τ
generates L and denote by REC the class of picture languages that are tiling recognizable.

Notice in particular that any local language is tiling recognizable.
The class REC satisfies some remarkable properties. For instance it can be defined as the class

of languages recognized by online tessellation automata, that are special acceptors related to cellular
automata [8]; they can be expressed by formulas of existential monadic second order [7]; they can be
defined by means of regular-like expressions based on certain composition rules between pictures [6]. In
particular we will use the fact that REC is closed with respect to the operations ∪,�,�,∗� ,∗� ,R.

Since we are interested in unary pictures, we denote by REC1 the class of unary picture languages
that are tiling recognizable. Clearly REC1⊆ REC.

Another relevant subclass of REC consists of the tiling recognizable languages whose pictures are
the projection of a unique element in the corresponding local language.

Definition 2.3. A tiling system τ = 〈Σ,Γ,Θ, π〉 is unambiguous if, for every q, q′ ∈ L(Θ), π(q) =
π(q′) implies q = q′. A language L ⊆ Σ∗∗ is unambiguously tiling recognizable if L is generated by
an unambiguous tiling system. The family of all unambiguous tiling recognizable picture languages is
denoted by UREC. Moreover, we define UREC1 as the class REC1∩ UREC.

The unambiguous tiling recognizable picture languages have been introduced in [5]. In particular,
it is known that the inclusion UREC ⊂ REC is strict and that it is undecidable whether a tiling system
is unambiguous [3]. The unary unambiguous languages in REC are also studied in [4], where their
relationship with deterministic classes of recognizable picture languages is investigated and, using results
appeared in [11, 12], it is shown that the inclusion UREC1 ⊂ REC1 is strict.

3. Characterization of REC1 and UREC1

In this section, we state our main result, that is a characterization of the class of unary picture languages
that are tiling recognizable, in terms of computational complexity.

To this aim, consider the alphabet {◦} and notice that any unary picture p ∈ {◦}∗∗ is identified by its
size, that is by the pair (rp, cp). Thus, unary pictures (i.e. pairs of positive integers) can be encoded by
quasi-unary strings as follows. We consider the set of unary strings over {◦}

U = {◦n | n > 0}

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 5

and the following sets of strings that are unary except for one special letter h or v (not occurring in first
position):

Qh = {◦nh ◦k | n > 0, k ≥ 0} ,
Qv = {◦nv ◦k | n > 0, k ≥ 0} .

We call quasi-unary string over the alphabet {◦, h, v} any string in Q = U ∪Qh∪Qv. The length of any
quasi-unary string x is denoted as usual by |x|, whereas we use ◦|x| to denote the length of the longest
prefix of x in ◦+. The use of symbols h and v allows us to distinguish among squares, horizontal and
vertical rectangles. Thus, a quasi-unary string x ∈ Qh represents the unary horizontal rectangle of size
(◦|x|, |x|); x ∈ Qv represents the unary vertical rectangle of size (|x|, ◦|x|); whereas x ∈ U represents
the unary square of size |x|.

Summarizing the previous definitions, the encoding φ from unary pictures to quasi-unary strings can
be stated as follows: for every picture p ∈ {◦}∗∗, we have

φ(p) =

◦rp h ◦cp−rp−1 if rp < cp
◦rp if rp = cp
◦cp v ◦rp−cp−1 if rp > cp

(1)

Notice that |φ(p)| = max(rp, cp), while ◦|φ(p)| = min(rp, cp). Moreover, for every L ⊆ {◦}∗∗, we set
φ(L) = {φ(p) | p ∈ L}.

Note that function φ can be extended to Σ∗∗ for an arbitrary alphabet Σ. Thus φ(p) is defined as in
(1) for every p ∈ Σ∗∗. Clearly if Σ includes more than one element then φ is not an encoding of pictures
in Σ∗∗: for every p ∈ Σ∗∗, φ(p) only represents the shape of p.

Now, let us introduce the complexity classes of quasi-unary languages that we shall use to charac-
terize the class of tiling-recognizable unary languages. Our main model of computation is the one-tape
nondeterministic Turing machine, that we denote by 1t-NTM for short.

Definition 3.1. NSPACEREVQ is the class of quasi-unary string languages that can be recognized by a
1t-NTM working within |x| space and executing at most ◦|x| head reversals, for any input x in Q.

In the previous definition we assume that the first and the last symbol of the input are marked in a special
way so that the machine only scans the cells of tape containing the input. We call this set of cells the
work portion of the tape.

We recall that a 1t-NTM is unambiguous if every input string accepted by the machine admits a
unique accepting computation. We denote such machine by 1t-UTM. Then, we use USPACEREVQ to
denote the class of all quasi-unary string languages that can be recognized by a 1t-UTM working in |x|
space with at most ◦|x| head reversals, for any input x in Q.
Our main theorem can then be stated as follows:

Theorem 3.1. A unary picture language L is in REC1 if and only if φ(L) belongs to NSPACEREVQ.
Moreover, L is in UREC1 if and only if φ(L) belongs to USPACEREVQ.

The proof of Theorem 3.1 is split into two parts presented in Sections 4 and 5, respectively. The first
part shows that L ∈ REC1 and L ∈ UREC1 imply, respectively, φ(L) ∈ NSPACEREVQ and φ(L) ∈
USPACEREVQ. The second part proves the inverse implications.

6 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

t1 =
]]

] a
t2 =

]]

b b′
t3 =

]]

c]

4. From recognizability to complexity bounds

To prove the first part of the main theorem, we show that for every L ∈ REC the quasi-unary string
language φ(L) belongs to NSPACEREVQ. This clearly yields a complexity bound on the shapes of all
tiling recognizable languages. The statement is a consequence of the following result concerning the
recognition of the size encodings of local languages.

Lemma 4.1. Let Θ be a finite set of tiles over an arbitrary alphabet Γ. Then, φ(L(Θ)) belongs to
NSPACEREVQ.

Proof:
We define a 1t-NTM M that, for any input x ∈ Q, nondeterministically tries to generate some p ∈ L(Θ)
such that φ(p) = x. First of all, M establishes if x ∈ Qh, x ∈ Qv, or x ∈ U . This can be done
nondeterministically without head reversals. If x ∈ Qh or x ∈ U , then the generation is performed row
by row, otherwise the generation has to be done column by column. The input is accepted if and only
if such a generating process can be accomplished. We describe the computation in details only when
x ∈ Qh since the other cases are similar.

The working alphabet Γ′ of M contains the symbols ◦, h, v,] 6 [, all the pairs (a, b) ∈ (Γ ∪ {]}) ×
(Γ∪{]}), and their marked versions (a, b) and (ã, b). The symbols (a, b) shall be used in correspondence
with a pair of adjacent symbols in some column of the picture p generated during the computation; the
overlined symbols shall be used as bookmarks at the ◦|x|-th cell, tildes shall be used to implement a
counter.

Given an input x, the machine M behaves as follows:

1. First of all, M reads the tape rightwards till the last input symbol, nondeterministically replacing
each input symbol according to Θ, whenever such a replacement is possible. More precisely:

• the leftmost symbol is replaced by some pair (], a) such that the tile t1 in the figure below
belongs to Θ;

• any next symbol is replaced by some pair (], b) in such a way that, for each pair of consecutive
pairs (], b) and (], b′), the tile t2 in the figure belongs to Θ (the position of the symbol h is
preserved by using overlined pairs);

• the rightmost symbol ◦ is replaced by some pair (], c) such that the tile t3 in the figure belongs
to Θ. At any position, if no replacement is allowed, then M halts and rejects.

2. M changes direction and reads all the work portion of the tape without head reversals, replacing
each symbol (a, b) by (b, c) so that each pair of consecutive symbols do respect Θ (as in point 1).
Such a procedure is repeated (◦|x| − 1)-many times: this task can be performed by using the first
(◦|x|) cells of the tape (those that precede some overlined symbol of Γ′) and marking one cell with

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 7

a tilde at each repetition. Also during this phase, if no replacement is allowed, then M halts and
rejects.

3. After the (◦|x|−1)-th repetition of step 2,M changes direction and reads all the tape again without
head reversals, replacing each symbol (a, b) by (b,]) according to Θ. If no replacement is allowed
then M halts and rejects.

The input x is accepted if and only if the procedure can be concluded, that is, if and only if there exists
a picture p ∈ L(Θ) of size (◦|x|, |x|). Since the machine M works exactly in space |x| and executes
exactly ◦|x| head reversals, the proof is complete. ut

Theorem 4.1. For every L ∈ REC the quasi-unary string language φ(L) belongs to NSPACEREVQ.

Proof:
Let 〈Σ,Γ,Θ, π〉 be a tiling system generating L and let M be the corresponding Turing machine that
recognizes φ(L(Θ)), as defined in the proof of Lemma 4.1. Since for each p ∈ L the word φ(p) forgets
the content of p and only depends on its shape, we have φ(L) = φ(L(Θ)) and hence M just recognizes
the set φ(L). ut

The proof of the first part of Theorem 3.1 is completed by the following

Proposition 4.1. For everyL ∈UREC1, the quasi-unary string language φ(L) belongs to USPACEREVQ.

Proof:
Let 〈{◦},Γ,Θ, π〉 be an unambiguous tiling system generating L. Then, for each x ∈ φ(L), there exists
only one picture q ∈ L(Θ) such that φ(q) = x. Now consider the 1t-NTM M that recognizes φ(L(Θ)):
from the proof of Lemma 4.1 it is clear that the number of accepting computations of M for an input
x ∈ Q equals the number of q ∈ L(Θ) such that φ(q) = x. Therefore, by the previous observation, M
is unambiguous and hence φ(L) = φ(L(Θ)) belongs to USPACEREVQ. ut

Note that the previous property does not hold for general L ∈ UREC, since L may contain two different
pictures with the same shape.

5. From complexity bounds to recognizability

To prove the second part of Theorem 3.1, we first introduce an auxiliary picture language representing
the accepting computations of a 1t-NTM. A similar approach is used in [5] to prove that the emptiness
problem for the family REC is undecidable.

5.1. The accepting-computation picture language of a 1t-NTM

Let M be a 1t-NTM and let Σ and Λ be the input and the working alphabet (Λ contains the blank symbol
6 [). We denote by Q the set of states, which includes the initial state q0 and a unique accepting state
qyes. Also let δ : Q× Λ→ 2Q×Λ×{+,−} be the transition function of M . Without loss of generality, we
assume M can never print the blank symbol 6 [, and hence (q, c, x) ∈ δ(p, a) implies c 6=6 [. However,

8 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

here the machine is not space bounded and it can scan the first blank of the tape: in this case we assume
that such a blank is part of the work portion of the tape.

Then, set ΛQ = {σq | σ ∈ Λ, q ∈ Q}, a configuration of M is a string C = xσqy ∈ Λ∗ΛQΛ∗

which represents the instantaneous description of the machine where xσy is the work portion of the tape,
q is the current state and the head scans the cell containing σ on the right of x. If q = q0 and x is the
empty string, then C is the initial configuration of M on input σy. If q = qyes then C is an accepting
configuration. We assume the machine halts in every accepting configuration.

Given two configurations C and D of M , we write C BD whenever M can go from C to D without
in-between head reversals, possibly by several distinct moves.

Formally, we define an accepting computation1 of M on input x ∈ Σ∗ as a string of the form

W = W1 BW2 B · · ·BWn (2)

such that all Wj’s are configurations of M , W1 is the initial configuration on input x, Wn is an accepting
configuration, WiBWi+1 holds for each i = 1, . . . , n−1, and at configurationWi the machine executes
a head reversal for every 1 < i < n. Thus, from Wi−1 to Wi and from Wi to Wi+1, the head moves to
opposite directions. We say that the sequence of moves from Wi to Wi+1 is a run of the computation,
for any i = 1, . . . , n− 1 (and hence a computation can be seen as a sequence of runs).

Given an accepting computation W , let m = maxi |Wi| and consider the picture of size n × m
containing the string Wi (possibly followed by 6 [’s) on the i-th row, for 1 ≤ i ≤ n. Notice that, from
such a picture, one can recover the input and the sequence of runs but not the complete step-by-step
computation on the same input. Since M can never print the blank, the last row such a picture does not
contain any 6 [(but it may include a symbol of the form 6 [q).

The accepting-computation language of M is defined as the set A(M) of all pictures corresponding
to any accepting computation of M . Note that every accepting computation W of M corresponds to a
picture w ∈ A(M) such that rw − 2 equals the number of head reversals executed in W (corresponding
to W2, · · · ,Wn−1) and cw is the space used in W .

Example 5.1. LetM be a 1t-NTM that has working alphabet {a, b, c}, set of statesQ = {0, 1, 2, 3, 4, 5, y}
and accepting state y. Then, for the input x = abacbcca, consider the sequence of moves represented in
the following table, where (σ′, q′, ∗) ∈ δ(σ, q):

q 0 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0

σ a b a c b c a b c b c a b a a c

q′ 1 4 2 1 4 5 1 4 0 2 3 2 4 2 0 y

σ′ c a c b a b c a b a b b a c b b

∗ + + + + + − − + + + + − − + − −

The picture w associated with such a computation W = W1 BW2 B · · ·BW7 is given by

1Usually, the computation is a description of the sequence of all single moves executed by the machine on a given input. Rather,
here we refer to this concept using the expression step-by-step computation.

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 9

a0 b a c b c c a → W1

c a c b a c4 c a → W2

c a c b1 c b c a → W3

w = c a c a b a b a3 → W4

c a c a b a4 a b → W5

c a c a b c a2 b → W6

c a c a by b b b → W7

Proposition 5.1. The accepting-computation language of any 1t-NTM belongs to REC. Moreover, the
accepting-computation language of any 1t-UTM belongs to UREC.

Proof:
Let L be the accepting-computation language of a 1t-NTM M . We show that L is the projection of a
local language L′. To this aim, for every picture w ∈ L, we define a new picture w′ obtained from w by
changing some symbols, and set L′ = {w′ | w ∈ L}. To build w′ we proceed as follows, recalling that
the i-th row of w corresponds to a configuration Wi defined as in (2), for every i ≥ 1.

• We mark all symbols of ΛQ occurring in w by replacing σq by −→σq when it occurs on odd rows, and
by←−σq when it occurs on even rows, except for the last row where σqyes remains unchanged. Now,
for every i ≥ 1, let ji be the column index such that w(i, ji) is in ΛQ. Then, for each 1 ≤ i < n,
w′(i, ji) contains an arrow denoting the direction of the head during the run from configuration
Wi to configuration Wi+1.

• Then, for each i ≥ 2, we modify the symbols in the i-th row included between the columns of
indices ji−1 and ji. Notice that this is the portion of the tape modified during the run from Wi−1

to Wi. More precisely, we replace each symbol σ ∈ Λ in this portion by qσ, where q ∈ Q is the
state entered by the machine just before printing σ on the tape.

Now, let Γ be the alphabet containing Λ and all symbols qσ,−→σq,←−σq where σ ∈ Λ, q ∈ Q, and consider
the morphism π : Γ → Λ ∪ ΛQ such that π(σ) = π(qσ) = σ and π(−→σq) = π(←−σq) = σq. Clearly, for
every picture w ∈ L, we have w′ ∈ Γ∗∗ and π(w′) = w. Therefore, the result is proved if we provide a
representation by tiles for the picture language L′ = {w′ ∈ Γ∗∗ | w ∈ L}.

The upper left cell of any w′ ∈ L′ contains −→σq0 , where q0 is the initial state and σ ∈ Σ, while all
other cells in the first row are in Σ ∪ {6 [}, thus we have the tiles

]]

] −→aqo

]]

−→aqo b

]]

a b

]]

6 [6 [

]]

b]

for every a ∈ Σ, b ∈ Σ ∪ {6 [}. The last row of any picture in L′ must contain qyes and no 6 [’s; thus we
have to add the tiles

] aqyes

]]

] a

]]

bqyes]

]]

a]

]]

10 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

aqyes b

]]

a bqyes

]]

a b

]]

6 [qyes]

]]

for any a, b,∈ Λ, a, b 6=6 [. Moreover, we have to add some tiles corresponding to the moves of the
machine. For sake of brevity, from now on we use capital letters to denote a symbol or one of its left-
apexed versions, that is A is either the symbol a or pa for some p ∈ Q. Thus, for any rightwards move
(q, b,+) ∈ δ(p, a) such that q 6= qyes, we have the tiles

x −→ap
x b

X A

x −→ap
, (3)

for every x ∈ Λ ∪ {]}, x 6=6 [. Moreover, if the previous move (q, b,+) ∈ δ(p, a) can be followed by a
rightwards move (r, d,+) ∈ δ(q, c) or by a leftwards move (s, f,−) ∈ δ(q, e), we have to add also the
tiles

−→ap C

b qd

A C

pb qd
or

−→ap E

b ←−eq

A E

pb ←−eq
. (4)

For the moves of the form (qyes, b,+) ∈ δ(p, a), that enter the machine in the accepting state, we add
the tiles

−→pa C

b cqyes

A C

pb cqyes

C X

cqyes x

b cqyes

]]

pb cqyes

]]

cqyes x

]]

(5)
for every x ∈ Λ ∪ {]}, x 6=6 [.

Analogously, if the directions of all previous moves are reversed, we have to consider the symmetric
tiles of (3), (4) and (5), that is

←−ap x

b x

A X

←−ap x

C ←−ap
qd b

C A

qd pb
· · ·

where x ∈ Λ ∪ {]}. The last tile above can be distinguished from its symmetric version in (4) by adding
a further mark to symbols representing the direction of the moves (a mark we here avoid to use for sake
of simplicity).

Finally, we have to add the tiles corresponding to the tape portions far from the head, that is the tiles

X Y

x y

A B

]]

where x, y ∈ Λ ∪ {]} and a, b ∈ Λ\{], 6 [}.
The local picture language generated by the set of all tiles defined above is just L′ and this proves

that L ∈ REC.

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 11

Moreover, if M is unambiguous then there is only one picture w′ ∈ L′ corresponding to each input x
accepted by the machine. This means that every picture in L admits a unique covering by the set of tiles
defined above. Formally, for every w ∈ L there is a unique w′ ∈ L′ such that w = π(w′). This shows
that L belongs to UREC. ut

Example 5.2. Consider the 1t-NTM, the sequence of moves and the associated picture w defined in
Example 5.1. When transforming w as described in the proof of Proposition 5.1, we obtain the new
picture

−→a0 b a c b c c a

c 1a 4c 2b 1a ←−c4 c a

c a c
−→
b1

5c b c a

w′ = c a c a 4b 0a 2b ←−a3

c a c a b −→a4
2a b

c a c a b c ←−a2 b

c a c a by
0b b b

Note that in the proof of Proposition 5.1, if M works in space n = |x| for an accepted input x, then
the corresponding picture in L′ has n columns and does not contain 6 [.

5.2. Overlap of picture languages

We now introduce a partial operation on the set of all picture languages (over arbitrary alphabets), that
will be used to fix the size of the accepting-computations of Turing machines studied above. Formally,
given two pictures p and q of the same size (n,m), let p × q be the picture such that (p × q)(i, j) =
(p(i, j), q(i, j)) for every 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, the overlap L1 �L2 of two picture languages
L1 and L2 is defined as

L1 � L2 = {p× q | p ∈ L1, q ∈ L2, rp = rq, cp = cq, p(1, j) = q(1, j) for every 1 ≤ j ≤ cp} (6)

Proposition 5.2. Given two picture languages in REC, their overlap is still in REC. Moreover, the over-
lap of two languages in UREC belongs to UREC.

Proof:
Let L1 and L2 be two picture languages over the alphabets Σ1 and Σ2, respectively, and assume that they
are in REC. Then, for each i ∈ {1, 2}, there exists a tiling system 〈Σi,Γi,Θi, πi〉 recognizing Li. Set

Top(Θi) = {t ∈ Θi | t =
]]

a b
where a, b ∈ Γi ∪ {]}}

12 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

and let Left(Θi), Right(Θi), and Bottom(Θi) be defined analogously. Also, define Inner(Θi) as the set
of tiles of Θi that do not belong to any of the previous set. Now, let Γ = Γ1 × Γ2 and define Θ as the
union of the sets Inner(Θ), Left(Θ), Right(Θ), Bottom(Θ), Top(Θ), where:

Inner(Θ) = {
(a1, a2) (b1, b2)

(c1, c2) (d1, d2)
|

ai bi

ci di

∈ Inner (Θi), i ∈ {1, 2}},

Left(Θ) = {
] (a1, a2)

] (b1, b2)
|

] ai

] bi

∈ Left(Θi), i ∈ {1, 2} },

Bottom(Θ) and Right(Θ) are defined similarly, whereas Top(Θ) is given by

Top(Θ) = {
]]

(a1, a2) (b1, b2)
|

]]

ai bi

∈ Top(Θi), i ∈ {1, 2} and

π1(a1) = π2(a2), π1(b1) = π2(b2)}.

Finally, set π = π1 × π2, that is, for each pair (a1, a2) ∈ Γ, set π(a1, a2) = (π1(a1), π2(a2)). Clearly,
τ = 〈Σ1 × Σ2,Γ,Θ, π〉 is a tiling system recognizing the overlap of L1 and L2. Moreover, if the two
tiling systems are unambiguous then also τ is and this concludes the proof. ut

We are now able to prove the second part of Theorem 3.1.

Theorem 5.1. Let L be a unary picture language such that φ(L) is in NSPACEREVQ. Then L is tiling
recognizable. Further, if φ(L) is in USPACEREVQ then L belongs to UREC1.

Proof:
Since φ(L) is in NSPACEREVQ, it is recognized by a 1-tape nondeterministic Turing machine 1t-NTM
M that works in |x| space for any input x ∈ Q, and executes at most ◦|x| head reversals during each
computation. Thus, the accepting-computation language A(M) of such a Turing machine is in REC, by
Proposition 5.1, and so is the language Ā obtained from A(M) by replacing the symbol ◦q0 by ◦ in the
upper-leftmost cell of each picture in A(M). Such a language can be further extended by adding rows
of blanks to each picture. Thus we can define the language

A′ = Ā�
(
6 [∗�

)∗�
which is also in REC by the properties of � and �.

Now, let us introduce some auxiliary picture languages we shall use to bind the size of pictures inA′.
Let Es be the set of all unary squares over the alphabet {◦} and set

Eh = Es � h∗� � ◦∗∗ and Ev = Es � v∗� � ◦∗∗.

In other words, every p ∈ Es ∪ Eh contains φ(p) on each row, while any p ∈ Ev contains, on each row,
the quasi-unary string φ(pR). Moreover, consider the picture languages

Ls = A′ � Es, Lh = A′ � Eh and Lv = (A′ � Ev)R.

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 13

and set L′ = Ls ∪ Lh ∪ Lv.
By Proposition 5.2, also L′ is tiling recognizable and we now show that L = π(L′), where π is the

obvious projection mapping into ◦ all symbols of the alphabet of L. Indeed, by the previous definition,
we have that any quasi-unary string x representing a picture of π(L′) is an accepted input of M ; hence
x ∈ φ(L), that is x represents a picture in L. Since both L and π(L′) are unary, this implies π(L′) ⊆ L.

On the other hand, assume p ∈ L. First of all, notice that φ(p) is accepted by M , hence there exists
a ∈ Ā having x = φ(p) on the first row and such that ca = max(rp, cp) and ra ≤ min(rp, cp). Let
a′ ∈ A′ be the extension of a that has exactly min(rp, cp) rows, and notice that a′ always is a horizontal
rectangle or a square (i.e. ra′ ≤ ca′). Moreover, consider the picture

up = φ(p)◦|x|	.

Notice that, if p is a horizontal rectangle, then up ∈ Eh; if p is a vertical rectangle, then up ∈ Ev,
otherwise, if p is a square, up ∈ Es. In any case, up has the same size as a′. Hence, if p is a square or a
horizontal rectangle, then we have p = π(a′ � up); otherwise we have p = π

(
(a′ � up)R

)
. In all cases,

p ∈ π(L′) and hence L ⊆ π(L′). Thus, L = π(L′) is in REC1.
Now assume that φ(L) belongs to USPACEREVQ. Then, by Proposition 5.2, we have L′ ∈ UREC

and thus, for every p ∈ L, there is a unique q ∈ L′ such that π(q) = p. This proves that also L belongs
to UREC1. ut

6. Square languages

In this section we focus on unary square languages, that is on unary picture languages whose elements are
all squares. It is clear that square languages are nothing but sets of positive integers, so far represented by
unary strings over the alphabet {◦}. In the following definition we introduce a subclass of NSPACEREVQ
that concerns only square languages and their representation.

Definition 6.1. NSPACEREV1 (USPACEREV1, respectively) is the class of unary string languages that
can be recognized by a 1t-NTM (1t-UTM, resp.) working within n space and executing at most n head
reversals, for any input of length n.

Integers can also be represented by the classical binary encoding and this suggests to define the binary
complexity class corresponding to the previous definition.

Definition 6.2. NSPACEREV2 (USPACEREV2, respectively) is the class of binary string languages that
can be recognized by a 1t-NTM (1t-UTM, resp.) working within 2n space and executing at most 2n head
reversals, for any input of length n.

Notice that the families NSPACEREV1 and NSPACEREV2 are related to the well-known time complexity
classification. In particular, denoting by NTIME1(f(n)) (resp. NTIME2(f(n))) the class of unary (resp.
binary) string languages recognizable by 1t-NTMs working in f(n) time for any input of length n, we
have the following relations:

NTIME1(n) ⊆ NSPACEREV1 ⊆ NTIME1(n2),

NTIME2(2n) ⊆ NSPACEREV2 ⊆ NTIME2(4n). (7)

14 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

As one might guess, the classes NSPACEREV1 and NSPACEREV2 define the same family of integer
sets, the only difference being their integer representation. To prove this relationship we first show a
speed-up property of the number of head reversals that holds for linear space bounded 1t-NTMs.

Lemma 6.1. For every c > 1 and every language L recognized by a 1t-NTM M working in n space
within n head reversals, there exists a n-space bounded 1t-NTM M ′ recognizing L within n/c head
reversals.

Proof:
We prove the statement only for c = 2 and, without loss of generality, we assume that any head reversal
of M only occurs at either the first or the last cell of the work portion of the tape. Thus, a computation
of M is a sequence of runs as defined in Section 5.1 where, however, in each run the tape head scans all
the work portion from one border cell to the other.

We show how a computation of M for an input of length n can be simulated by a machine M ′ with
n/2 head reversals, considering only the case where n and n/2 are even (the other cases are treated
similarly). Thus, in the first and in the n/2 + 1-th run of M the head moves rightwards. We can design
M ′ as a 1t-NTM with the tape split in 4 tracks. First, on track 1 M ′ simulates M starting from the initial
configuration while, on track 2, in the first run it guesses nondeterministically a configuration α of M
and keeps it in the subsequent runs. Simultaneously, on track 3M ′ simulatesM starting just from α and,
on track 4, it marks 2 cells at each run. Thus, after n/2 head reversals the whole track 4 is marked and
then M ′ accepts if and only if the state entered in track 3 is accepting and configuration α kept in track
2 equals the configuration reached in track 1. Note that the number of accepting computations of M and
M ′ (for the same input) are equal.

The case c > 2 (or with odd n or n/2) are treated by possibly increasing the number of tracks. ut

The correspondence between NSPACEREV1 and NSPACEREV2 is formally described by the follow-
ing proposition. Here, we denote by Bin(n) the binary encoding of a positive integer n.

Proposition 6.1. A unary language L is in NSPACEREV1 (in USPACEREV1, respectively) if and only if
the set {Bin(n) | 1n ∈ L} is in NSPACEREV2 (in USPACEREV2, resp.).

Proof:
We prove the statement only in the first direction (the other is similar). Let M be a 1t-NTM accepting L
in n space with n head reversals and define L′ = {Bin(n) | 1n ∈ L}. Then, a 1t-NTM accepting L′ can
be designed which works in two phases. First, for an input x ∈ {0, 1}+, the unary string 1n is computed
such that x = Bin(n). Then, the machine simulates M on input 1n and yields the same output. These
phases can be carried out in 2|x| space by 2|x|+1 head reversals. However, the number head reversals can
be halved by Lemma 6.1. ut

Now, applying the proposition above, Theorem 3.1 can be re-stated using these new classes and we
get the following corollary.

Corollary 6.1. Given a unary square language L, the following statements are equivalent:
1. L is in REC1,
2. {◦rp | p ∈ L} ∈ NSPACEREV1,

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 15

3. {Bin(rp) | p ∈ L} ∈ NSPACEREV2,
Moreover, an analogous statement holds in the unambiguous case. That is, for every unary square lan-
guage L, the following properties are equivalent:

1a. L is in UREC1,
2a. {◦rp | p ∈ L} ∈ USPACEREV1,
3a. {Bin(rp) | p ∈ L} ∈ USPACEREV2.

The previous corollary provides a useful tool to verify whether a unary square language is tiling
recognizable. For instance, it is well-known that the set of prime numbers is recognizable in polynomial
time[1] and hence by the previous corollary we get the following

Proposition 6.2. The set of unary square pictures whose size is a prime number is in UREC1.

More generally, if Lπ is a binary NP language, then the picture language

{p ∈ ◦∗∗ | rp = cp , ∃x ∈ Lπ such that Bin(rp) = 1x}

belongs to REC1.

6.1. A tiling recognizable language from an exponential time complete problem

In this subsection we describe an example of tiling recognizable unary square language that corresponds
to a decision problem complete in the class

NEXPTIME =
⋃
c≥1

NTIME2(2cn)

and hence not included in NP by well-known separation results [15]. This is the inequality problem of
regular expressions with squaring INEQ(RE,2), studied by Meyer and Stockmeyer in the framework of
the complexity analysis of word problems requiring exponential time [13, 14]. A rather natural binary
encoding of INEQ(RE,2) is solvable in NTIME2(2n) and hence the corresponding family of unary square
pictures is tiling recognizable. For sake of completeness, we present the construction in detail even if it
can be derived by standard arguments from results and material given in [14].

Let us denote by RE(0, 1, ·,∪,2) the family of regular expressions with squaring over the alphabet
{0, 1}. Formally, this is defined by stating that 0, 1 and ε belong to RE(0, 1, ·,∪,2) and, for every
e1, e2 ∈ RE(0, 1, ·,∪,2), also the expressions (e1 ∪ e2), (e1 · e2), (e1)2 are in RE(0, 1, ·,∪,2). Clearly,
every e ∈ RE(0, 1, ·,∪,2) represents a finite language L(e) ⊆ {0, 1}∗ defined in the obvious way.
Moreover, we say that two expressions e, f ∈ RE(0, 1, ·,∪,2) are equivalent if L(e) = L(f). The
decision problem INEQ(RE,2) consists of determining, on input e, f ∈ RE(0, 1, ·,∪,2), whether e and f
are not equivalent. It is well-known that such a problem is log-space complete for the class NEXPTIME

[14] and hence it does not lie in NP.

Proposition 6.3. The problem INEQ(RE,2) is solvable by a 1t-NTM in O(2n(4
3

+ε)) time and O(2n(1
3

+ε))
space (for any ε > 0).

16 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

Proof (outline). Reasoning as in [14] one can design an algorithm that, on input e, f ∈ RE(0, 1, ·,∪,2),
first determines two nondeterministic finite state automata Ae, Af recognizing L(e) and L(f), respec-
tively. This can be done by eliminating the squaring from both e and f , which leads to a possible
exponential increase of the size of the expressions. Then, the procedure nondeterministically generates
a word x ∈ {0, 1}∗ of length at most 2max{|e|,|f |} and deterministically checks whether x is accepted by
one of the automata and rejected by the other: if this is the case the algorithm accepts the input, otherwise
it rejects. The complexity bounds follow from standard Turing machine constructions; in particular, we
recall that every multitape TM working in O(t(n)) time and O(s(n)) space can be simulated by a single
tape TM in time O(t(n)s(n)). �

Now, given the alphabet Σ = {0, 1, ε, (,), ·,∪, 2,#}, consider a standard encoding cod : Σ −→
{0, 1} associating each symbol of Σ with a string of at least 2 digits. Then, define the language I ⊆
{0, 1}∗ of all strings y such that y = cod(e#f) for some e, f ∈ RE(0, 1, ·,∪,2) and L(e) 6= L(f).
Since |y| ≥ 2 max{|e|, |f |}, by Proposition 6.3 we obtain the following

Proposition 6.4. The language I is recognizable by a 1t-NTM in O(2n(2
3

+ε)) time and O(2n(1
6

+ε)) space
(for any ε > 0).

As a consequence I belongs to NTIME2(2n) and setting

T = {p ∈ ◦∗∗ | rp = cp = 1x for a string x ∈ I}

we have that T is in REC1.

6.2. Nonrecognizable picture languages

Another consequence of Corollary 6.1 concerns the construction of unary square languages that are not
tiling recognizable. For instance one can prove the existence of a unary square language that is not tiling
recognizable, but such that the set of binary encoding of its sizes is not too far (from a complexity view
point) from the class NSPACEREV2. In order to present such an example, for any function f : N →
R+, let us define 2t-NTIME2(f) as the class of binary string languages that are recognizable by 2-tape
nondeterministic Turing machines working within time f(n) on every input of length n.

Proposition 6.5. There exists a unary square picture language L 6∈ REC1 such that the string language
S = {x ∈ {0, 1}∗ | 1x = Bin(rp) for a picture p ∈ L} belongs to 2t-NTIME2(4n log n).

Proof:
The existence of such language is guaranteed by a result proved in [15]. If T1, T2 : N → R+ are two
running-time functions such that T1(n + 1)/T2(n) tends to 0 as n goes to infinity, then there exists a
language S ⊆ {0, 1}∗ that belongs to 2t-NTIME2(T2(n)) but does not belong to 2t-NTIME2(T1(n)).
Setting T1(n) = 4n, T2(n) = 4n log n, and observing that 2t-NTIME2(4n) ⊇ NSPACEREV2, by Theo-
rem 3.1 we have that S is in 2t-NTIME2(4n log n) whereas L cannot be tiling recognizable. ut

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 17

7. Separation results

In the previous section we have shown how properties of complexity classes can be used to determine
examples and results concerning the recognizability of picture languages. Here we use our main re-
sult in the opposite direction, showing properties of the class NSPACEREVQ obtained by studying the
corresponding family REC1.

A first result concerns the separation between the classes NSPACEREVQ and USPACEREVQ.

Theorem 7.1. The class USPACEREVQ is strictly included in NSPACEREVQ.

This property is an immediate consequence of a separation result obtained in [4], where it is proved that
there exists a picture language L in REC1 that does not lie in UREC1. Indeed, by Theorem 3.1, this
implies that the encoding φ(L) belongs to NSPACEREVQ\USPACEREVQ.

A further natural subclass of NSPACEREVQ is defined by considering deterministic Turing machine.
In accordance with our previous notation, let 1t-DTM stand for one-tape deterministic Turing machine.
Then we denote by DSPACEREVQ the class of quasi-unary string languages accepted by a 1t-DTM
working within |x| space and executing at most ◦|x| head reversals, for every input x in Q. Clearly such
a class is included in USPACEREVQ and our main purpose in this section is to prove that such inclusion
is strict. The result is mainly based on the following property.

Lemma 7.1. Let L ⊆ Qh be a language in DSPACEREVQ and let M be a 1t-DTM with s states recog-
nizing L within |x| space and executing at most ◦|x| head reversals, for every input x in Q. Also assume
there exists a word z ∈ L such that |z| > m+ 1 + 3sm+1, where m = ◦|z|. Then there exists c ∈ N such
that z◦c is in L and all prime divisors of c are smaller or equal to s.

Proof:
As in Lemma 6.1, let M be allowed to reverse the tape head only at the border cells of the work portion
of the tape. We also assume that, for any input x ∈ Qh, M always executes ◦|x| head inversions and
hence 1 + ◦|x| runs. This can be done by marking the input symbols that preceed h once at each run and
stopping the computation when all the first ◦|x| symbols are marked.

Now, let z ∈ L be a string of length n > m + 1 + 3sm+1, where m = ◦|z| and let us denote by C
the computation of M on input z. For every j ∈ {1, 2, . . . , n}, the crossing sequence at position j is an
array of states p = (p0, p1, . . . , pm), where each pi is the state of M while the machine is scanning the
j-th cell in the i+ 1-th run of the computation. Let us first prove the following easy property.

Claim. Assume that, in the computation C on z, the crossing sequences at positions i
and j are equal, for two integers i and j such that m+ 1 < i < j ≤ n. Then, the string z◦c
belongs to L, where c = j − i.

Indeed, let C ′ be the computation of M on input z◦c. Since the machine is deterministic and the input
symbols placed after the position m + 1 are all ◦, in computation C ′ between positions j and n + c the
machine makes the same moves as in the computation C between the positions i and n. This means that,
for every ` = j, j + 1, . . . , n+ c, the crossing sequence of C ′ at position ` equals the crossing sequence
of C at position `− c. Moreover, it is clear that C and C ′ have the same crossing sequences at positions
` ≤ i. As a consequence, the states reached by C and C ′ at the end of the last run must be equal, and
this proves the claim.

18 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

Now, let us construct a pair of positions i, j satisfying the hypothesis of the previous claim and let
us evaluate their distance. Consider the first two positions i0, j0, such that m + 1 < i0 < j0, where M
enters the same state (say p0) during the first run of C. Set α0 = j0 − i0 and note that α0 ≤ s (and
j0 ≤ m+ s+ 2). Consider also the arithmetic progression of positions given by

T0 = {i0 + `α0 | ` ∈ N, i0 + `α0 ≤ n}

Since, in the first run of C the moves between two consecutive positions in T0 are the same, M enters
state p0 at each position j ∈ T0; for the same reason, it prints the same word between any two consecutive
positions of T0. Thus, in the second run, while it moves from right to left, between any two consecutive
positions of T0 the machine reads the same word. In such run, as T0 has more than s elements, we can
consider the first pair of positions i1, j1 ∈ T0, n− (sα0) ≤ i1 < j1 ≤ n, where M enters the same state,
say p1. The difference c1 = j1 − i1 satisfies the equality c1 = α0α1, for some positive integer α1 ≤ s.
Again, we can consider the arithmetic progression

T1 = {j1 − `c1 | ` ∈ N,m+ 1 < j1 − `c1}

Thus, during the second run ofC, at each position j ∈ T1 the machine enters the same state p1; moreover,
between any two consecutive positions in T1 it prints the same word, which will be read backwards in
the third run.

The previous reasoning can be repeated for all subsequent runs of C, as the input is long enough. In
the last run, we obtain a crossing sequence p = (p0, p1, . . . , pm) that occurs in the computation C at all
positions belonging to an arithmetic progression Tm defined by

Tm = {im + `cm | ` ∈ N, im + `cm ≤ n} ,

where im is an integer such that m + 1 < im ≤ m + 1 + cm, cm = α0α1 · · ·αm, with αi ∈ N and
1 ≤ αi ≤ s for every i. Note that cm ≤ sm+1. Thus, the length n > m+ 1 + 3sm+1 guarantees that Tm
contains at least two positions at a distance cm and hence the lemma follows from the claim above with
c = cm. ut

Theorem 7.2. The language

L = {◦mh◦n−1−m | n = km, k,m ∈ N}

belongs to USPACEREVQ\DSPACEREVQ.

Proof:
It is easy to show that L is in USPACEREVQ. Indeed, a 1t-UTM can be designed which, for an input
x ∈ Qh, in the first run nondeterministically marks some symbols of x on the right of h; then, it checks
in a deterministic way, by using at most m = ◦|x| head reversals, whether the distance between any two
consecutive marks equals m. Note that there is at most one accepting computation for any input.

Now, assume by contradiction that L ∈ DSPACEREVQ. Then, there is a 1t-DTM M that recognizes
L within |x| space and executing at most ◦|x| head reversals, for every input x in Q. Let s be the number
of states of M and let m be a prime integer greater than s. Also consider a word z = ◦mh◦mk−1, where
k is an integer such that the length of z satisfies (k + 1)m > m+ 1 + 3sm+1. Since z ∈ L, by Lemma
7.1, there is c ∈ N with all prime divisors at most equal to s, such that the string y = ◦mh◦mk+c−1 is in
L. This implies |y| = m(k + 1) + c is a multiple of m and hence m > s is a divisor of c: however this
is a contradiction since, as stated above, every prime divisor of c must be smaller or equal to s. ut

A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages 19

8. Conclusions

In this work we have characterized the families REC1 and UREC1 of unary two-dimensional languages
that are tiling recognizable and unambiguously tiling recognizable, respectively. We have shown that
any unary picture language in REC1 or in UREC1 can be represented by a single-tape, linearly space-
bounded, nondeterministic or unambiguous Turing machine, with a further input dependent constraint
on the number of head reversals. In this construction, each picture in the local language corresponds to
an accepting computation of the Turing maching, and viceversa. Exploiting such a correspondence, we
use a deep result on picture languages [4, 11, 12] to obtain a separation property between complexity
classes. This approach could be also applied to other natural subclasses of NSPACEREVQ.

Another open problem concerns the comparison between the class DSPACEREVQ introduced in the
present work and the class DREC1 of deterministic unary picture languages studied in [4].

Concluding, we observe that another natural problem concerns the analysis of classes of languages
defined by Turing machines with a bounded number of head reversals. More precisely, one may ask
whether a separation property, similar to that one proved in [15] for multitape time-bounded nondeter-
ministic Turing machine, also holds for complexity classes defined by bounding the number of head
reversals. This would lead to simpler examples of unary picture languages that are not tiling recogniz-
able.

References

[1] M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P. Annals of Mathematics, 160(2): 781-793, 2004.

[2] M. Anselmo, D. Giammarresi, M. Madonia. Regular expressions for two-dimensional languages over one-
letter alphabet. In Proc. 8th DLT, C.S. Calude, E. Calude and M.J. Dinneen (Eds.), LNCS 3340, 63–75,
Springer, 2004.

[3] M. Anselmo, D. Giammarresi, M. Madonia, A. Restivo. Unambiguous recognizable two-dimensional lan-
guages. Theoretical Informatics and Applications 40(2): 277–293, 2006.

[4] M. Anselmo, M. Madonia. Deterministic and unambiguous two-dimensional languages over one-letter alpha-
bet. To appear in Theoretical Computer Science. Preliminary version in Proc. CAI 2007, S. Bozapalidis and
G. Rahonis (Eds.), LNCS 4728, 147–159, Springer, 2007.

[5] D. Giammarresi, A. Restivo. Recognizable picture languages. Int. J. Pattern Recognition and Artificial Intel-
ligence 6: 31–42, 1992.

[6] D. Giammarresi, A. Restivo. Two-dimensional languages. In Handbook of Formal Languages, G. Rosenberg
and A. Salomaa (Eds.), Vol. III, 215 – 268, Springer-Verlag, 1997.

[7] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas. Monadic second order logic over rectangular pictures and
recognizability by tiling system. Information and Computation, 125(1):32–45, 1996.

[8] K. Inoue, I. Takanami. A survey of two-dimensional automata theory. In Proc. 5th Int. Meeting of Young
Computer Scientists, J. Dasson, J. Kelemen (Eds.), LNCS 381, 72–91, Springer-Verlag, 1990.

[9] J. Kari, C. Moore. New results on alternating and non-deterministic two-dimensional finite state automata. In
Proc. 18th STACS, A. Ferreira, H. Reichel (Eds.), LNCS 2010, 396–406, Springer-Verlag, 2001.

[10] O. Matz. Regular expressions and context-free grammars for picture languages. In Proc. 14th STACS, LNCS
1200, 283–294, Springer-Verlag, 1997.

20 A. Bertoni, M. Goldwurm, V. Lonati / The complexity of unary tiling recognizable picture languages

[11] O. Matz. Dot-depth and monadic quantifier alternation over pictures. Ph.D. thesis, Technical Report 99-08,
RWTH AAchen, 1999.

[12] O. Matz. Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures. Theoreti-
cal Computer Science, 270(1-2): 1–70, Elsevier 2002.

[13] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with squaring requires
exponential space. In Proc. 13th Annual IEEE Symp. on Switching and Automata Theory, 125–129, 1972.

[14] A.R. Meyer and L.J. Stockmeyer. Words problems requiring exponential time. In Proc. 5th ACM Symp. on
Theory of Computing, 1–9, 1973.

[15] J. I. Seiferas, M. J. Fischer, A. R. Meyer. Separating nondeterministic time complexity classes. Journal of
ACM, 25(1): 146–167, 1978.

[16] R. Siromoney. Advances in array languages. In Graph-grammars and their applications to Computer Science,
Ehrig et al. Eds., LNCS 291, 549–563, Springer-Verlag, 1987.

[17] K. Wagner, G. Wechsung. Computational complexity. D. Reidel Publishing Company, 1986.

