Precedence Automata and Languages

Violetta Lonati!, Dino MandrioliZ, Matteo Pradella’

! DSI - Universita degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@dsi.unimi.it
2 DEI - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
dino.mandrioli@polimi.it
3 IEIIT - Consiglio Nazionale delle Ricerche, via Golgi 42, Milano, Italy
matteo.pradella@polimi.it

Abstract. Operator precedence grammars define a classical Boolean and de-
terministic context-free family (called Floyd languages or FLs). FLs have been
shown to strictly include the well-known visibly pushdown languages, and enjoy
the same nice closure properties. We introduce here Floyd automata, an equiva-
lent operational formalism for defining FLs. This also permits to extend the class
to deal with infinite strings to perform for instance model checking.

Keywords: Operator precedence languages, Deterministic Context-Free lan-
guages, Omega languages, Pushdown automata.

1 Introduction

The history of formal language theory has always paired two main and complementary
formalisms to define and process —not only formal— languages: grammars or syntaxes
and abstract machines or automata. The power and the complementary benefits of these
two formalisms are so evident and well-known that it is certainly superfluous to remind
them here. Also universally known are the conceptual relevance and practical impact
of the family of context-free languages and the corresponding grammars paired with
pushdown automata.

Among the many subfamilies that have been introduced throughout the last decades
with various goals, operator precedence grammars, herewith renamed Floyd grammars
(FGs) in honor of their inventor [9], represent a pioneering model mainly aimed at
deterministic —and therefore efficient— parsing. Visibly pushdown languages (VPLs) are
a much more recent subfamily of (deterministic) context-free languages introduced in
the seminal paper [1] with the goal of extending the typical closure properties of regular
languages to larger families of languages accepted by infinite-state machines; a major
practical result is the possibility of extending such powerful verification technique as
model checking beyond the scope of finite state machines. Along the usual tradition,
VPLs have been characterized both in terms of abstract machines, the visibly pushdown
automata (VPAs), and by means of a suitable subclass of context-free grammars.

Rather surprisingly, instead, investigation of the basic —and nice, indeed— properties
of FGs has been suspended, probably as a consequence of the advent of other, more
general, parsing techniques, such as LR parsing [10]. Although FGs generate obviously
a subclass of deterministic CF languages and therefore can be parsed by any determin-
istic pushdown machine, typically a shift-reduce one [10], we are not aware of a family
of automata that perfectly matches the generative power of this class of grammars. On

2 Violetta Lonati, Dino Mandrioli, Matteo Pradella

the other hand, operator precedence parsers are still used today, thanks to their elegant
simplicity and efficiency. For instance, they are present in Parrot, Perl 6’s virtual ma-
chine, as part of the Parser Grammar Engine (PGE); in GCC’s C and C++ hand-coded
parsers, for managing arithmetic expressions.*

Quite recently we realized strong relations between these two seemingly unrelated
families of languages; precisely we showed that: VPLs are a proper subclass of lan-
guages defined by FGs (i.e. Floyd Languages, or FLs in short), and coincide with those
languages that can be generated by FGs characterized by a well precise shape of oper-
ator precedence matrix (OPM). The inclusion relation is effective in that a FG can be
algorithmically derived form a VPA and conversely a VPA can be obtained by a FG
whose OPM satisfies the restriction [5].

FLs enjoy all typical closure properties of regular languages that motivated the study
of VPLs and other related families [3,12,4]. Precisely, closure w.r.t. Boolean operations
was proved a long time ago in [7], whereas closure under concatenation, Kleene star,
and other typical algebraic operations has been investigated only recently under the
novel interest ignited by the above remark [6]. Thus, the old-fashioned FLs turned out
to be the largest known class of deterministic context-free languages that enjoy closure
under all traditional language operations. Another reason why, in our opinion, FLs are
far from obsolete and uninteresting in these days is that, unlike most other deterministic
languages of practical use, they can be parsed not necessarily left-to-right, thus offering
interesting opportunities, e.g., to exploit parallelism and incrementality [10].

In this paper we provide another missing tile of the “old and new puzzle”, namely
we introduce a novel class of stack-based automata perfectly carved on the generation
mechanism of FGs, which too we name in honor of Robert Floyd. Not surprisingly they
inherit some features of VPAs (mainly a clear separation between push and pop opera-
tions) and maintain some typical behavior of shift-reduce parsing algorithms; however,
they also exhibit some distinguishing features and imply some non-trivial technicalities
to derive them automatically from FGs and conversely.

The availability of a precise family of automata allows to apply to FLs the now
familiar w-extension —a further extension of Kleene * operation—, i.e., the definition of
languages of infinite strings and the various criteria for their acceptance or rejection by
recognizing devices. w-languages are now more and more important to deal with never-
ending computations such as operating systems, web-services, embedded applications,
etc. Thus, we also introduce the w-version of FLs and we show their potential in terms
of modeling the behavior of some realistic systems.

The paper is structured as follows: Section 2 recalls basic definitions on Floyd’s
grammars; Section 3 introduces Floyd automata (FAs) and shows that, as well as FSMs
and VPAs, but unlike pushdown automata, their deterministic version is not less pow-
erful than the nondeterministic counterpart; Section 4 provides effective constructions
to derive a FA from a FG and conversely; Section 5 extends the definition of FLs to
sets of infinite strings by applying to FAs the well-known concepts of w-behavior and
acceptance; finally Section 6 draws some conclusions.

4The interested reader may find more information at http;/gcc.gnu.org, and
http:/fwww.parrot.org, respectively.

Precedence Automata and Languages 3

2 Preliminaries

Let 2 be an alphabet. The empty string is denoted €. A context-free (CF) grammar is a
4-tuple G = (N,2, P,S), where N is the nonterminal alphabet, P the rule (or production)
set, and S the axiom. An empty rule has € as the right hand side (r.h.s.). A renaming
rule has one nonterminal as r.h.s. A grammar is reduced if every rule can be used to
generate some string in 2*. It is invertible if no two rules have identical r.h.s.

The following naming convention will be adopted, unless otherwise specified: low-
ercase Latin letters a, b, . .. denote terminal characters; uppercase Latin letters A, B, ...
denote nonterminal characters; letters u, v, . . . denote terminal strings; and Greek letters
a,...,w denote strings over 2 U N. The strings may be empty, unless stated otherwise.

A rule is in operator form if its r.h.s has no adjacent nonterminals; an operator
grammar (OG) contains just such rules. Any CF grammar admits an equivalent OG,
which can be also assumed to be invertible [11,13].

The coming definitions for operator precedence grammars [9], here renamed Floyd
Grammars (FG), are from [7]. We refer the reader unfamiliar with precedence grammars
and parsing techniques to [10], that contains an easily readable, practical description of
FGs.

For an OG G and a nonterminal A, the left and right terminal sets are

Lo(A)={aeX|A= Baa) Rg(A)=laeZ|A=> aaB)

where B € N U {¢} and = denotes the derivation relation. The grammar name G will be
omitted unless necessary to prevent confusion.

R. Floyd took inspiration from the traditional notion of precedence between arith-
metic operators in order to define a broad class of languages, such that the shape of
the derivation tree is solely determined by a binary relation between terminals that are
consecutive, or become consecutive after a bottom-up reduction step.

For an OG G, let a,f range over (N U 2)* and a,b € 2. Three binary operator
precedence (OP) relations are defined:

equal in precedence: a=b — JA — aaBbB,B € N U (¢}
takes precedence: a > b <= JA — aDbB,D € N and a € Rs(D) D
yields precedence: a<b <= dA — aaDB,D € N and b € L;(D)

For an OG G, the operator precedence matrix (OPM) M = OPM(G) is a |2] x || array
that with each ordered pair (a, b) associates the set M, of OP relations holding between
a and b.

Definition 1. G is an operator precedence or Floyd grammar (FG) if, and only if, M =
OPM(G) is a conflict-free matrix, i.e., Va, b, |My| < 1.

Example 1. Arithmetic expressions with prioritized operators, a classical construct, are
presented in a simple variant without parentheses, together with its OPM.

S > E,
E—->E+T|TxXala,
T—>Txala

4 Violetta Lonati, Dino Mandrioli, Matteo Pradella

The equal in precedence relations of a FG alphabet are connected with an impor-
tant parameter of the grammar, namely the length of the right hand sides of the rules.
Clearly, arule A — Ajay ...AaAr1, where each A; is a possibly missing nonterminal,
is associated with relations a;=a,=...=a,. If the = relation is cyclic, there is no finite
bound on the length of the r.h.s of a production. Otherwise the length is bounded by
2-c+ 1, where ¢ > 1 is the length of the longest =-chain. In this paper, for the sake of
simplicity and brevity we assume that all precedence matrices are =-cycle free. In the
case of FGs this prevents the risk of r.h.s of unbounded length [7], in the case of FAs
we will see that it avoids a priori the risk of an unbounded sequence of push operations
onto the stack matched by only one pop operation. The hypothesis of =-cycle freedom
could be replaced by weaker ones, such as a bound on r.h.s, as it happens with FGs, at
the price of heavier notation, constructions, and proofs.

Definition 2. A FG is in Fischer normal form [8] if it is invertible, the axiom S does
not occur in the r.h.s. of any rule, no empty rule exists except possibly S — &, the other
rules having S as l.h.s are renaming, and no other renaming rules exist.

OPMs play a fundamental role in deterministic parsing of FGs. Thus in the view of
defining automata to parse FLs we pair them with the alphabet somewhat mimicking
VPL’s approach where the terminal alphabet is partitioned into calls, returns, and inter-
nals [2]. To this goal, we use a special symbol # not in 2" to mark the beginning and
the end of any string. This is consistent with the typical operator parsing technique that
requires the lookback and lookahead of one character to determine the precedence rela-
tion [10]. The precedence relation in the OPM are extended to include # in the normal
way.

Definition 3. An operator precedence alphabet is a pair (X, M) where X is an alphabet
and M is a conflict-free operator precedence matrix, i.e. a |X U {#)? array that with
each ordered pair (a, b) associates at most one of the operator precedence relations: =,
<or>.

For u,v € 2* we write u <v if u = xa and v = by with a < b. Similarly for the other
precedence relations.

3 Floyd automata

Definition 4. A nondeterministic precedence automaton (or Floyd automaton) is given
by a tuple: A =X, M, Q, I, F,6) where:

— (2, M) is a precedence alphabet,

— Qs a set of states (disjoint from %),

— I C Q is a set of initial states,

— F C Qs a set of final states,

§: Q% (XU Q) — 22 is the transition function.

The transition function can be seen as the union of two disjoint functions:
Spush : QX T =29 Gy 1 QX Q — 29

A nondeterministic precedence automaton can be represented by a graph with Q as the
set of vertices and 2" U Q as the set of edge labellings: there is an edge from state ¢ to

Precedence Automata and Languages 5

state p labelled by a € X if and only if p € 6,,.(g, a) and there is an edge from state g
to state p labelled by r € Q if and only if p € 6 y,51(g, r). To distinguish flush transitions
from push transitions we denote the former ones by a double arrow.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi,qi,... for states in Q and we set 2’ = {@’ | a € X}; symbols in 2’
are called marked symbols. Let I’ = (2 U 2" U {#}) X Q; we denote symbols in I
as [a ql, [a’ ql, or [# q], respectively. We set symbol([a q]) = symbol([a’ q]) = a,
symbol([# q]) = #, and state([a q]) = state([@’ q]) = state([# q]) = q. Given a string
B =BB,...B, with B; € I', we set state(f) = state(B,).

We call a configuration any pair C = (8, w), where 8 = B\B,...B, € I",
symbol(B) = #, and w = aja,...a, € 2"#. A configuration represents both the
contents S of the stack and the part of input w still to process. We also set top(C) =
symbol(B,,) and input(C) = a;.

A computation of the automaton is a finite sequence of moves C + C;; there are three
kinds of moves, depending on the precedence relation between fop(C) and input(C):
push move: if top(C) = input(C) then (B, aw) + (Bla q] , w), Yq € O usn(state(B), a);
mark move: if f7op(C) <input(C) then (B, aw) + {Bla’ q] , w), Yq € S ua(state(B), a);
flush move: if top(C) > input(C) then let 8 = B1B,...B, with B; = [x; q;], x; €
2 U2’ and let i the greatest index such that B; belongs to 2’ X Q. Then (B8, aw) F
(B1By...Bia[xi1 1, aw), Yq € 0 fuusn(qn, gi-1)-

Push and mark moves both push the input symbol on the top of the stack, together
with the new state computed by 6,,4; such moves differ only in the marking of the
symbol on top of the stack. The flush move is more complex: the symbols on the top of
the stack are removed until the first marked symbol (included), and the state of the next
symbol below them in the stack is updated by 6 sy, according to the pair of states that
delimit the portion of the stack to be removed; notice that in this move the input symbol
is not relevant and it remains available for the following move.

Finally, we say that a configuration [# g;] is starting if q; € I and a configuration
[# gr] is accepting if qr € F. The language accepted by the automaton is defined as:

L(A) = {x [qr) . x#) E(#qr] . #qr € Lar € F}.

Example 2. The automaton depicted in Figure 1 accepts the Dyck language Lp of bal-
anced strings of parentheses, with two parentheses pairs a, a, and b, b. The same figure
also shows an accepting computation on input abaabaaa.

A Floyd automaton is called deterministic when 0pysn(q, a) and 0gusn(g, p) have at
most one element, for every ¢, p € Q and a € 2. Here we prove that deterministic Floyd
automata are equivalent to nondeterministic ones, with a power-set construction similar
to the one used for classical finite state automata.

Theorem 1. Deterministic Floyd automata are equivalent to nondeterministic ones.

Given a nondeterministic automaton A = (X, M, O, I, F, 6), consider the deterministic
automaton A = (X, M, Q, 1, F, 5) where:

— 0 =29 is the set of subsets of O,
— I =1€ Qis the set of initial states of A,

6 Violetta Lonati, Dino Mandrioli, Matteo Pradella

{[# q0] , abaabaaatt)
mark ([# qol[a’ q1] , baabaaat)
mark {[# qolla’ ¢:1[b" q1] . aabaaatt)
mark ([# gol[a@’ :1[b" q:1la’ q1] , abaaat)
push ([# qolla’ ¢: 110" qilla’ qilla q1] , baaat)
flush ([# golla’ ¢:1[6" q1] , baaait)
push ([# qolla’ ;116" q:11[D q1] , aaat)
flush ([# qolla’” q1] , aaatt)
push ([# golla’ q11la q1] , aat)
mark ([# qolla’ q11la q11la’" q:] , at)
push ([# qolla’ qi1la q:1la’ q11la q1] , #)
flush ([# golla’ q:11la q1] , #)
flush ([# qo] s #)

Fig. 1. Automaton, precedence matrix, and example of computation for language L.

- F={JCQ|JNF 0} C Q,ie. F is the set of subsets of Q containing at least
one final state of A,

- 6 : Ox(ZUQ) — Qis the transition function defined as follows. The push transition
Spush : O X X — (O is defined by

5push(*L a) = U o(p, a);

peJ

whereas the flush transition 8gug, : O X O — O is defined only on pairs (J, K) €
Q X Q such that dqush(p, q1) = Oush(p, q2) for every p € J and ¢, ¢» € K; in this
case we set

Sausn(J, K) = U Ofush(P> @)

pelJ

where ¢ is any element of K.

The proof is presented in the Appendix for space reasons.

4 Floyd automata vs Floyd grammars

The main result of this paper is the perfect match between FGs and FAs.

4.1 From Floyd grammars to Floyd automata

Theorem 2. Any L generated by a Floyd grammar can be recognized by a Floyd au-
tomaton

We provide a constructive proof of the theorem: given a Floyd grammar G we build
an equivalent nondeterministic Floyd automaton A = (X, M, Q, I, F, §), whose prece-
dence matrix M is the same as the one associated with G. A successful computation of
A will correspond to a derivation tree in G: intuitively, a push transition tries to guess
the parent of the symbol currently under the input head (i.e. it determines the 1.h.s of
a rule of G whose r.h.s contains the current symbol); a flush transition is performed

Precedence Automata and Languages 7

whenever the r.h.s of a rule is completed, and determines the corresponding l.h.s., thus
confirming some previous guesses.

In order to keep the construction as simple as possible, we avoid introducing any op-
timization. Also, without loss of generality, we assume that the grammar G = (X, N, P, S)
satisfies the following properties: the axiom S does not occur in the r.h.s. of any rule, no
empty rule exists except possibly S — &, the other rules having S as 1.h.s are renaming,
and no other renaming rules exist (in other words, we assume that the G is in Fischer
normal form except it is not necessarily invertible).

First of all, we introduce some notation. Enumerate the productions as follows:
for any nonterminal A € N, let P1(A), P2(A), ... Pyu4)(A) be the productions having
A as Lh.s. (i.e. n(A) is the number of productions having A as 1.h.s.). Then, consider
the set of extended nonterminals EN = {A; | A € N,i = 1,2,...n(A)} and define
Q = EN X (EN U {1}), where L is a new symbol whose meaning is undefined. To
distinguish between nonterminals and extended nonterminals, we will use capital letters
A,B,C,... and X, Y, Z,. .., respectively.

When considering derivation trees of G, we label internal nodes with extended non-
terminals (where the subscript of the nonterminal corresponds to the rule applied in the
node). Moreover, with a slight abuse of notation, we sometimes confuse nodes and their
labels, using the above convention also for internal nodes and leaves.

To define the push transition function 8, : Q X 2 — 292 consider any derivation
tree 7 of G with any leaf a and let X be a’s parent in 7. Figure 2 represents the various
configurations that 7 may exhibit.

— Case 0: if there is no leaf that precedes a in the in-order visit of 7 and has depth not
greater than a’s depth, then let Y be the topmost ancestor of X, i.e., Y = §; for some
i; this also means that # < a;

— Otherwise, let b be the rightmost such leaf, and let Y be y’s parent. Notice that,
G being an operator grammar, Y is the nearest common ancestor of a and b. Then
there are two possibilities:

e Casel: X =Y,ie.b=a;
e Case 2: X # Y, and in this case b has lower depth than a, so b < a.

In all cases, node Z may be missing, or there may be other leaves between b and a
(namely, Z’s descendants); let 7 =1ifZis missing, 7 = Z otherwise. Then, for each
such triple (a, X, Y), define the (a, X, Y)-push transition:

(X, X) if a is the rightmost child of X,
(X, 1) otherwise.

Spusn((Y, 2),@) > {)
Hence, a push transition essentially determines the parent of the symbol under the input
head (actually, a “candidate” parent, since the automaton is non-deterministic).

A similar construction holds for the flush transition function 6 sy, : Q@ X Q — 29
For every derivation tree with internal node X, let f and ¢ be the first and last child,
respectively, of node X. Notice that both f and ¢ may be either internal nodes or leaves.
Then there are two possibilities, as depicted in Figure 3:

— Case 3: there is no leaf at the left of X, then let Y be the topmost ancestor of X, i.e.,
Y = §,; for some i;

— Case 4: otherwise, let b be the rightmost leaf at the left of X and let Y be b’s parent
(again, notice that Y is the nearest common ancestor of X and b, G being an operator
grammar).

8 Violetta Lonati, Dino Mandrioli, Matteo Pradella

|
AN

Y‘:S,-
N\ | \
X X=Y X
N 7N N
Z‘ a b T a T a
Case 0 Case.:.ll ”éaseZ

Fig. 2. Derivation tree configurations for the push transition function (nodes labelled as ... could
be missing).

Also, let £x be ¢ if £ is an internal node, X otherwise; let f be f if f is an internal node,
1 otherwise. Then, for each such pair (X, Y) define the (X, Y)-flush transition:

S uusn((X, L), (Y,) 3 (. X). 3

Hence, the state computed by a flush transition contains two pieces of information: the
first component determines the nearest ancestor of both X and b (or the axioms if b
does not exist), while the second component determines the nonterminal corresponding
to the r.h.s. just completed. ‘

N

Y:S,

A\ A\
VRN VRN
f £ f ¢
Lo Lo
Case 3 Case 4

Fig. 3. Derivation tree configurations for the flush transition function (all nodes marked as ...
could be missing).

Finally, initial and final states are defined as follows.
I={(S;, L) 1<i<n(S)}, F={$,A)|S >AeP1<i<n(S),1<j<n)}

Notice that the above construction is effective. All triples (a, X, Y) involved by some
push transition can be found starting from any rule X — @ with @ containing a: if a is
not the leftmost terminal of @, then take the triple (a, X, X), else apply backwards any
rule with r.h.s starting with X and extend this process until all productions have been
examined. Similarly for the flush transitions.

Example 3. Let G be the grammar introduced in Example 1. Following the above con-
struction, number the rules of the grammar in the order they appear in the definition of

Precedence Automata and Languages 9

G (for instance, P>(E) is E — T X a). The transitions defined by the derivation tree of
string a X a + a, depicted in Figure 4 (left), are the following:

5push((S 1> J—)v a) > (TZ’ TZ)
5push((S 1 TZ)v X) El (EZ, J—)
Opush((S 1, E2), +) 3 (Ey, L)
5push((E2a J_), (1) El (EZ’ E2)
6push((El ,1),a) 3 (T2, T>)

S ruush((T2, T2), (E1, L)) 3 (E1, T2)

S ptush((T2, T2), (81, T2)) 2 (81, T2)
Ortush((E2, E2),(S1,T2)) 3 (81, E»)
Ornusn((E1,T2),(S1, E2)) 3 (S 1, EY)

The first one is the (a, T», S 1)-push transition obtained by starting from the left-most
leaf (Case 0). Case 0 occurs also for the second and third push transitions, obtained
considering the leaves labeled by X and +, respectively. The other push transitions rep-
resent instances of Cases 1 and 2, in this order. As far as flush transitions are concerned,
Case 4 occurs only in the first stated transition, with X = T,, b = + and Y = E,
whereas all other productions represent instances of Case 3. Hence, on input a X a + a,
the automaton A obtained from G may execute the computation represented in Figure 4
(right).

S (# (S, D] ,axXa+ati#)

! mark ([# (S 1, D@ (T2,)] . Xa+a#)

b‘ﬂ flush ([# (S, T>)] , Xa+at)

Y ‘l N mark ([# (S, T>)][X’ (E,, 1)] s a+at)

E, + T, push ([# (S 1, T)][X" (Ez, L)][a (E, E2)] +a#)
AR | flush ([# (S 1, E2)] , +a#)
T, x a a mark ([# (S, E)][+ (E}, 1)] , at#)
| mark ([# (S, E2)][+ (E1, D]la’ (T2, T2)] , #)
a flush ([# (S 1, E)I[+ (E1, T2)] , #)
flush ([# (S, E1)] , #)

Fig. 4. Derivation tree (left) and computation (right) for the string a X a + a.

The equivalence between G and the automaton described above is based on the
following lemma, whose proof can be found in the Appendix. As usual we set I' =
ZUX)XQ =2 UX)X(ENX(ENU{L})) and we denote an element in I" as [a (X, Y)].
To avoid an excessively cumbersome notation, when describing the transitions between
configurations, we omit the extreme parts (i.e. the lower part of the stack and a suffix of
the input string) which are not affected by the computation.

We define the depth of a computation C; + C, as the maximum number of marked
symbols in one of the traversed configurations, minus the number of marked symbol on

the stack in configuration Cy; we define the depth of a derivation W = qas the depth of
the corresponding derivation tree. When useful, we make the depth 4 of a computation

. .. . [A] [h]
or a derivation explicitasin C; + C; and X = a.
Lemma 1. Let Y, W be extended nonterminals of G, v € 2*, a<v > b, and a € {a,a’}.
Then for all h > 1:

(a ¥, 0], vby P ((a (v, W), by iff e such that ¥ — aaWp, W 3 v in G.

10 Violetta Lonati, Dino Mandrioli, Matteo Pradella

From the lemma the theorem easily follows by using a special case § — A (with
implicit # as a and b).

4.2 From Floyd automata to Floyd grammars

Given a Floyd automaton A = (X, M, Q, I, F, 6), we show how to build an equivalent
Floyd grammar G having operator precedence matrix M. In order to keep the con-
struction as easy as possible, w.l.o.g we assume that M is =-acyclic. Remind that, as
discussed in Section 2, this hypothesis could be replaced by weaker ones.

We need some notation and definitions. First of all, we shall represent a push transi-
tion with a simple arrow —, a flush transition with a double arrow =, and a path defined
by a sequence of transitions with a wavy arrow ~».

We define chains in A recursively. A simple chain is a word apa,a; . . . a,a,.1, writ-
ten as (“aja;y . ..a,“"), such that: ap,a,+, € 2 U {#},a; € X foreveryi = 1,2,...n,
Mya,., # 0,and ap <a; = ay...a,-1 = a, > ap1. A composed chain in A is a
word agxoai X1as ... ayX,a,+1, where (®aja, ...a,*+') is a simple chain, and x; € 2*
is the empty word or is such that (“x;%+') is a chain (simple or composed), for every
i=0,1,...,n— 1. Such a composed chain will be written as (*xpa;xa; . .. a,x,"").

We call a support for the simple chain (“a;a, . ..a,"+') any path in A of the form

a ay q0
G0 = Gl — oo = Gul — Gy = Gur1)

Notice that the label of the last (and only) flush is exactly qo, i.e. the first state of the
path; this flush is executed because of relation a, > a,.;. We call a support for the
composed chain (“xpa\x1a . .. a,x,**') any path in A of the form

’

X o, @ X, @ ap X, o
G0~ gy — g1~ gy = ... 2 Gn ™ Gy = el (6)
where, forevery i =0, 1,...,n:

— if x; # €, then g; NS q; is a support for the chain (“x;%*!), i.e., it can be decomposed
i ., i ,
as q; "f/} qi - qi'
- if x; = ¢, then g; = g;.
Notice that the label of the last flush is exactly .
We are now able to define a Floyd grammar G = (X, N, S, P). Nonterminals are the

4-tuples (a,q, p,b) € X x Q x Q x X, written as (“p, ¢”), plus the axiom S. Rules are
built as follows:

— for every support of type (5) of a simple chain, add the rule

a a, .
(“qo, gpe1™') — araz .. .a, ;

if also ag = ans1 = #, qo is initial, and g,.,1 is final, add the rule S — (*go, g1 ™);
— for every support of type (6) of a composed chain, add the rule

(*qo, gn+1“'y — NoaNias ... a,Ny ;
where, for every i = 0,1,...,n, N; = (“q;, q;“*') if x; # € and N; = € otherwise.

Notice that the above construction is effective thanks to the hypothesis of =-acyclicity
of the OPM. This implies that the length of the r.h.s. is bounded (see Section 2); on the
other hand, the cardinality of the nonterminal alphabet is finite. Hence there is only a
finite number of possible productions for G and only a limited number of chains to be
considered.

Precedence Automata and Languages 11

5 w-languages

Having an operational model that defines Floyd Languages, it is now straightforward to
introduce extensions to w-languages.

For instance, the classical Biichi condition of acceptance can be easily adapted to
FAs. Consider an infinite word x € 2, and an infinite computation of the automaton
Ay =&, M, Q, 1, F,6)on x, i.e. an w-sequence of configurations § = {8y, xo){B1, X1)--.
such that {8y , x0) = ([#qs], x),qr € Iand (B;, x;) + {Bi+1 , Xi+1). We say that x € L(A)
if and only if there exists gr € F such that configurations with stack [# gr] occur in-
finitely often in 8.

Quite naturally, w-VPLs are a proper subset of this class of languages, as it is shown
by the following example.

Example 4. We define here the stack management of a simple programming language
that is able to handle nested exceptions. For simplicity, there are only two procedures,
called @ and b. Calls and returns are denoted by call,, cally, ret,, ret,, respectively.
During execution, it is possible to install an exception handler snd. The last signal that
we use is rst, that is issued when an exception occur, or after a correct execution to
uninstall the handler. With a rst the stack is “flushed”, restoring the state right before
the last ind. The automaton is presented in Figure 5 (notice that it is an extension of the
automaton in Figure 1). It is easy to modify this example to model the case of unnested
exceptions, to fit with other application contexts.

call, ret, call, ret, hnd rst
call,] < = < < > call,, cally, hnd
ret,| < » < > >
call,| < < = < > @ < q1 q
rety | < > < > > qo0
hnd| < < < < =
call,, ret,, cally, rety,, hnd, rst
rst| > > > >
< < <

Fig. 5. Precedence matrix and automaton for an w-language. There is no column indexed by #
since words are infinite.

6 Conclusions and further research

Recently, we advocated that operator precedence grammars and languages, here re-
named after their inventor Robert Floyd, deserve renewed attention in the realm of
formal languages. The main reasons to support our claim are:

— The fact that this family of languages properly includes visibly pushdown lan-
guages [2], a new family that has been proposed with the main motivation of ex-
tending powerful model checking techniques beyond the limits of finite state ma-
chines.

— The fact that it enjoys all closure properties with respect to the main algebraic
operations that are exhibited by regular languages and VPLs.

— The fact that, unlike other deterministic languages -either strictly more powerful
than them, or incomparable with them- such as LR, LL, and simple precedence
ones, FLs can be parsed without applying a strictly left-to-right order; this feature
becomes particularly relevant in these days since it allows to exploit much better
the gains in efficiency offered by massive parallelism.

12 Violetta Lonati, Dino Mandrioli, Matteo Pradella

In this paper we filled a rather surprising “hole” in the theory of these languages,
namely the lack of an appropriate family of automata that perfectly matches the gener-
ative power of their grammars. We defined FAs with such a goal in mind and we proved
their equivalence with FGs. Both facts turned out to be non-trivial jobs and showed
further interesting peculiarities of this pioneering family of deterministic languages. A
first “byproduct” of the new automata family is the extension of FLs to w-languages,
i.e., languages consisting of infinite strings, a more and more important aspect of for-
mal language theory needed to deal with never ending computations. In this case too
FL w-languages proved to augment the descriptive capabilities of the original VPLs.

As a first step towards applicability of the results presented in this paper, and also
to validate our approach with several practical examples, we implemented a simple
prototypical tool, called Flup. Flup contains an interpreter for non-deterministic Floyd
Automata, and a Floyd Grammar to Automata translator, that directly applies the con-
struction presented in Section 4.1. All the examples presented in the paper were tried
on, or generated by the tool.

We are confident that suitable future research will further strengthen the importance
of, and motivation for, re-inserting FLs in the main stream of formal language literature.
In particular it would be interesting to complete the parallel analysis and comparison
with VPLs by investigating a characterization in terms of suitable logic formulas [2];
by this way motivation for, and application of, strong model checking techniques would
be further enhanced.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC: ACM Symposium on
Theory of Computing (STOC), 2004.

2. R. Alur and P. Madhusudan. Adding nesting structure to words. Journ. ACM, 56(3), 2009.

3. J. Berstel and L. Boasson. Balanced grammars and their languages. In W. Brauer et al.,
editor, Formal and Natural Computing, volume 2300 of LNCS, pages 3-25. Springer, 2002.

4. D. Caucal. Boolean algebras of unambiguous context-free languages. In R. Hariharan,
M. Mukund, and V. Vinay, editors, FSTTCS 2008, Dagstuhl, Germany, 2008.

5. S. Crespi Reghizzi and D. Mandrioli. Algebraic properties of structured context-free lan-
guages: old approaches and novel developments. In WORDS 2009 - 7th Int. Conf. on Words,
preprints. available as http://arXiv.org/abs/0907.2130, 2009.

6. S. Crespi Reghizzi and D. Mandrioli. Operator precedence and the visibly pushdown prop-
erty. In A. Horia Dediu, H. Fernau, and C. Martin-Vide, editors, LATA, volume 6031 of
LNCS, pages 214-226. Springer, 2010.

7. S. Crespi Reghizzi, D. Mandrioli, and D. F. Martin. Algebraic properties of operator prece-
dence languages. Information and Control, 37(2):115-133, May 1978.

8. M. J. Fischer. Some properties of precedence languages. In STOC '69: Proc. first annual
ACM Symp. on Theory of Computing, pages 181-190, New York, NY, USA, 1969. ACM.

9. R. W. Floyd. Syntactic analysis and operator precedence. Journ. ACM, 10(3):316-333, 1963.
10. D. Grune and C. J. Jacobs. Parsing techniques: a practical guide. Springer, New York, 2008.
11. M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, Reading, MA,

1978.

12. D. Nowotka and J. Srba. Height-deterministic pushdown automata. In L. Kucera and
A. Kucera, editors, MFCS 2007, Cesky Krumlov, Czech Republic, August 26-31, 2007, Pro-
ceedings, volume 4708 of LNCS, pages 125-134. Springer, 2007.

13. A. K. Salomaa. Formal Languages. Academic Press, New York, NY, 1973.

3 The prototype is freely available at http:fhome.dei.polimi.itpradella.

Precedence Automata and Languages 13
I Appendix

1.1 Proof of Theorem 1

Theorem 1 is a direct consequence of the following two lemmata:

Lemma 2. For every path qq LN q1 AN Q> NN qn in A, where q; € Q and
r; € 2 U Q, there is a path Jy BN Ji SN Jr BN N Jn in A, where Ji 2 q;, and
si=riifrieXors;={r}ifrie Q.

Proof. Tt is enough to set Jy = {go} and J; = 8(g;_1, s;) for every i > 1. Notice that, in
this definition, 6 = dpyen if 5; € 2, while 6 = dgush if 5; € Q.

Lemma 3. For every path Jy BN Ji SN Jo NN J,in A, with s5;€XZUQ, and
for every q,, € Jy, there is a path qq BN q1 N q BENNLN qn in A, where q; € J;,
andr; = s;ifs; € X orr; € s;if s € Q.

Proof. We reason by induction on the length n of the path. If n = 1, let J, N 1 and
q1 € J). First consider the case 5o € 2. Then J; = Spush(fo, 50) = UpesyOpush(Ps So)-

Since gq; € Ji, there exists go € Jo such that g; € dpusn(qgo, so) and hence gg LN g1 in A.
In the case x € Q, we have J; = Sqush(Jo, 50) = U ey, Siush(ps o) for any rg € so; then,

since g; € Ji, there exists gg € Jo such that ¢; € daush(qo, ro) and hence gg AN q1 in A.
If n > 1, consider J, BN Ji SN Jo NN J, in A, qn € J,, and assume by

induction that in A there is a path g; AN Q> NN qn, with g; € Ji,and r; = ;
if s, € Zorr € s;if 5; € Q. In the case sp € X we have g1 € J; = Opusu(Jo, S0) =

Upeso Opush(P» So), hence there exists gy € Jo such that g, € dpusn(qo, So); thus go = q1
in A. In the case 5o € O we have g1 € Ji = Squsn(Jo, 50) = Upes, Stusn(p, 7o) for any

ro € So; then there exists go € Jy such that ¢, € dausn(qo, ro) and hence gg AN g1 in A.

At this point the theorem follows immediately by considering paths beginning in a
initial state and ending in a final state, and observing that the stacks of the two automata
evolve in parallel.

I.2 Proof of Lemma 1

The lemma is equivalent to the following two properties.

(1) Forevery Y, X, a < c<x > d, A admits the computation

(@ (¥, D], exdy ¥ (@ %X, dy

if and only if there exist W,a,p,7, € such that Y — aaWg, W = Xy, X —

[k]
C€E, € > X.

14 Violetta Lonati, Dino Mandrioli, Matteo Pradella
(ii) Forevery Y, X,Z, a <d <z > e, A admits the computation

(@ (¥, X)), dze) ¥ (a (¥, 2)], dy

if and only if there exist W, a,8,u, A such that Y — aaWp, W = Zu, Z —

[k]
XdA, 1= z.
Y Y
/ / \\ / / \\
a a W B a a W B
Y X z K
AR /N s
a a W p c € X d A
v x z
Statement of Lemma Property (i) Property (ii)

Notice that in (i) W and X may coincide (i.e., Y may be empty), and in (ii) W and Z
may coincide (i.e., u may be empty). For & = 1, the lemma is given by property (i) with
W=Xand k=0 (forcx =v,d = b); for h > 1 we have v = cxd,z1d> . . . d,z, for some
c<x>dy,d; <z; » di; (with x, z; possibly empty). Then, applying first property (i) and
then, repeatedly, property (ii), one gets the lemma.

We prove property (i) reasoning by induction on k. First let k = 0; in this case
€ = x, i.e. X — cx. Hence, if x = ¢ ...c,, during the computation defined in (i), A
has to execute the following series of moves: a marked (c, Xy, Y)-push transition (case
2 without Z), then a sequence of (c¢;, Xo, Xo)-push transitions (case 1 without Z), and
finally a (Xy, Y)-flush transition, for a suitable Xj:

(mla (¥, LII[c" Xo, Dller Xo, L. [en (Xo, X0)] , d) + (nla (Y. Xo)], d).

To end in the right configuration, we necessarily have X, = X. Moreover, by the defi-
nition of transitions in A, X must satisfy exactly the relations defined in (i). Viceversa,
if the grammar admits the derivation defined in (i), then obviously the automaton A
admits the previous moves.

One can prove similarly property (ii) for k¢ = 0: in this case, both the marked
(d, Z, Y)-push transition and the (Z, Y)-flush transition involve the extended nonterminal
X (i.e., the second component of the state on the top of the stack).

Now, assuming that properties (i) and (ii) hold for depths lower than k, we prove
them for k. First consider (i) and let x = ugciuics . .. cuuty, With ¢ <ug, u;_1 > c; <u; (with
any u; possibly empty), and ¢; = ¢;;;. By the definition of the transition function, A
admits the computation in (i) if and only if there exist W, @, 8, v, € as in (i) and moreover

there exist Uy, - - - U,, such that € = Uyc U, ...c,U,, and U; @ u; with k; < k (U; is
missing iff »; is empty). Hence one can apply the inductive hypothesis and get the result.

One can prove similarly property (ii) for k greater than 0: again, in this case, both
the marked (d, Z, Y)-push transition and the (Z, Y)-flush transition involve the extended
nonterminal X. O

