
Logic Characterization of Invisibly Structured
Languages: the Case of Floyd Languages

Violetta Lonati1, Dino Mandrioli2, Matteo Pradella2

1 DI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@di.unimi.it

2 DEI - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{dino.mandrioli, matteo.pradella}@polimi.it

Abstract. Operator precedence grammars define a classical Boolean and deter-
ministic context-free language family (called Floyd languages or FLs). FLs have
been shown to strictly include the well-known Visibly Pushdown Languages, and
enjoy the same nice closure properties. In this paper we provide a complete char-
acterization of FLs in terms of a suitable Monadic Second-Order Logic. Tradi-
tional approaches to logic characterization of formal languages refer explicitly to
the structures over which they are interpreted - e.g, trees or graphs - or to strings
that are isomorphic to the structure, as in parenthesis languages. In the case of
FLs, instead, the syntactic structure of input strings is “invisible” and must be
reconstructed through parsing. This requires that logic formulae encode some
typical context-free parsing actions, such as shift-reduce ones.
Keywords: Operator precedence languages, Deterministic Context-Free lan-
guages, Monadic Second-Order Logic, Pushdown automata.

1 Introduction

Floyd languages (FL), as we renamed Operator Precedence Languages and grammars
(FG) after their inventor, were originally introduced to support deterministic parsing
of programming and other artificial languages [1]; then, interest in them decayed for
several decades, probably due to the advent of more expressive grammars, such as LR
ones [2] which also allow for efficient deterministic parsing.

In another context Visual Pushdown Languages (VPL) -and other connected fam-
ilies e.g. [3]- have been introduced and investigated [4] with the main motivation to
extend to them the same or similar automatic analysis techniques -noticeably, model
checking- that have been so successful for regular languages. Recently we discovered
that VPL are a proper subclass of FL, which in turn enjoy the same properties that
make regular and VP languages amenable to extend to them typical model checking
techniques; in fact, to the best of our knowledge, FL are the largest family closed w.r.t.
Boolean operation, concatenation, Kleene * and other classical operations [5]. Another
relevant feature of FL is their “locality property”, i.e., the fact that partial strings can
be parsed independently of the context in which they occur within a whole string. This
enables more effective parallel and incremental parsing techniques than for other deter-
ministic languages [6].

We also introduced an appropriate automata family that matches FGs in terms of
generative power: Floyd Automata (FA) are reported in [7] and, with more details and
precision, in [8]. In this paper we provide the “last tile of the puzzle”, i.e., a complete
characterization of FL in terms of a suitable Monadic Second-Order (MSO) logic, so
that, as well as with regular languages, one can, for instance, state a language property
by means of an MSO formula; then automatically verify whether a given FA accepts a
language that enjoys that property.

In the literature various other classes of languages (including VPL) and structures
(trees and graphs) have been characterized by means of MSO logic [9] by extending the
original approach of Büchi (presented e.g. in [10]). To the best of our knowledge, how-
ever, all these approaches refer to a tree or graph structure which is explicitly available.
In the case of FLs, instead, the syntax tree is not immediately visible in the string, hence
a parsing phase is needed. In fact, Floyd automata are the only non-real-time automata
we are aware of, characterized in terms of MSO logic.

The paper is structured as follows: Section 2 provides the necessary background
about FL and their automata. Section 3 defines an MSO over strings and provides two
symmetric constructions to derive an equivalent FA from an MSO formula and con-
versely. Section 4 offers some conclusion and hints for future work.

2 Preliminaries

FL are normally defined through their generating grammars [1]; in this paper, how-
ever, we characterize them through their accepting automata [8,7] which are the natural
way to state equivalence properties with logic characterization. Nevertheless we assume
some familiarity with classical language theory concepts such as context-free grammar,
parsing, shift-reduce algorithm, syntax tree [2].

Let Σ = {a1, . . . , an} be an alphabet. The empty string is denoted ε. We use a special
symbol # not in Σ to mark the beginning and the end of any string. This is consistent
with the typical operator parsing technique that requires the look-back and look-ahead
of one character to determine the next parsing action [2].

Definition 1. An operator precedence matrix (OPM) M over an alphabet Σ is a partial
function (Σ ∪ {#})2 → {l,�,m}, that with each ordered pair (a, b) associates the OP
relation Ma,b holding between a and b. We call the pair (Σ,M) an operator precedence
alphabet (OP). Relations l,�,m, are named yields precedence, equal in precedence,
takes precedence, respectively. By convention, the initial # can only yield precedence,
and other symbols can only take precedence on the ending #.

If Ma,b = ◦, where ◦ ∈ {l,�,m}, we write a ◦ b. For u, v ∈ Σ∗ we write u ◦ v if u = xa
and v = by with a ◦ b. M is complete if Ma,b is defined for every a and b in Σ. Moreover
in the following we assume that M is acyclic, which means that c1 � c2 � . . . � ck � c1
does not hold for any c1, c2, . . . ck ∈ Σ, k ≥ 1. See [11,5,8] for a discussion on this
hypothesis.

Definition 2. A nondeterministic Floyd automaton (FA) is a tupleA = 〈Σ,M,Q, I, F, δ〉
where: (Σ,M) is a precedence alphabet; Q is a set of states (disjoint from Σ); I, F ⊆ Q

are sets of initial and final states, respectively; δ : Q × (Σ ∪ Q) → 2Q is the transition
function.

The transition function is the union of two disjoint functions: δpush : Q × Σ → 2Q, and
δflush : Q × Q → 2Q. A nondeterministic FA can be represented by a graph with Q as
the set of vertices and Σ ∪ Q as the set of edge labelings: there is an edge from state
q to state p labelled by a ∈ Σ if and only if p ∈ δpush(q, a) and there is an edge from
state q to state p labelled by r ∈ Q if and only if p ∈ δ f lush(q, r). To distinguish flush
transitions from push transitions we denote the former ones by a double arrow.

To define the semantics of the automaton, we introduce some notations. We use
letters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are
called marked symbols. Let Γ = (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q],
[a′q], or [# q], respectively. We set smb([a q]) = smb([a′q]) = a, smb([# q]) = #, and
st([a q]) = st([a′q]) = st([# q]) = q.

A configuration of a FA is any pair C = 〈B1B2 . . . Bn, a1a2 . . . am〉, where Bi ∈ Γ
and ai ∈ Σ ∪ {#}. The first component represents the contents of the stack, while the
second component is the part of input still to be read.

A computation is a finite sequence of moves C ` C1; there are three kinds of moves,
depending on the precedence relation between smb(Bn) and a1:

(push) if smb(Bn) � a1 then C1 = 〈B1 . . . Bn[a1 q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(mark) if smb(Bn)la1 then C1 = 〈B1 . . . Bn[a1

′q], a2 . . . am〉, with q ∈ δpush(st(Bn), a1);
(flush) if smb(Bn) m a1 then let i the greatest index such that smb(Bi) ∈ Σ′.
C1 = 〈B1 . . . Bi−2[smb(Bi−1) q], a1a2 . . . am〉, with q ∈ δ f lush(st(Bn), st(Bi−1)).

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =

{
x | 〈[# qI], x#〉

∗
` 〈[# qF], #〉, qI ∈ I, qF ∈ F

}
.

Notice that transition function δpush is used to perform both push and mark moves.
To distinguish them, we need only to remember the last symbol read (i.e., the look-
back), encoding such an information into the states. Hence, in the graphical representa-
tion of a FA we will use a bold arrow to denote mark moves in the state diagram.

The deterministic version of FA is defined along the usual lines.

Definition 3. A FA is deterministic if I is a singleton, and the ranges of δpush and δflush

are both Q rather than 2Q.

In [8] we proved in a constructive way that nondeterministic FA have the same
expressive power as the deterministic ones and both are equivalent to the original Floyd
grammars.

Example 1. We define here the stack management of a simple programming language
that is able to handle nested exceptions. For simplicity, there are only two procedures,
called a and b. Calls and returns are denoted by calla, callb, reta, retb, respectively.
During execution, it is possible to install an exception handler hnd. The last signal that
we use is rst, that is issued when an exception occurs, or after a correct execution to

calla reta callb retb hnd rst #
calla l =̇ l l m
reta l m l m m m
callb l l =̇ l m
retb l m l m m m
hnd l l l l =̇

rst m m m m m m m
l l l =̇

q0 q1

hnd

q1

reta, retb, rst

calla, callb, hnd

q0

Fig. 1. Precedence matrix and automaton of Example 1.

uninstall the handler. With a rst the stack is “flushed”, restoring the state right before
the last hnd. Every hnd not installed during the execution of a procedure is managed by
the OS. We require also that procedures are called in an environment controlled by the
OS, hence calls must always be performed between a hnd/rst pair (in other words, we
do not accept top-level calls). The automaton modeling the above behavior is presented
in Figure 1. Note that every arrow labeled with hnd is bold as it represents a mark
transition. An example run and the corresponding tree are presented in Figure 2.

Such a language is not a VPL but somewhat extends their rationale: in fact, whereas
VPL allow for unmatched parentheses only at the beginning of a sentence (for returns)
or at the end (for calls), in this language we can have unmatched calla, callb, reta, retb
within a pair hnd, rst.

Definition 4. A simple chain is a string c0c1c2 . . . c`c`+1, written as c0 [c1c2 . . . c`]c`+1 ,
such that: c0, c`+1 ∈ Σ ∪ {#}, ci ∈ Σ for every i = 1, 2, . . . `, and c0 l c1 � c2 . . . c`−1 �
c` m c`+1.

A composed chain is a string c0s0c1s1c2 . . . c`s`c`+1, where c0 [c1c2 . . . c`]c`+1 is a
simple chain, and si ∈ Σ

∗ is the empty string or is such that ci [si]ci+1 is a chain (sim-
ple or composed), for every i = 0, 1, . . . , `. Such a composed chain will be written as
c0 [s0c1s1c2 . . . c`s`]c`+1 .

A string s ∈ Σ∗ is compatible with the OPM M if #[s]# is a chain.

Definition 5. LetA be a Floyd automaton. We call a support for the simple chain
c0 [c1c2 . . . c`]c`+1 any path inA of the form

q0
c1
−→ q1 −→ . . . −→ q`−1

c`
−→ q`

q0
=⇒ q`+1 (1)

Notice that the label of the last (and only) flush is exactly q0, i.e. the first state of the
path; this flush is executed because of relation c` m c`+1.

We call a support for the composed chain c0 [s0c1s1c2 . . . c`s`]c`+1 any path in A of
the form

q0
s0
{ q′0

c1
−→ q1

s1
{ q′1

c2
−→ . . .

c`
−→ q`

s`
{ q′`

q′0
=⇒ q`+1 (2)

where, for every i = 0, 1, . . . , `:

– if si , ε, then qi
si
{ q′i is a support for the chain ci [si]ci+1 , i.e., it can be decomposed

as qi
si
{ q′′i

qi
=⇒ q′i .

hnd

calla

rst

hnd

calla reta

callb

rst

〈[# q0] , hnd calla rst hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1] , calla rst hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1] , rst hnd calla reta callb rst#〉
flush 〈[# q0][hnd′ q1] , rst hnd calla reta callb rst#〉
push 〈[# q0][hnd′ q1][rst q1] , hnd calla reta callb rst#〉
flush 〈[# q0] , hnd calla reta callb rst#〉
mark 〈[# q0][hnd′ q1] , calla reta callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1] , reta callb rst#〉
push 〈[# q0][hnd′ q1][call′a q1][reta q1] , callb rst#〉
mark 〈[# q0][hnd′ q1][call′a q1][reta q1][call′b q1] , rst#〉
flush 〈[# q0][hnd′ q1][call′a q1][reta q1] , rst#〉
flush 〈[# q0][hnd′ q1] , rst#〉
push 〈[# q0][hnd′ q1][rst q1] , #〉
flush 〈[# q0] , #〉

Fig. 2. Example run and corresponding tree of the automaton of Example 1.

– if si = ε, then q′i = qi.

Notice that the label of the last flush is exactly q′0.

The chains fully determine the structure of the parsing of any automaton over
(Σ,M). Indeed, if the automaton performs the computation 〈[a q0], sb〉

∗
` 〈[a q], b〉,

then a[s]b is necessarily a chain over (Σ,M) and there exists a support like (2) with
s = s0c1 . . . c`s` and q`+1 = q.

Furthermore, the above computation corresponds to the parsing by the automaton of
the string s0c1 . . . c`s` within the context a,b. Notice that such context contains all infor-
mation needed to build the subtree whose frontier is that string. This is a distinguishing
feature of FL, not shared by other deterministic languages: we call it the locality prin-
ciple of Floyd languages.

Example 2. With reference to the tree in Figure 1, the parsing of substring hnd calla rst hnd
is given by computation 〈[# q0] , hnd calla rst hnd〉

∗
` 〈[# q0] , hnd〉 which corre-

sponds to support q0
hnd
−→ q1

calla
−→ q1

q1
=⇒ q1

rst
−→ q1

q0
=⇒ q0 of the composed chain

#[hnd calla rst]hnd.

Definition 6. Given the OP alphabet (Σ,M), let us consider the FA A(Σ,M) = 〈Σ,M,
{q}, {q}, {q}, δmax〉 where δmax(q, q) = q, and δmax(q, c) = q, ∀c ∈ Σ. We callA(Σ,M) the
Floyd Max-Automaton over Σ,M.

For a max-automatonA(Σ,M) each chain has a support; since there is a chain #[s]#

for any string s compatible with M, a string is accepted by A(Σ,M) iff it is compati-
ble with M. Also, whenever M is complete, each string is compatible with M, hence
accepted by the max-automaton. It is not difficult to verify that a max-automaton is
equivalent to a max-grammar as defined in [11]; thus, when M is complete both the
max-automaton and the max-grammar define the universal language Σ∗ by assigning to
any string the (unique) structure compatible with the OPM.

In conclusion, given an OP alphabet, the OPM M assigns a structure to any string
in Σ∗; unlike parentheses languages such a structure is not visible in the string, and
must be built by means of a non-trivial parsing algorithm. A FA defined on the OP
alphabet selects an appropriate subset within the “universe” of strings compatible with
M. In some sense this property is yet another variation of the fundamental Chomsky-
Shützenberger theorem.

3 Logic characterization of FL

We are now ready to provide a characterization of FL in terms of a suitable Monadic
Second Order (MSO) logic in the same vein as originally proposed by Büchi for regular
languages and subsequently extended by Alur and Madhusudan for VPL. The essence
of the approach consists in defining language properties in terms of relations between
the positions of characters in the strings: first order variables are used to denote posi-
tions whereas second order ones denote subsets of positions; then, suitable construc-
tions build an automaton from a given formula and conversely, in such a way that for-
mula and corresponding automaton define the same language. The extension designed
by [4] introduced a new basic binary predicate{ in the syntax of the MSO logic, x { y
representing the fact that in positions x and y two matching parentheses –named call and
return, respectively in their terminology– are located. In the case of FL, however, we
have to face new problems.

– Both finite state automata and VPA are real-time machines, i.e., they read one input
character at every move; this is not the case with more general machines such as
FA, which do not advance the input head when performing flush transitions, and
may also apply many flush transitions before the next push or mark which are the
transitions that consume input. As a consequence, whereas in the logic characteri-
zation of regular and VP languages any first order variable can belong to only one
second order variable representing an automaton state, in this case –when the au-
tomaton performs a flush– the same position may correspond to different states and
therefore belong to different second-order variables.

– In VPL the { relation is one-to-one, since any call matches with only one return,
if any, and conversely. In FL, instead the same position y can be “paired” with
different positions x in correspondence of many flush transitions with no push/mark

in between, as it happens for instance when parsing a derivation such as A
∗
⇒ αkA,

consisting of k immediate derivations A ⇒ αA; symmetrically the same position x
can be paired with many positions y.

In essence our goal is to formalize in terms of MSO formulas a complete parsing al-
gorithm for FL, a much more complex algorithm than it is needed for regular and VP
languages. The first step to achieve our goal is to define a new relation between (first
order variables denoting) the positions in a string.

In some sense the new relation formalizes structural properties of FL strings in the
same way as the VPL { relation does for VPL; the new relation, however, is more
complex than its VPL counterpart in a parallel way, as FL are richer than VPL.

Definition 7. Consider a string s ∈ Σ∗ and a OPM M. For 0 ≤ x < y ≤ |s| + 1, we
write x y y iff there exists a sub-string of #s# which is a chain a[r]b, such that a is in
position x and b is in position y.

Example 3. With reference to the string of Figure 1, we have 1 y 3, 0 y 4, 6 y 8,
4y 8, and 0y 9. In the parsing of the string, these pairs correspond to contexts where
a reduce operation is executed (they are listed according to their execution order). For
instance, the pair 6y 8 is the context for the reduction of the last callb, whereas 4y 8
encloses calla reta callb.

In general xy y implies y > x+1, and a position x may be in such a relation with more
than one position and vice versa. Moreover, if s is compatible with M, then 0y |s|+ 1.

3.1 A Monadic Second-Order Logic over Operator Precedence Alphabets

Let (Σ,M) be an OP alphabet. According to Definition 7 it induces the relationy over
positions of characters in any words in Σ∗. Let us define a countable infinite set of
first-order variables x, y, . . . and a countable infinite set of monadic second-order (set)
variables X,Y,

Definition 8. The MSOΣ,M (monadic second-order logic over (Σ,M)) is defined by the
following syntax:

ϕ := a(x) | x ∈ X | x ≤ y | xy y | x = y + 1 | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first-order variables and X is a set variable.

MSOΣ,M formulae are interpreted over (Σ,M) strings and the positions of their char-
acters in the following natural way:

– first-order variables are interpreted over positions of the string;
– second-order variables are interpreted over sets of positions;
– a(x) is true iff the character in position x is a;
– xy y is true iff x and y satisfy Definition 7;
– the other logical symbols have the usual meaning.

A sentence is a formula without free variables. The language defined by ϕ is L(ϕ) =

{s ∈ Σ∗ | #s# |= ϕ} where |= is the standard satisfaction relation.

Example 4. Consider the language of Example 1, with the structure implied by its
OPM. The following sentence defines it:

∀z

 calla(z) ∨ reta(z)

∨

callb(z) ∨ retb(z)

⇒ ∃x, y

 xy y ∧ x < z < y
∧

hnd(x + 1) ∧ rst(y − 1)

 .

Example 5. Consider again Example 1. If we want to add the additional constraint that
procedure b cannot directly install handlers (e.g. for security reasons), we may state it
through the following formula:

∀z (hnd(z)⇒ ¬∃u (callb(u) ∧ (u + 1 = z ∨ uy z)))

We are now ready for the main result.

Theorem 1. A language L over (Σ,M) is a FL if and only if there exists a MSOΣ,M

sentence ϕ such that L = L(ϕ).

The proof is constructive and structured in the following two subsections.

3.2 From MSOΣ,M to Floyd automata

This part of the construction follows the lines of Thomas [10], with some extra technical
difficulties due to the need of preserving precedence relations.

Proposition 1. Let (Σ,M) be an operator precedence alphabet and ϕ be an MSOΣ,M

sentence. Then L(ϕ) can be recognized by a Floyd automaton over (Σ,M).

Proof. The proof is composed of two steps: first the formula is rewritten so that no
predicate symbols nor first order variables are used; then an equivalent FA is built in-
ductively.

Let Σ be {a1, a2, . . . , an}. For each predicate symbol ai we introduce a fresh set
variable Xi, therefore formula ai(x) will be translated into x ∈ Xi. Following the standard
construction of [10], we also translate every first order variable into a fresh second order
variable with the additional constraint that the set it represents contains exactly one
position.

Let ϕ′ be the formula obtained from ϕ by such a translation and consider any subfor-
mula ψ of ϕ′: let X1, X2, . . . , Xn, Xn+1, . . . Xn+m(ψ) be the (second order) variables appear-
ing in ψ. Recall that X1, . . . , Xn represent symbols in Σ, hence they are never quantified.

As usual we interpret formulae over strings; in this case we use the alphabet

Λ(ψ) =
{
α ∈ {0, 1}n+m(ψ) | ∃!i s.t. 1 ≤ i ≤ n, αi = 1

}
A string w ∈ Λ(ψ)∗, with |w| = `, is used to interpret ψ in the following way: the
projection over the j-th component of Λ(ψ) gives an evaluation {1, 2, . . . , `} → {0, 1} of
X j, for every 1 ≤ j ≤ n + m(ψ).

For any α ∈ Λ(ψ), the projection of α over the first n components encodes a symbol
in Σ, denoted as symb(α). The matrix M over Σ can be naturally extended to the OPM
M(ψ) over Λ(ψ) by defining M(ψ)α,β = Msymb(α),symb(β) for any α, β ∈ Λ(ψ).

We now build a FAA equivalent to ϕ′. The construction is inductive on the structure
of the formula: first we define the FA for all atomic formulae. We give here only the
construction fory, since for the other ones the construction is standard and is the same
as in [10].

Figure 3 represents the FA for atomic formula ψ = Xi y X j (notice that i, j > n).
For the sake of brevity, we use notation [Xi] to represent the set of all tuples Λ(ψ) having
the i-th component equal to 1; notation [X̄] represents the set of all tuples in Λ(ψ) having
both i-th and j-th components equal to 0.

q0 q1 q2

q

q3 qF
[X̄]

[X̄] q2

[Xi]

[Xi]
q1

[X̄]
[X̄]

q0 [X̄]

[X̄]
[X̄]

q

[X j]

[X j]q0 [X̄]

[X̄]

q0, qF

Fig. 3. Floyd automaton for atomic formula ψ = Xi y X j

The automaton, after a generic sequence of moves corresponding to visiting an ir-
relevant portion of the syntax tree, when reading Xi performs either a mark or a push
move, depending on whether Xi is a leftmost leaf of the tree or not; then it visits the
subsequent subtree ending with a flush labeled q1; at this point, if it reads X j, it accepts
anything else will follow the examined fragment.

Then, a natural inductive path leads to the construction of the automaton associated
with a generic MSO formula: the disjunction of two subformulae can be obtained by
building the union automaton of the two corresponding FA; similarly for negation. The
existential quantification of Xi is obtained by projection erasing the i-th component.
Notice that all matrices M(ψ) are well defined for any ψ because the first n compo-
nents of the alphabet are never erased by quantification. The alphabet of the automaton
equivalent to ϕ′ is Λ(ϕ′) = {0, 1}n, which is in bijection with Σ.

3.3 From Floyd automata to MSOΣ,M

Unlike the previous construction, this part of the theorem sharply departs from tradi-
tional techniques.

LetA be a deterministic FA over (Σ,M). We build an MSOΣ,M sentence ϕ such that
L(A) = L(ϕ). The main idea for encoding the behavior of the FA is based on assign-
ing the states visited during its run to positions along the same lines stated by Büchi
[10] and extended for VPL [4]. Unlike finite state automata and VPA, however, FA do
not work on-line. Hence, it is not possible to assign a single state to every position. Let
Q = {q0, q1, . . . , qN} be the states ofAwith q0 initial; as usual, we will use second order
variables to encode them. We shall need three different sets of second order variables,
namely P0, P1, . . . , PN , M0,M1, . . . ,MN and F0, F1, . . . , FN : set Pi contains those po-
sitions of s where state i may be assumed after a push transition. Mi and Fi represent
the state reached after a flush: Fi contains the positions where the flush occurs, whereas
Mi contains the positions preceding the corresponding mark. Notice that any position
belongs to only one Pi, whereas it may belong to several Fi or Mi (see Figure 4).

t ∈ M1 ∩ M2

w ∈ F1

z ∈ F2

w ∈ M1

z ∈ M2

t ∈ F1 ∩ F2

Fig. 4. Example trees with a position t belonging to more than one Mi (left) and Fi (right).

We show thatA accepts a string s iff #s# |= ϕ, where

ϕ := ∃P0, P1, . . . , PN ,M0,M1, . . . ,MN , F0, F1, . . . , FN , e (0 ∈ P0 ∧

∧
∨

i∈F e ∈ Fi ∧ ¬∃x(e + 1 < x) ∧ #(e + 1) ∧ ϕδ ∧ ϕexist ∧ ϕunique). (3)

The first clause encodes the initial state, whereas the second, third and fifth ones encode
the final states. We use variable e to refer to the end of s, i.e., e equals the last position
|s|. The other remaining clauses are defined in the following: the fourth one encodes the
transition function; the last ones together encode the fact that there exists exactly one
state that may be assumed by a push transition in any position, and exactly one state as
a consequence of a flush transition.

For convenience we introduce the following notational conventions.

x ◦ y :=
∨

Ma,b=◦

a(x) ∧ b(y), for ◦ ∈ {l,�,m}

Tree(x, z,w, y) :=

 xy y∧
(x + 1 = z ∨ xy z) ∧ ¬∃t(x < t < z ∧ xy t)∧
(w + 1 = y ∨ wy y) ∧ ¬∃t(w < t < y ∧ ty y)

Succk(x, y) := x + 1 = y ∧ x ∈ Pk

Nextk(x, y) := xy y ∧ x ∈ Mk ∧ y − 1 ∈ Fk

Flushk(x, y) := xy y ∧ x ∈ Mk ∧ y − 1 ∈ Fk ∧

∃z,w

Tree(x, z,w, y) ∧
N∨

i=0

N∨
j=0

 δ(qi, q j) = qk∧

(Succi(w, y) ∨ Nexti(w, y))∧
(Succ j(x, z) ∨ Next j(x, z))

Treei, j(x, z,w, y) := Tree(x, z,w, y) ∧
(

Succi(w, y) ∨ Flushi(w, y))∧
(Succ j(x, z) ∨ Flush j(x, z))

)
Remark If a[c1c2 . . . c`]b is a simple chain with support

qi = qt0
c1
−→ qt1

c2
−→ . . .

c`
−→ qt`

qt0
=⇒ qk (4)

then Treet0,t` (0, 1, `, `+1) and Flushk(0, `+1) hold; if a[s0c1s1c2 . . . c`s`]b is a composed
chain with support

qi = qt0
s0
{ q f0

c1
−→ qt1

s1
{ q f1

c2
−→ . . .

cg
−→ qtg

sg
{ q fg . . .

c`
−→ qt`

s`
{ q f`

q f0
=⇒ qk (5)

then by induction we can see that Tree f` , f0 (0, x1, x`, |s| + 1) and Flushk(0, |s| + 1) hold,
where xg is the position of cg for g = 1, 2, . . . , `.

On the basis of the above definitions and properties, it is possible to bind A to
suitable axioms ϕδ, ϕexist, and ϕunique that are satisfied by any chain with a support inA,
and in turn guarantee the existence of anA’s support for every chain.

For the sake of brevity we report here only a (small) part of ϕδ which should provide
enough evidence of the construction and of its correctness. The complete axiomatization
and equivalence proof (based on a natural induction) are given in the Appendix [12].

The following Forward formulae formalize how A enters new states through push
and flush transitions.

ϕpush f w := ∀x, y
N∧

i=0

 (x l y ∨ x � y) ∧ a(y)
∧

Succi(x, y) ∨ Flushi(x, y)
⇒ y ∈ Pδ(qi,a)

ϕ f lush f w := ∀x, z,w, y

N∧
i=0

N∧
j=0

Treei, j(x, z,w, y)⇒
x ∈ Mδ(qi,q j)

∧

y − 1 ∈ Fδ(qi,q j)

Somewhat symmetric Backward formulae allow to reconstruct (in a unique way) A’s
states that lead to a given state.

Finally, for any chain #s#, by the complete axiom ϕ defined in (3) we obtain the
following proposition which, together with Proposition 1, completes Theorem 1.

Proposition 2. For any Floyd automaton A there exists an MSOΣ,M sentence ϕ such
that L(A) = L(ϕ).

4 Conclusions and future work

This paper at last completes a research path that began more than four decades ago
and was resumed only recently with new -and old- goals. FLs enjoy most of the nice
properties that made regular languages highly appreciated and applied to achieve de-
cidability and, therefore, automatic analysis techniques. In this paper we added to the
above collection the ability to formalize and analyze FL by means of suitable MSO
logic formulae. New research topics, however, stimulate further investigation. Here we
briefly mention only two mutually related ones. On the one hand, FA devoted to analyze
strings should be extended in the usual way into suitable transducers. They could be ap-
plied, e.g. to translate typical mark-up languages such as XML, HTML, LaTeX, . . . into
their end-user view. Such languages, which motivated also the definition of VPL, could
be classified as “explicit parenthesis languages” (EPL), i.e. languages whose syntactic
structure is explicitly apparent in the input string. On the other hand, we plan to start
from the remark that VPL are characterized by a well precise shape of the OPM [5] to
characterize more general classes of such EPL: for instance the language of Example
1 is such a language that is not a VPL. Another notable feature of FL, in fact, is that
they are suitable as well to parse languages with implicit syntax structure such as most
programming languages, as well as to analyze and translate EPL.

References

1. Floyd, R.W.: Syntactic analysis and operator precedence. Journ. ACM 10 (1963) 316–333
2. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
3. Berstel, J., Boasson, L.: Balanced grammars and their languages. In et al., W.B., ed.: Formal

and Natural Computing. Volume 2300 of LNCS., Springer (2002) 3–25
4. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56 (2009)
5. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property.

Journal of Computer and System Science 78 (2012) 1837–1867
6. Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO: a

parallel parser generator for operator precedence grammars. In: SLE2012 - 5th International
Conference on Software Language Engineering. (2012)

7. Lonati, V., Mandrioli, D., Pradella, M.: Precedence automata and languages. In Kulikov,
A.S., Vereshchagin, N.K., eds.: CSR. Volume 6651 of Lecture Notes in Computer Science.,
Springer (2011) 291–304

8. Lonati, V., Mandrioli, D., Pradella, M.: Precedence automata and languages. CoRR-arXiv
1012.2321 (2010) http://arxiv.org/abs/1012.2321.

9. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Cambridge University Press (2012)

10. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science,
Volume B: Formal Models and Sematics. (1990) 133–192

11. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence
languages. Information and Control 37 (1978) 115–133

12. Lonati, V., Mandrioli, D., Pradella, M.: Logic characterization of Floyd languages. CoRR-
arXiv 1204.4639 (2012) http://arxiv.org/abs/1204.4639.

