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Abstract

We give asymptotic estimates of the frequency of occurrences of a symbol in a random word
generated by any bicomponent stochastic model. More precisely, we consider the random variableYn
representing the number of occurrences of a given symbol in a word of lengthngenerated at random;
the stochastic model is defined by a rational formal seriesr having a linear representation with two
primitive components. This model includes the case whenr is the product or the sum of two primitive
rational formal series. We obtain asymptotic evaluations for the mean value and the variance ofYn
and its limit distribution.
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1. Introduction

Estimating the frequency of given patterns in a random text is a classical problem stud-
ied in several research areas of computer science and mathematics that has well-known
applications in molecular biology[10,15,8,14,17]. Pattern statistics studies this problem in
a probabilistic framework: one or more patterns are fixed and a text of lengthn is randomly
generated by a memoryless source (also calledBernoulli model) or a Markovian source (the
Markovianmodel) where the probability of a symbol in any position only depends on a finite
number of previous occurrences[11,15,13,5]. Main goals of research in this context are the
asymptotic expressions of mean value and variance of the number of pattern occurrences
in the text and its limit distribution. Several results show a Gaussian limit distribution of
these statistics in the sense of the central or local limit theorem[1]. In particular in[13]
properties of this kind are obtained for a pattern statistics which represents the number of
(positions of) occurrences of words from a regular language in a random string of lengthn
generated in a Bernoulli or a Markovian model.

This approach has been extended in[3,4] to the so-calledrational stochastic model,
where the text is generated at random according to a probability distribution defined by
means of a rational formal series in non-commutative variables. In particular cases, this is
simply the uniform distribution over the set of words of given length in an arbitrary regular
language. We recall that there are well-known linear time algorithms that generate a word
at random under such a distribution[6]. The relevance of the rational stochastic model is
due to the connection with the classical Markovian random sources in pattern statistics.
This relationship can be stated precisely as follows[3]: the frequency problem of regular
patterns in a text generated in the Markovian model (as studied in[13]) is a special case of
the frequency problem of a single symbol in a text over a binary alphabet generated in the
rational stochastic model; it is also known that the two models are not equivalent.

The symbol frequency problem in the rational model is studied in[3] in the primitive
case, i.e. when the matrix associated with the rational formal series (counting the transitions
between states) is primitive and hence it has a unique eigenvalue of largest modulus, which
is real positive. Under this hypothesis asymptotic expressions for the mean value and the
variance of the statistics under investigation are known, together with their limit distributions
expressed in the form of both central and local limit theorems[3,4].

In the present paper we study the symbol frequency problem in thebicomponent rational
model, which is a non-primitive case of the rational model, defined by a formal series that
admits a linear representation with two primitive components. In this context there are two
special examples of particular interest: they occur when the formal series defining the model
is, respectively, the sum or the product of two primitive formal series. We will call them the
sumand theproduct model, respectively, and they will represent the leading examples of
our discussion.

We determine the asymptotic evaluation of mean value and variance and the limit dis-
tribution of the number of symbol occurrences in a word randomly generated according
to such a bicomponent rational model. The behaviour of this random variable mainly de-
pends on two conditions: whether there exists a communication from the first to the second
component and whether one component is dominant, i.e. its main eigenvalue is strictly
greater than the main eigenvalue of the other one (if the main eigenvalues are equal we
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say that the components are equipotent). The analysis of the dominant case splits in two
further directions according whether the dominant component is degenerate or not.1 The
equipotent case has several subcases corresponding to the possible differences between the
leading terms of the mean values and of the variances of the statistics associated with each
component.

Our main results are summarized in a table presented in the last section. It turns out that
if one component is dominant and does not degenerate then it determines the main terms of
expectation and variance of our statistics, and we get a Gaussian limit distribution. On the
contrary, in the dominant degenerate case the limit distribution can assume a large variety
of possible forms depending even on the other (non-main) eigenvalues of the dominated
component and including the geometric law in some simple cases. In the equipotent case,
if the leading terms of the mean values (associated with the components) are different, then
the overall variance is of a quadratic order showing there is not a concentration phenomenon
around the average value of our statistics; in this case the typical situation occurs when there
is communication from the first to the second component: here we obtain a uniform limit
distribution. On the contrary, when the leading terms of the mean values are equal, we have
again a concentration phenomenon with a limit distribution given by a mixture of Gaussian
laws, which reduces again to a normal distribution when the local behaviour of our statistics
in the two components is asymptotically equal.

The main contribution of these results is related to the non-primitive hypothesis. To
our knowledge, the pattern frequency problem in the Markovian model is usually studied
in the literature under primitive hypothesis and Gaussian limit distributions are generally
obtained. On the contrary, here we get in many cases limit distributions quite different from
the Gaussian one.

We think our analysis is significant also from a methodological point of view: we adapt
methods and ideas introduced to deal with the Markovian model to a more general stochastic
model, the rational one, which seems to be the natural setting for these techniques.

The material we present is organized as follows. After recalling some preliminaries in
Section2 and the rational stochastic model in Section3, we revisit the primitive case in
Section4 by using a simple matrix differential calculus. In Section5 we introduce the
bicomponent rational model and then we study the dominant case, i.e. when the main
eigenvalue of one component is greater than the main eigenvalue of the other. In Section7
we consider the equipotent case, when the two main eigenvalues are equal. Finally Section
8 is devoted to the analysis of the sum models while the last section contains the summary
and a comparison of the results.

The computations described in our examples are executed by usingMathematica[18].

2. Preliminaries

In this section we recall some basic notions and properties concerning non-negative
matrices[16] and probability theory[9].

1 Here, a component is degenerate if all its transitions are labelled by the same symbol.
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2.1. Perron–Frobenius theory

The Perron–Frobenius theory is a well-known subject widely studied in the literature (see
for instance[16]). To recall its main results we first establish some notation. For every pair
of matricesT = [Tij ], S = [Sij ], the expressionT > S means thatTij > Sij for every
pair of indicesi, j . As usual, we consider any vectorv as a column vector and denote by
vT the corresponding row vector. We recall that a non-negative matrixT is calledprimitive
if there existsm ∈ N such thatT m > 0. The main properties of such matrices are given by
the following theorem[16, Section 1].

Theorem 1(Perron–Frobenius). Let T be a primitive non-negative matrix. There exists
an eigenvalue� of T (called Perron–Frobenius eigenvalue of T) such that: (i) � is real
and positive; (ii) with � we can associate strictly positive left and right eigenvectors; (iii)
|�| < � for every eigenvalue� �= �; (iv) if 0�C�T and� is an eigenvalue of C, then|�|��,
moreover|�| = � impliesC = T ; (v) � is a simple root of the characteristic polynomial
of T.

The following proposition is a first consequence of the theorem above[16, Theorem 1.2].

Proposition 2. If T is a primitive matrix and1 is its Perron–Frobenius eigenvalue, then

T n = uvT + D(n) · ns

hn
,

wheres ∈ N, h > 1, D(n) is a real matrix such that|D(n)ij |�c for all n large enough,
everyi, j and some constantc > 0, while vT and u are strictly positive left and right
eigenvectors of T corresponding to the eigenvalue1,normed so thatvT u = 1.

Moreover, under the same hypotheses, the matrixD = ∑∞
n=0 D(n)ns/hn is well defined

and, by the properties ofv andu, satisfies the equality

vT D = Du = 0. (1)

2.2. Notations on matrix functions

Assume thatA(x) is a square matrix the entries of which are complex functions in the
variablex. The derivative ofA(x) with respect ofx is the matrixDxA(x) = [A′(x)ij ] of its
derivatives. Thus, ifA(x) andB(x) are square matrices of the same size, then the following
identities can be easily proved:

Dx(A(x) · B(x)) = DxA(x) · B(x) + A(x) · DxB(x), (2)

Dx(A(x)n) =
n∑

i=1
A(x)i−1 · DxA(x) · A(x)n−i ,

Dx(A(x)−1) = −A(x)−1 · DxA(x) · A(x)−1. (3)
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Moreover, the traditional big-O notation can be extended to matrix functions: letA(x) be
defined in an open domainE ⊆ C, let g(x) be a complex function also defined inE and
let x0 be an accumulation point ofE; asx tends tox0 in E, we writeA(x) = O(g(x)) to
mean that for every pair of indicesi, j , A(x)ij = O(g(x)), namely there exists a positive
constantc such that|A(x)ij |�c|g(x)|, for everyx in Enearx0. Thus, if the entries ofA(x)

are analytic at a pointx0, thenA(x) = A(x0) + A′(x0)(x − x0) + O
(
(x − x0)

2
)
. On the

contrary, if some entries ofA(x) have a pole of degree 1 at a pointx0, while the others (if
any) are analytic at the same point, then

A(x) = R

x − x0
+ S + O(x − x0)

for suitable matricesRandS(R �= 0).

2.3. Moments and limit distribution of discrete random variables

LetXbe a random variable (r.v.) with values in a set{x0, x1, . . . , xk, . . .} of real numbers
and setpk = Pr{X = xk}, for everyk ∈ N. We denote byFX its distribution function,
i.e. FX(�) = Pr{X��} for every� ∈ R. If the set of indices{k|pk �= 0} is finite we can
consider the moment generating function ofX, given by

�X(z) = E(ezX) = ∑
k∈N

pkezxk ,

which in our case is well-defined for everyz ∈ C. This function can be used to compute
the first two moments ofX,

E(X) = �′
X(0), E(X2) = �′′

X(0) (4)

and yields the characteristic function ofX, given by

�X(t) = E(eitX) = �X(it).

The function�X(t) (well-defined for everyt ∈ R) completely characterizes the distribution
functionFX and represents the classical tool to prove convergence in distribution. We recall
that, given a sequence of random variables{Xn}n and a random variableX,Xn converges to
X in distribution(or in law) if lim n→∞ FXn(�) = FX(�) for every point� ∈ R of continuity
for FX. It is well-known thatXn converges toX in distribution if and only if�Xn(t) tends
to �X(t) for everyt ∈ R. Several forms of the central limit theorem are classically proved
in this way[9,7].

A convenient approach to prove the convergence in law to a Gaussian random variable
relies on the so-called “quasi-power” theorems introduced in[12] (see also[7]) and im-
plicitly used in the previous literature[1]. For our purpose it is convenient to recall such a
theorem in a simple form (for the proof see[7, Theorem 9.6]or [1, Theorem 1]).

Theorem 3. Let {Xn} be a sequence of random variables, where eachXn takes values in
{0,1, . . . , n} and assume there exist two functionsr(z), u(z), both analytic atz = 0,where
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they take the valuer(0) = u(0) = 1, and two positive constants c, �, such that for every
|z| < c

�Xn(z) = r(z) · u(z)n + O(�n) and � < |u(z)|.

Also set� = u′(0) and 	 = u′′(0) − (u′(0))2 and assume	 > 0 (variability condition).
Then(Xn − �n)/

√
	n converges in distribution to a normal random variable of mean0

and variance1, i.e. for everyx ∈ R

lim
n−→+∞ Pr

{
Xn − �n√

	n
�x

}
= 1√

2


∫ x

−∞
e−t2/2 dt.

Finally, we recall that a sequence of random variables{Xn} convergesin probability to a
random variableX if, for everyε > 0, Pr{|Xn − X| > ε} tends to 0 asn goes to+∞. It is
well-known that convergence in probability implies convergence in law.

3. The rational stochastic model

The stochastic model we consider in this work is defined by using the notion of lin-
ear representation of a rational formal series[2]. Let R+ be the semiring of non-negative
real numbers. We recall that aformal seriesover � with coefficients inR+ is a func-
tion r : �∗ −→ R+. Usually, the value ofr at � is denoted by(r,�) and we write
r = ∑

�∈�∗(r,�) · �. Moreover,r is calledrational if it admits a linear representation,
that is a triple(
,�, �) where, for some integerm > 0, 
 and� are (column) vectors
in Rm+ and � : �∗ −→ Rm×m+ is a monoid morphism, such that(r,�) = 
T �(�) �
holds for each� ∈ �∗. We say thatm is the sizeof the representation. Observe that
considering such a triple(
,�, �) is equivalent to defining a (weighted) non-deterministic
automaton, where the state set is given by{1,2, . . . , m} and the transitions, the initial
and the final states are assigned weights inR+ by �, 
 and � respectively. Note that
(
,�, �) represents a deterministic finite automaton when
 and� are the characteristic
arrays of the initial state and the final states, respectively, and for every	 ∈ � and ev-
ery i = 1,2, . . . , m there exists an indexj such that�(	)ij = 1, while �(	)ij ′ = 0 for
any j ′ �= j : in this caser is the characteristic series of the languages recognized by the
automaton.

From now on we assume� = {a, b} and setA = �(a), B = �(b) andM = A + B.
Thus, for every positive integern such that
TMn� �= 0, we can define a probability space
as follows. Let us define acomputation pathof lengthn as a string( of the form

( = q0x1q1x2q2 . . . qn−1xnqn,

whereqj ∈ {1,2, . . . , m} and xi ∈ {a, b} for every j = 0,1, . . . , n and everyi =
1,2, . . . , n. We denote by�n the set of all computation paths of lengthn and, for each
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( ∈ �n, we define the probability of( as

Pr{(} = 
q0�(x1)q0q1�(x2)q1q2 . . .�(xn)qn−1qn�qn


TMn�
.

Denoting byP(�n) the family of all subsets of�n, it is clear that〈�n,P(�n), Pr〉 is a
probability space.

Now, let us consider the random variableYn: �n → {0,1, . . . , n} such thatYn(() is the
number ofa occurring in(, for each( ∈ �n. It is clear that, for every integer 0�k�n, we
have

Pr{Yn = k} = �(n)
k∑n

j=0 �(n)
j

, where �(n)
k = ∑

|w|=n,|w|a=k


T �(w)�.

Note that when(
,�, �) represents a deterministic finite automaton,Yn is the number of
occurrences ofa in a word randomly chosen under uniform distribution in the set of all
strings of lengthn in the language recognized by the automaton. This observation may
suggest thatYn could be defined over a sample space simpler than�n (a natural candidate
would be�n as in[3]). However, the sample space�n is really necessary in our context, as
it will be clear in Sections5 and8, since we will have to distinguish different paths having
the same labelling word.

We remark that classical probabilistic models as the Bernoulli or the Markov processes,
frequently used to study the number of occurrences of regular patterns in random words
[11,15,13], are special cases of rational stochastic models. The relationship between Marko-
vian processes and rational stochastic models can be formally stated as follows (for the proof
see[3, Section 2.1]). Given a regular languageR over a finite alphabet and a Markovian
process� generating words at random over the same alphabet, let On(R,�) denote the
number of (positions of) occurrences of elements ofR in a word of lengthn generated by
�. It turns out that for every suchR and� there exists a linear representation(
,�, �)
over the alphabet{a, b} such that, for everyn ∈ N, the corresponding random variable
Yn has the same probability function as On(R,�), i.e. Pr{Yn = k} = Pr{On(R,�) = k}
for any k = 0,1, . . . , n. The opposite inclusion is not true: there are rational stochastic
models which cannot be simulated by any Markovian process. This is due to the fact that
the generating function of the bivariate sequence{Pr{On(R,�) = k}}n,k is a rational ana-
lytic function for anyR,�, while there exist linear representations(
,�, �) such that the
generating function of the corresponding sequence{Pr{Yn = k}}n,k is not algebraic.

To study the asymptotic behaviour ofYn, one should consider the moment generating
function of the random variableYn which is defined as

�Yn(z) = hn(z)

hn(0)
where hn(z) =

n∑
k=0

�(n)
k ezk = 
T (Aez + B)n� (5)

and observe that by (4) we have

E(Yn) = h′
n(0)

hn(0)
and Var(Yn) = h′′

n(0)

hn(0)
−
(
h′
n(0)

hn(0)

)2

. (6)
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In order to study the asymptotic behaviour ofhn(0),h′
n(0) andh′′

n(0), it is useful to introduce
the bivariate matrix functionH(z,w), well-defined in a neighbourhood of(0,0), given by

H(z,w) =
+∞∑
n=0

(Aez + B)nwn = [I − w(Aez + B)]−1. (7)

Denote byHz andHzz its partial derivatives�H/�z and�2H/�z2, respectively, and observe
that

+∞∑
n=0

hn(z)w
n = 
T H(z,w) �. (8)

Finally, the characteristic function of the random variableYn is given by

�Yn(t) = E(eitYn) = hn(it)

hn(0)
.

4. The primitive case

The asymptotic behaviour ofYn is studied in[3] in the case when(
,�, �) is aprimitive
linear representation, i.e. when the matrix�(a) + �(b) is primitive. In this section, we
present some steps of those proofs by using a more general approach. The discussion will
be useful in subsequent sections.

As above, letA = �(a) andB = �(b). Since the matrixM = A+B is primitive we can
consider the Perron–Frobenius eigenvalue� of M and, by Proposition2, we have

Mn = �n
(
uvT + C(n)

)
, (9)

whereC(n) is a real matrix such thatC(n) = O(εn) for some 0�ε < 1 andvT andu are
strictly positive left and right eigenvectors ofM corresponding to the eigenvalue�, normed
so thatvT u = 1. Moreover, we know that the matrix

C =
∞∑
n=0

C(n)

is well-defined and, by (1), vT C = Cu = 0.
SinceA + B is primitive, by Perron–Frobenius Theorem, the functionH(0, w) defined

in (7) has a unique singularity of smallest modulus atw = 1/� which is a simple pole.
Thus, by (3), alsoHz(0, w) andHzz(0, w) have a unique singularity of smallest modulus
atw = 1/�. The following lemma gives a more precise analysis.

Lemma 4. In aneighbourhoodofw = 1/�, thematricesH(0, w),Hz(0, w)andHzz(0, w)

admit a Laurent expansion of the form

H(0, w) = uvT

1 − �w
+ C + O(1 − �w), (10)
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Hz(0, w) = �w
(1 − �w)2

· �uvT + D

1 − �w
+ O(1), (11)

Hzz(0, w) = 2�2w2

(1 − �w)3
· �2uvT (12)

+ �w
(1 − �w)2

· (�uvT + 2�D + 2uvT
ACA

�2 uvT ) + O

(
1

1 − �w

)
,

where the matrix D and the constant� are defined by

D = CA

�
uvT + uvT

AC

�
, � = vT Au

�
. (13)

Proof. First observe that relations (7) and (9) imply the following equalities:

H(0, w) =
+∞∑
n=0

Mnwn =
+∞∑
n=0

(uvT + C(n))�nwn

=
+∞∑
n=0

uvT �nwn +
+∞∑
n=0

C(n)�nwn. (14)

Since each entry of
∑

n C(n)xn converges uniformly forx near 1 to a rational function, we
have

∞∑
n=0

C(n)xn = C + O(1 − x)

and hence the second series in (14) equalsC + O(1 − �w), which proves (10).
Now observe that from (2) and (3) we get

Hz(0, w) = H(0, w) Aw H(0, w),

Hzz(0, w) = Hz(0, w) · [I + 2Aw H(0, w)].
Replacing (10) in the previous expressions, one can easily find Eqs. (11) and (12). �

Theorem 5. IfM is primitive then themeanvalueand thevarianceofYn satisfy the relations

E(Yn) = �n + �
�

+ O
(
εn
)
, Var(Yn) = �n + O(1),

where|ε| < 1 and� is defined in(13), while�, � and� are given by

� = (
T u)(vT �), � = � − �2 + 2
vT ACAu

�2 , � = 
T D�.

Proof. By Eq. (8), from the previous lemma it is easy to prove that

hn(0) = �n · � + O(�n),

h′
n(0) = n�n · �� + �n� + O(�n), (15)

h′′
n(0) = n2�n · ��2 + n�n ·

(
�� − ��2 + 2�� + 2�

vT ACAu

�2

)
+ O(�n),
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where|�| < � gives the contribution of smaller eigenvalues ofM. Then, the result follows
from (6). �

Note thatB = 0 implies� = 1 and� = � = 0, whileA = 0 implies� = � = � = 0; on
the contrary, ifA �= 0 �= B then clearly 0< � < 1 and one can prove also that 0< � [3].

In [3] it is proved thatYn converges in law to a Gaussian random variable, whenM is
primitive andA �= 0 �= B. The proof is based on Theorem3. To see its main steps, consider
the generating function ofhn(z), given by


T H(z,w)� = 
T Adj (I − w(Aez + B)) �
det(I − w(Aez + B))

.

SinceA + B is primitive, its Perron–Frobenius eigenvalue� is a simple root of det(yI −
A − B). Thus the equation

det
(
yI − Aez − B

) = 0

defines an implicit functiony = y(z) analytic in a neighbourhood ofz = 0 such that
y(0) = � andy′(0) �= 0.

A further property of primitive matrices (see for instance[16, p. 7]) states that
Adj

(
�I − A − B

)
> 0 and hence, by continuity, all entries ofH(z,w) are different from

0 for everyznear 0 and everyw near�−1. These properties allow us to prove the following
proposition[3].

Proposition 6. For every z near0,as n tends to infinity we have

hn(z) = 
T R(z)� · y(z)n + O(�n),

where� < |y(z)| andR(z) is a matrix function given by

R(z) = − y(z) · Adj(I − y(z)−1(Aez + B))

(�/�w)det(I − w(Aez + B)) |w=y(z)−1
.

Note that any entry ofR(z) is analytic and non-null atz = 0. Moreover, from the previous
result one can also express the moments ofYn as function ofy(z), obtaining

� = y′(0)
�

, � = y′′(0)
�

−
(
y′(0)

�

)2

. (16)

Since in our case� > 0, we can apply Theorem3 which implies the following

Theorem 7. If M is primitive andA �= 0 �= B, then(Yn − �n)/
√

�n converges in distri-
bution to a normal random variable of mean0 and variance1.

We conclude this section observing that
T H(z,w)� is the generating function of{hn(z)}
and hence, by Proposition6, for everyznear 0 we have

H(z,w) = R(z)

1 − y(z)w
+ O(1) asw → y(z)−1. (17)
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5. The bicomponent model

Here we consider a linear representation(
,�, �)where the matrix�(a)+�(b) consists of
two primitive components. More formally, we consider a triple(
,�, �) such that there exist
two primitive linear representations(
1,�1, �1)and(
2,�2, �2), of sizesandt, respectively,
satisfying the following relations:


T = (
T
1 , 


T
2 ), �(x) =

(
�1(x) �0(x)

0 �2(x)

)
, � =

(
�1
�2

)
, (18)

where�0(x) ∈ Rs×t+ for everyx ∈ {a, b}. In the sequel, we say that(
,�, �) is abicompo-
nent linear representation.

For sake of brevity we use the notationsAj = �j (a), Bj = �j (b) andMj = Aj + Bj

for j = 0,1,2. Hence, we have

A = �(a) =
(
A1 A0
0 A2

)
, B = �(b) =

(
B1 B0
0 B2

)
,

M = A + B =
(
M1 M0
0 M2

)
.

Intuitively, this linear representation corresponds to a weighted non-deterministic finite state
automaton (which may have more than one initial state) such that its state diagram consists
of two disjoint strongly connected subgraphs, possibly equipped with some further arrows
from the first component to the second one.

To avoid trivial cases, throughout this work we assume
1 �= 0 �= �2 together with the
following significancehypothesis:

(A1 �= 0 orA2 �= 0) and (B1 �= 0 orB2 �= 0). (19)

Note that if the last condition is not true thenYn may assume two values at most (either
{0,1} or {n− 1, n}). Assuming the significance hypothesis means to forbid the cases when
both components only have transitions labelled by the same letter (eithera or b).

In our automaton, a computation path( = q0x1q1x2q2 . . . qn−1xnqn can be of three
different kinds:
(1) all qj ’s are in the first component (in which case we say that( is containedin the first

component).
(2) There is an index 0�s < n such that the indicesq0, q1, . . . , qs are in the first component

while qs+1, . . . , qn are in the second one. In this casexs+1 is the label of the transition
from the first to the second component.

(3) all qj ’s are in the second component (in which case we say that( is containedin the
second component).

Using the notation introduced in the previous section, from now on we refer the valueshn(z)

andH(z,w) to the triple(
,�, �). We also agree to append indices 1 and 2 to the values
associated with the linear representations(
1,�1, �1) and(
2,�2, �2), respectively. Thus,

for eachj = 1,2, the values�j , Cj , Dj , h(j)
n (z), H(j)(z, w), uj , vj , �j , �j , �j , �j , yj (z)

andRj (z) are well-defined and associated with the linear representation(
j ,�j , �j ).
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Now consider the matrixH(z,w). To express its value as a function ofH(1)(z, w) and
H(2)(z, w), we use the following identities, which can be proved by induction. For any
matricesP,Q, S of suitable sizes, we have(

P Q

0 S

)n

=
(
Pn

∑n−1
i=0 P iQSn−1−i

0 Sn

)
,

moreover, also in the case of matrices, for any pair of sequences{pn}, {sn} and any fixedq,
we have

∞∑
n=0

(
n−1∑
i=0

piqsn−1−i

)
wn =

( ∞∑
n=0

pnw
n

)
qw

( ∞∑
n=0

snw
n

)
.

Then, a simple decomposition ofH(z,w) follows from the previous equations:

H(z,w) =
+∞∑
n=0

(Aez + B)nwn =
[
H(1)(z, w) G(z,w)

0 H(2)(z, w)

]
,

where

G(z,w) = H(1)(z, w) (A0ez + B0)wH(2)(z, w). (20)

Thus the functionhn(z) defined in (5) now satisfies the equality

∞∑
n=0

hn(z)w
n = 
T H(z,w)� = 
T

1 H
(1)(z, w)�1 + 
T

1 G(z,w)�2 + 
T
2 H

(2)(z, w)�2

and setting
∑

n gn(z)w
n = 
T

1 G(z,w)�2 we obtain

hn(z) = h(1)
n (z) + gn(z) + h(2)

n (z). (21)

The bicomponent model includes two special cases which occur, respectively when the
formal seriesr defined by(
,�, �) is the sum or the product of two rational formal series
that have primitive linear representation.

Example 1(Sum). Let r be the series defined by

(r,�) = 
T
1 �1(�)�1 + 
T

2 �2(�)�2 ∀� ∈ {a, b}∗,
where(
j ,�j , �j ) is a primitive linear representation forj = 1,2. Clearly,r admits a
bicomponent linear representation(
,�, �) which satisfies (18) and such thatM0 = 0. As
a consequence, the computation paths of type 2 cannot occur and hence

hn(z) = h(1)
n (z) + h(2)

n (z).

Example 2(Product). Consider the formal series

(r,�) = ∑
�=xy


T
1 �1(x) �1 · 
T

2 �2(y) �2 ∀� ∈ {a, b}∗,
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where(
j , �j , �j ) is a primitive linear representation forj = 1,2. Then,r admits a bicom-
ponent linear representation(
,�, �) such that


T = (
T
1 ,0) , �(x) =

(
�1(x) �1 
T

2 �2(x)

0 �2(x)

)
, � =

(
�1 
T

2 �2
�2

)
. (22)

In this case, the three terms ofhn(z) can be merged in a unique convolution

hn(z) =
n∑

i=0

T

1 (A1ez + B1)
i �1 
T

2 (A2ez + B2)
n−i�2.

Now let us go back to the general case: we need an asymptotic evaluation ofhn andH.
To this end, sinceM1 andM2 are primitive, we can first apply Eqs. (15) to h

(1)
n (0) and

h
(2)
n (0) obtaining asymptotic evaluations for them and their derivatives. As far asgn(0) and

its derivatives are concerned, we have to compute the derivatives ofG(z,w) with respect
to z, using Eqs. (2) and (3):

Gz(z,w) = H(1)
z (z, w) · (A0ez + B0)w · H(2)(z, w)

+H(1)(z, w) · A0ezw · H(2)(z, w)

+H(1)(z, w) · (A0ez + B0)w · H(2)
z (z, w), (23)

Gzz(z,w) = H(1)
zz (z, w) · (A0ez + B0)w · H(2)(z, w)

+ 2H(1)
z (z, w) · A0ezw · H(2)(z, w)

+ 2H(1)
z (z, w) · (A0ez + B0)w · H(2)

z (z, w)

+H(1)(z, w) · A0ezw · H(2)(z, w)

+ 2H(1)(z, w) · A0ezw · H(2)
z (z, w)

+H(1)(z, w) · (A0ez + B0)w · H(2)
zz (z, w). (24)

We shall see that the properties ofYn depend on whether the Perron–Frobenius eigenvalues
�1, �2 of M1 andM2 are distinct or equal. In the first case the rational representation
associated with the largest one determines the main characteristics ofYn. We say that
(
i ,�i , �i ) is thedominantcomponent if�1 �= �2 and�i = max{�1, �2}; we study this case
in the next section. On the contrary, if�1 = �2 we say that the components areequipotent
and they both give a contribution to the asymptotic behaviour ofYn. This case is considered
in Section7.

6. Dominant component

In this section we study the behaviour of{Yn} assuming�1 > �2 (the case�1 < �2 is
symmetric). We also assumeM0 �= 0 since the caseM0 = 0, corresponding to Example
1, is treated in Section8. We first determine asymptotic expressions for mean value and
variance ofYn and then we study its limit distribution.
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6.1. Analysis of moments in the dominant case

To study the first two moments ofYn we develop a singularity analysis for the functions
H(0, w), Hz(0, w) andHzz(0, w), which yields asymptotic expressions forhn(0), h′

n(0)
andh′′

n(0). In the following analysis a key role is played by the matrixQ defined by

Q = (�1I − M2)
−1 = �−1

1 H(2)(0, �−1
1 ).

Note thatQ is well-defined since�1 > �2. Moreover, we have

H(2)
w (0, �−1

1 ) = �2
1 · QM2Q and H(2)

z (0, �−1
1 ) = �1 · QA2Q.

First of all we can apply Lemma4toH(1)(0, w) andH(2)(0, w) and their partial derivatives.
Moreover we need asymptotic expression forGand its derivatives. Since�1 > �2, by using
(20) and applying (10) to H(1)(0, w), asw tends to�−1

1 , we get

G(0, w) =
(

u1v
T
1

1 − �1w
+ C1

)
M0

(
1

�1
− 1 − �1w

�1

)

×
(
H(2)(0, �−1

1 ) + H(2)
w (0, �−1

1 )(w − �−1
1 )

)
+O(1 − �1w) = 1

1 − �1w
· u1v

T
1 M0Q + O(1). (25)

In a similar way one can prove that in a neighbourhood ofw = 1/�1, the matricesGz(0, w)

andGzz(0, w) admit a Laurent expansion of the form

Gz(0, w) = �1w

(1 − �1w)2
· �1u1v

T
1 M0Q

+ 1

1 − �1w
·
[
D1M0Q + u1v

T
1 (A0 − �1M0)Q

+ u1v
T
1 M0Q(A2 − �1M2)Q

]
+ O(1), (26)

Gzz(0, w) = 2�2
1w

2

(1 − �1w)3
· �2

1u1v
T
1 M0Q

+ �1w

(1 − �1w)2
·
{
2�1 ·

[
u1v

T
1 (A0 + M0QA2) + D1M0

]
Q

− 2�2
1u1v

T
1 M0(I + QM2)Q

}

+ �1w

(1 − �1w)2
· u1

(
�1 + 2vT1

A1C1A1

�2
1

u1

)
vT1 M0 Q

+ O

(
1

1 − �1w

)
. (27)

Proposition 8. If �1 > �2 then the mean value and variance ofYn satisfy the following
relations:

E(Yn) = �1n + O(1), Var(Yn) = �1n + O(1).
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Proof. By applying elementary identities, the previous expansions yield asymptotic ex-
pressions forgn(0) and its derivatives, which by (21) lead to the following relations:

hn(0) = �n
1 · (
T

1 u1) · vT1 (�1 + M0Q�2) + O(�n),

h′
n(0) = n�n

1 · �1(

T
1 u1) · vT1 (�1 + M0Q�2)

+ �n
1 · (
T

1 u1) · vT1 (A0 + M0QA2)Q�2 + �n
1 · 
T

1 D1(�1 + M0Q�2)

− �n
1 · �1(


T
1 u1) · vT1 M0(I + QM2)Q�2 + O(�n),

h′′
n(0) = n2�n

1 · �2
1(


T
1 u1) · vT1 (�1 + M0Q�2)

+ n�n
1 · 2�1

[
(
T

1 u1) · vT1 (A0 + M0QA2)Q�2 + 
T
1 D1 · (�1 + M0Q�2)

]
− n�n

1 ·
[
2�1(


T
1 u1) · vT1 M0(I + QM2)Q�2

]

+ n�n
1 ·
(
�1 − �2

1 + 2vT1
A1C1A1

�2
1

u1

)
· (
T

1 u1) · vT1 (�1 + M0Q�2) + O(�n
1),

where|�| < �1. Then, the result follows from (6). �

From the last proposition we easily deduce expressions of the mean value for degenerate
cases. IfB1 = 0 then�1 = 1, D1 = 0 and, by the significance hypothesis,B2 �= 0; thus
we get

E(Yn) = n − E + O(εn), where E = vT1 (B0 + M0QB2)Q�2

vT1 (�1 + M0Q�2)
and|ε| < 1. (28)

On the contrary, ifA1 = 0 then�1 = 0,D1 = 0,A2 �= 0 and we get

E(Yn) = E′ + O(εn), where E′ = vT1 (A0 + M0QA2)Q�2

vT1 (�1 + M0Q�2)
(|ε| < 1). (29)

Note that bothE andE′ are strictly positive sinceQ > 0.
Now the problem is to determine conditions that guarantee�1 �= 0.

6.2. Variability conditions in the dominant case

To answer the previous questions we first recall that, by Theorem3 in [3] and Proposition
8, if �1 > �2 andA1 �= 0 �= B1 thenVar(Yn) = �1n + O(1) with �1 > 0.

Clearly, if eitherA1 = 0 or B1 = 0 then�1 = 0 and the question is whetherVar(Yn)

keeps away from 0. To study the variability condition in this case (the degenerate dominant
case), it is convenient to express the variance by means of polynomials. Given a non-null
polynomialp(x) = ∑

k pkx
k, wherepk �0 for eachk, consider the random variableXp

such that Pr{Xp = k} = pk/p(1). LetV (p) be the variance ofXp and setV (0) = 0. Then

V (p) = p′′(1) + p′(1)
p(1)

−
(
p′(1)
p(1)

)2

.
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Moreover, in[3, Theorem 3]it is proved that for any pair of non-null polynomialsp, q with
positive coefficients, we have

V (pq) = V (p) + V (q),

V (p + q)� p(1)

p(1) + q(1)
V (p) + q(1)

p(1) + q(1)
V (q). (30)

In particular,V (p + q)� min{V (p), V (q)} holds.
A similar approach holds for matrices. Consider a matrixM(x) of polynomials in the

variablexwith non-negative coefficients: we can define its matrix of variances as

V (M(x)) = [
V (M(x)ij )

]
.

Then, for each finite family of matrices{M(k)(x)}k∈I having equal size and non-null poly-
nomial entries, the following relation holds

V

(∑
k∈I

M(k)(x)

)
�
[∑
k∈I

M(k)(1)ij∑
s∈I M(s)(1)ij

V (M(k)(x)ij )

]
.

Moreover, ifM(x) andN(x) are matrices of non-null polynomials of suitable sizes, then

V (M(x) · N(x)) �
[∑

k

M(1)ikN(1)kj
M(1)N(1)ij

{
V (M(x)ik) + V (N(x)kj )

}]
. (31)

Finally, from Theorem3 in [3] one can also deduce that, for every primitive matrix
M = A + B, if A �= 0 �= B then

V (Ax + B)nij = �(n) (32)

for any pair of indicesi, j . 2

Now we are able to establish the variability condition in the dominant degenerate case.

Proposition 9. IfM0 �= 0,�1 > �2andeitherB1 = 0orA1 = 0 thenVar(Yn) = c+O(εn)

for somec > 0 and|ε| < 1.

Proof. First observe that the asymptotic expression of the variance given in Proposition8
can be refined as

Var(Yn) = �1n + c + O(εn), (33)

wherec is a constant and|ε| < 1. In order to prove it note that the sequenceshn(0), h′
n(0),

h′′
n(0) have a generating function with a pole of smallest modulus at�−1

1 of degree (at most)
1, 2, 3, respectively: hence their asymptotic expressions are of the formc1�

n
1 + O(�n),

b2n�n + c2�
n
1 + O(�n), a3n

2�n + b3n�n + c3�
n
1 + O(�n), respectively, for some constants

ai, bi, ci and|�| < 1; thus, Eq. (33) follows by replacing these expressions in (6) and taking
into account Proposition8.

2 In this work we use the symbol� to represent the order of growth of sequences: given two sequences{an} ⊆ C

and{bn} ⊆ R+, the relationan = �(bn) means thatc1bn � |an|�c2bn, for two positive constantsc1 andc2 and
all n large enough.
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Now, since eitherB1 = 0 orA1 = 0 we have�1 = 0 and we only have to provec > 0. To
this end we show thatVar(Yn)��(1). Consider the caseB1 = 0 and first assumeA2 �= 0.
Note that, by the significance hypothesis alsoB2 �= 0 holds, and hence�2 > 0.

Moreover, we have

Var(Yn) = V
(

T

1 A
n
1�1x

n + 
T
1 Pn(x)�2 + 
T

2 (A2x + B2)
n�2

)
,

where

Pn(x) =
n−1∑
i=0

Ai
1x

i(A0x + B0)(A2x + B2)
n−1−i ,

hence, by Eq. (30),

Var(Yn) � 
T
2 M

n
2�2


TMn�
(�2n + O(1)) + 
T

1
∑n−1

i=0 Ai
1M0M

n−1−i
2 �2


TMn�

×V (
T
1 Pn(x)�2). (34)

Now, applying Eqs. (30) and (31), we get

V (
T
1 Pn(x)�2)

� min
(j,k)∈I




n−1∑
i=0

(Ai
1M0M

n−1−i
2 )jk(∑n−1

s=0 As
1M0M

n−1−s
2

)
jk

(
V (A2x + B2)

n−1−i
)
jk


 ,

whereI = {(j, k): 
1j Pn(x)jk�2k �= 0}. Replacing this value in (34), by relation (32) we
get

Var(Yn)��

(∑n−1
i=0 �i

1�
n−i
2 (n − i)

�n
1

)
= �(1).

On the other hand, ifA2 = 0 we have

Pr{Yn = n} = 
T
1 M

n
1�1 + 
T

1 M
n−1
1 A0�2


TMn�
= �(1).

Moreover, Eq. (28) impliesE(Yn) = n − E + O(εn), whereE > 0, and hence

Var(Yn) =
n∑

k=0
(E − k)2 Pr{Yn = n − k} + O(εn)�E2 Pr{Yn = n} + O(εn)

= �(1)

which completes the proof in the caseB1 = 0.
Now, let us study the caseA1 = 0. If B2 �= 0 thenVar(Y (2)

n ) = �(n) and the result can
be proved as in the caseB1 = 0 with A2 �= 0. If B2 = 0 then by using (29) we can argue
as in the caseB1 = 0 with A2 = 0. �
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6.3. Limit distribution in the dominant case

Now we study the limit distribution of{Yn} in the case�1 > �2 still assumingM0 �= 0. If
the dominant component does not degenerate we obtain a Gaussian limit distribution as in
the primitive case[3]. On the contrary, if the dominant component degenerates we obtain
a limit distribution that may assume a large variety of forms, mainly depending on the
dominated component. In both cases the proof is based on the analysis of the characteristic
function ofYn, that ishn(it)/hn(0).

Recalling thathn(z) = h
(1)
n (z)+gn(z)+h

(2)
n (z), we can apply Proposition6 toh

(i)
n (z) for

i = 1,2, and we need an analogous result forgn(z). First consider the generating function
of {gn(z)} that is


T
1 G(z,w)�2 = ∑

gn(z)w
n = 
T

1 H
(1)(z, w)(A0ez + B0)wH(2)(z, w)�2.

By applying Eq. (17) to H(1), since�1 > �2, for everyznear 0, we get


T
1 G(z,w)�2 = 
T

1 R1(z) (A0ez + B0) y1(z)
−1 H(2)(z, y1(z)

−1)�2

1 − y1(z)w
+ O(1)

asw tends toy1(z)
−1. The contribution of bothh(1)

n andgn yields a quasi-power condition
for Yn.

Proposition 10. If M0 �= 0 and�1 > �2, then for every z near0, as n tends to infinity we
have

hn(z) = s(z)y1(z)
n + O(�n),

where� < |y1(z)| ands(z) is a rational function given by
s(z) = 
T

1 R1(z)
{
�1 + (A0ez + B0) y1(z)

−1 H(2)(z, y1(z)
−1)�2

}
.

Observe that the functions(z) is analytic and non-null atz = 0.
Then, ifA1 �= 0 �= B1 then�1 > 0,�1 > 0 and by the previous proposition we can apply

Theorem3 which yields the following.

Theorem 11. If M0 �= 0, �1 > �2 andA1 �= 0 �= B1 then(Yn − �1n)/
√

�1n converges in
distribution to a normal random variable of mean0 and variance1.

On the other hand, if eitherA1 = 0 or B1 = 0 then�1 = 0 and Theorem3 cannot
be applied. Thus, we study two cases separately, dealing directly with the characteristic
function of{Yn}. First, letB1 = 0 and setZn = n − Yn. We have

h(1)
n (z) = 
T

1 (M1ez)n�1 = (�1ez)n
T
1 (u1v

T
1 + C1(n))�1,

gn(z) =
n−1∑
j=0

(�1ez)j
T
1 (u1v

T
1 + C1(n))

j (A0ez + B0)(A2ez + B2)
n−1−j�2,

h(2)
n (z) = 
T

2 (A2ez + B2)
n�2.
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Hence the characteristic function ofZn can be computed by replacing the previous values in
E(ezZn) = eznhn(z)/hn(0). A simple computation shows that, asn goes to+∞, for every
t ∈ R we have

E(eitZn) = vT1 �1 + vT1 (A0 + B0eit )(�1I − A2 − B2eit )−1�2

vT1 (�1 + M0Q�2)
+ o(1).

Note that by (19) this function cannot reduce to a constant. The caseA1 = 0 can be treated
in a similar way. Hence we have proved the following:

Theorem 12. LetM0 �= 0 and�1 > �2. If B1 = 0 thenn− Yn converges in distribution to
a random variableW of characteristic function

�W(t) = vT1 �1 + vT1 (A0 + B0eit )(�1I − A2 − B2eit )−1�2

vT1 (�1 + M0Q�2)
.

If A1 = 0, thenYn converges in distribution to a random variable Z of characteristic
function

�Z(t) = vT1 �1 + vT1 (A0eit + B0)(�1I − A2eit − B2)
−1�2

vT1 (�1 + M0Q�2)
. (35)

Now, let us discuss the form of the random variablesWandZ introduced in the previous
theorem. The simplest cases occur when the matricesM1 andM2 have size 1×1 and hence
M1 = �1, M2 = �2 and bothA2 andB2 are constants. In this caseW = R(S + G), where
RandSare Bernoullian r.v. of parameterpr andps , respectively given by

pr = M0(�1 − �2)
−1�2

�1 + M0(�1 − �2)−1�2
and ps = B0/M0,

whileG is a geometric r.v. of parameterB2/(�1 − A2). Clearly a similar expression holds
for Z.

Moreover, in the product modelW andZ further reduce to simple geometric r.v.’s (still
in the monodimensional case). More precisely, if(
,�, �) is defined as in Example2 and
bothM1 andM2 have size 1× 1, then one can prove that

�Z(t) = 1 − A2/(�1 − B2)

1 − (A2/(�1 − B2))eit and �W(t) = 1 − B2/(�1 − A2)

1 − (B2/(�1 − A2))eit

which are the characteristic functions of geometric random variables of parameter
A2/(�1 − B2) andB2/(�1 − A2), respectively.

However, the range of possible forms ofWandZ is much richer than a simple geometric
behaviour. To see this fact consider the function�Z(t) in (35); in the product model it can
be expressed in the form

�Z(t) = 
T
2 (�1I − A2eit − B2)

−1�2


T
2 (�1I − M2)−1�2

=
∞∑
j=0


T
2

(
M2/�2

)j �2 · (�2/�1)
j∑∞

i=0 
T
2

(
M2/�2

)i �2 · (�2/�1)i
�

Y
(2)
j

(t),
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Fig. 1. Probability law of the random variableN defined in (36), for j = 0,1, . . . ,200. In the first picture we
compare the case� = 0.00001 and−0.89. In the second one we compare the case� = 0.00001 and+0.89.

where
2 and�2 are defined as in Example2. This characteristic function actually describes
the random variableY (2)

N , whereN is the random variable with probability law

Pr{N = j} = 
T
2 (M2/�2)

j�2 · (�2/�1
)j

∑∞
i=0 
T

2 (M2/�2)i�2 · (�2/�1
)i . (36)

If B2 = 0 then by (35) Z reduces toN, and an example of the rich range of its possible
forms is shown by considering the case where (A1 = 0 = B2) �1 = 1.009,�2 = 1 and
the second component is represented by a generic(2 × 2)-matrix with eigenvalues 1 and
� such that−1 < � < 1. In this case, since the two main eigenvalues have similar values,
the behaviour of Pr{N = j} for smallj depends on the second component and in particular
on its smallest eigenvalue�. In Fig. 1 we plot the probability law ofN defined in (36)
for j = 0,1, . . . ,200 in three cases:� = −0.89, � = 0.00001 and� = 0.89; the first
picture compares the curves in the cases� = −0.89 and 0.00001, while the second picture
compares the curves when� = 0.00001 and 0.89. Note that in the second case, when�
is almost null, we find a distribution similar to a geometric law while, for� = −0.89 and
0.89, we get a quite different behaviour which approximates the previous one for large
values ofj.

7. Equipotent components

Now, we study the behaviour ofYn in the case�1 = �2, still assumingM0 �= 0. Under
these hypotheses two main subcases arise. They are determined by the asymptotic mean
values associated with each component, namely the constants�1 and�2. If they are different
the variance ofYn is of the order�(n2) andYn itself converges in distribution to a uniform
random variable. On the contrary, when�1 = �2 the order of growth of the variance reduces
to�(n) and hence the asymptotic behaviour ofYn is again concentrated around its expected
value. As before we first study the asymptotic behaviour of the moments ofYn and then we
determine the limit distributions.
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7.1. Analysis of moments in the equipotent case

For sake of brevity let� = �1 = �2. As in the dominant case, to study the first two
moments ofYn we can apply Eqs. (15) to get asymptotic evaluations forh(1)

n (0), h(2)
n (0)

and their derivatives. We need an analogous result concerning the functiongn(0). In this
case, sinceM0 �= 0, G(0, w) has a pole of degree 2 in�−1 and then it gives the main
contribution tohn(0).

Proposition 13. Assume�1 = �2 = � and letM0 �= 0.Then the following statements hold:
(1) If �1 �= �2, thenE(Yn) = ((�1 +�2)/2)n+O(1) andVar(Yn) = ((�1 −�2)

2/12)n2 +
O(n);

(2) If �1 = �2 = �, thenE(Yn) = �n + O(1) andVar(Yn) = ((�1 + �2)/2)n + O(1),
where�i > 0 for eachi ∈ {1,2}.

Proof. We argue as in the proof of Proposition8. For this reason we avoid many details
and give a simple outline of the proof. First consider the case�1 �= �2. From relations (15)
one gets the asymptotic expressions ofh

(1)
n (0), h(2)

n (0) and corresponding derivatives. In
order to evaluategn(0), g′

n(0) andg′′
n(0), one can proceed as in the dominant case: use Eqs.

(20), (23) and (24) and apply Lemma4 toH(1)(0, w) andH(2)(0, w). It turns out that, in a
neighbourhood ofw = 1/�, the matricesG(0, w),Gz(0, w) andGzz(0, w) admit a Laurent
expansion of degree 2, 3 and 4, respectively. This leads to asymptotic expressions forgn(0),
g′
n(0) andg′′

n(0), which can be used together with (21) to get the following expressions:

hn(0) = n�n · 
T
1 u1 vT1

M0

�
u2 vT2 �2 + O(�n),

h′
n(0) = n2�n · �1 + �2

2
· 
T

1 u1 vT1
M0

�
u2 vT2 �2 + O(n�n),

h′′
n(0) = n3�n · �2

1 + �1�2 + �2
2

3
· 
T

1 u1 vT1
M0

�
u2 vT2 �2 + O(n2�n) .

Point 1 now follows by applying (6).
If �1 = �2 = �, the previous evaluations yieldE(Yn) = �n+O(1) butVar(Yn) = O(n).

Then, terms of lower order are now necessary to evaluate the variance. These can be obtained
as above by a singularity analysis ofG(0, w), Gz(0, w) andGzz(0, w) and recalling that
�C1 = �C2 = 0. The overall computation leads to the following relations:

E(Yn) = n · � +
{

vT1 M0D2�2

vT1 M0u2v
T
2 �2

+ 
T
1 D1M0u2


T
1 u1v

T
1 M0u2

+ vT1 A0u2

vT1 M0u2
− �

}
+ O(εn),

Var(Yn) = n ·
(
� − �2 + vT2

A2C2A2

�2 u2 + vT1
A1C1A1

�2 u1

)
+ O(1)

= �1 + �2

2
n + O(1).

Finally observe that, since�1 = �2 Eq. (19) impliesAi �= 0 �= Bi for eachi = 1,2 and
hence also�i �= 0, which proves point 2. �
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7.2. Limit distribution in the equipotent case

To study the limit distribution in the equipotent case (�1 = �2 = �) with the assumption
M0 �= 0, we consider again the characteristic function ofYn, that ishn(it)/hn(0). In
this case, we do not obtain a quasi-power Theorem, since the contribution ofgn(z) to the
behaviour ofhn(z) has a different form. In fact, consider the generating function


T
1 G(z,w)�2 = ∑

gn(z)w
n = 
T

1 H
(1)(z, w)(A0ez + B0)w H(2)(z, w)�2.

We study its behaviour forz near 0 andw near�−1. To this end, first define the analytic
function

s(z) = 
T
1 R1(z)(A0ez + B0)R2(z)�2 (37)

and observe thats(0) �= 0. Then apply Eq. (17) to H(1) andH(2). Since�1 = �2 = �, for
everyznear 0 we get


T
1 G(z,w)�2 = s(z)w

(1 − y1(z)w) (1 − y2(z)w)
+ O

(
1

1 − y1(z)w

)

+ O

(
1

1 − y2(z)w

)
+ O(1) (38)

= s(z)
∞∑
n=1

n−1∑
k=0

y1(z)
ky2(z)

n−1−kwn + O

(
1

1 − y1(z)w

)

+ O

(
1

1 − y2(z)w

)
+ O(1)

asw tends to�−1. Thus, atz = 0, sincey1(0) = y2(0) = � by (21) we have

hn(0) = s(0) · n�n−1 + O(�n). (39)

However, forz �= 0, the asymptotic behaviour ofgn(z) depends on the condition�1 �= �2.

Proposition 14. If M0 �= 0, �1 = �2 = � and�1 �= �2, then for every z near0, different
from0,we have

hn(z) = s(z) · y1(z)
n − y2(z)

n

�(�1 − �2)z + O(z2)
+ O

(
y1(z)

n
)+ O

(
y2(z)

n
)+ O(�n),

where0�� < �.

Proof. Since�1 �= �2, from (38) we get, for anyznear 0 different from 0

gn(z) = s(z) · y1(z)
n − y2(z)

n

y1(z) − y2(z)
+ O

(
y1(z)

n
)+ O

(
y2(z)

n
)+ O(�n). (40)

Also observe that, by (16), for anyi = 1,2 and everyznear 0 we can write

yi(z) = � + ��iz + O(z2). (41)
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Hence, the result follows by replacing the previous relations into (40) and recalling that
the contribution of h(1)

n (z) and h
(2)
n (z) is of the order O(y1(z)

n) and O(y2(z)
n),

respectively. �

Theorem 15. IfM0 �= 0,�1 = �2 = � and�1 �= �2, thenYn/n converges in distribution to
a random variable uniformly distributed over the interval[b1, b2],whereb1 = min{�1,�2}
andb2 = max{�1,�2}.

Proof. By Proposition14and Eq. (41), for every non-nullt ∈ R, we have

hn

(
it

n

)
= s(0) · n�n−1

(
1 + it�1/n + O

(
1/n2

))n − (
1 + it�2/n + O

(
1/n2

))n
it (�1 − �2) + O(1/n)

+ O(�n)

which, by (39), yields the following expression for the characteristic function ofYn/n:

E(itYn/n) = hn(it/n)

hn(0)
= eit�1 − eit�2

it (�1 − �2)
+ O

(
1

n

)
.

Observe that the main term of the right-hand side is the characteristic function of a uniform
distribution in the required interval. �

Now, let us consider the case�1 = �2 = �. Then point (2) of Proposition13 holds
and hence there is a concentration phenomenon around the mean value ofYn. The limit
distribution can be deduced from Eq. (40), which still holds in our case but assumes different
forms according whether�1 �= �2 or not. In the following theorem, let� be defined by� =
(�1 + �2)/2.

Theorem 16. If M0 �= 0, �1 = �2, �1 = �2 and�1 �= �2 then(Yn − �n)/
√

�n converges
in distribution to a random variable T of characteristic function

�T (t) = e−(�2/2�)t2 − e−(�1/2�)t2

(�1/2� − �2/2�)t2
. (42)

Proof. First observe that in our case, fori = 1,2,

yi(z) = �

(
1 + �z + �i + �2

2
z2 + O(z3)

)
.

Hence, replacing these values into (40), for eacht ∈ R different from 0 we get

hn

(
it√
�n

)
= s(0) · n�n−1 · ei�t

√
n/� · e−(�2/2�)t2 − e−(�1/2�)t2

(�1/2� − �2/2�)t2

(
1 + O(n−1/2)

)
,

wheres(z) is defined as in (37). The required result follows from the previous equation and

from relation (39), recalling that e
−it�

√
n
� ·hn

(
it/

√
�n
)
/hn(0) is the characteristic function

of (Yn − �n)/
√

�n. �
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By direct inspection, one can see that the probability density corresponding to the charac-
teristic function (42) is a mixture of Gaussian densities of mean 0, with variances uniformly
distributed over the interval with extremes�/�1 and�/�2. Indeed, we have

�T (t) = �
�2 − �1

∫ �2
�

�1
�

e− 1
2vt

2
dv. (43)

Finally we deal with the case where also the main terms of the variances are equal.

Theorem 17. If M0 �= 0, �1 = �2, �1 = �2 and�1 = �2 then(Yn − �n)/
√

�n converges
in distribution to a normal random variable of mean0 and variance1.

Proof. In this case, forz = �(n−1/2), the convolution in (38) satisfies the relation

n−1∑
j=0

y1(z)
j y2(z)

n−1−j = n�n−1

(
1 + �z + � + �2

2
z2

)n−1

(1 + O(z3))n−1.

Replacing this value in the same equation, we get

hn

(
it√
�n

)
= s(0) · n�n−1exp

{
i�t
√
n/� − t2

2

}(
1 + O(n−1/2)

)
.

Hence, reasoning as in the previous proof one can see that the characteristic function of
(Yn − �n)/

√
�n converges to e−t2/2. �

We conclude this section with some examples which illustrate the result obtained in the
equipotent case when�1 = �2. In Fig. 2 we illustrate the form of the limit distributions
obtained in Theorems16 and17. We represent the density of the random variable having
characteristic function (42), for different values of the ratiop = �2/�1. Whenpapproaches
1, the curve tends to a Gaussian density according to Theorem17; if �2 is much greater than
�1, then we find a density with a cuspid in the origin corresponding to Theorem16.

One may also ask whether the hypotheses of Theorem16 are satisfied for some pairs of
primitive linear representations.As an example of such a pair, consider the triple(
1,�1, �1)

where


1 = �1 =
(

1/2
0

)
, A1 = �1(a) =

(
3/20 1
1/16 9/40

)
,

B1 = �1(b) =
(

3/5 0
0 21/40

)
and the triple(
2,�2, �2) such that
2 = 
1 = �2,

A2 = �2(a) =
(

3/40 1
1/16 3/10

)
and B2 = �2(b) =

(
27/40 0

0 9/20

)
.

In this caseM1 = M2 and hence�1 = �2; moreover, by direct computation one can show
that�1 = �2 = 7/16, while�1 = 1611/6400 and�2 = 1899/6400. Thus the hypotheses
of the theorem are satisfied for any possible non-negative value ofM0 �= 0.
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Fig. 2. The first picture represents the density of the random variable having characteristic function
(42), according to the parameterp = �2/�1. The second picture represents some sections obtained for
p = 1.0001,5,15,50,20 000.

8. The sum model

In this section we study the behaviour ofYn assumingM0 = 0. This case corresponds
to Example1, where the stochastic model is defined by the sum of two primitive formal
series, having linear representations(
1,�1, �1) and(
2,�2, �2), respectively. Since here
M0 = 0, to avoid trivial cases, we also assume
2 �= 0 �= �1.

The main difference with respect to the general analysis is that heregn(z) disappears and
hence

hn(z) = h(1)
n (z) + h(2)

n (z). (44)

Thus, if�1 > �2 the leading term ish(1)
n (z) and hencehn(z) behaves almost as in the case

M0 �= 0. On the other hand, if�1 = �2 the analysis of the sum model differs significantly
from the general case: without the contribution ofgn(z) the functionhn(z) now has a simple
pole in the main singularity, rather than a pole of order 2.

8.1. Dominant case in the sum model

Let us assume�1 > �2. First, reasoning as in the proof of Proposition8, we easily get
the following expressions for mean value and variance:

E(Yn) = �1n + �1

�1
+ O(εn), Var(Yn) = �1n + O(1) (|ε| < 1),

where, according to our notation,�1, �1, �1, �1 are the constants associated with the first
component defined as in Theorem5.

As far as the limit distribution is concerned, observe thath
(1)
n (z) satisfies Proposition6

and hence the following theorem holds.
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Theorem 18. If M0 = 0, �1 > �2 andA1 �= 0 �= B1 then(Yn − �1n)/
√

�1n converges in
distribution to a normal random variable of mean0 and variance1.

Now consider the degenerate casesA1 = 0 or B1 = 0. If B1 = 0 then�1 = 1 and
�1 = �1 = 0, hence we getE(Yn) = n + O(εn). On the other hand, ifA1 = 0 then
�1 = �1 = �1 = 0 and hence we getE(Yn) = O(εn). In both cases we have�1 = 0 and a
direct computation provesVar(Yn) = O(εn), showing thatYn almost surely reduces to a
single value (n or 0, respectively). In fact, by Chebyshev’s inequality, ifB1 = 0 we have
for everyc > 0

Pr{|Yn − n| > c}� Var(Yn)

c2 = O(εn)

and hence,Yn−n = o(1) in probability.A similar result can be obtained in the caseA1 = 0.

Theorem 19. AssumeM0 = 0 and�1 > �2. If B1 = 0 (resp.A1 = 0) thenn − Yn (resp.
Yn) tends to0 in probability.

8.2. Equipotent case in the sum model

Here we study the equipotent case�1 = �2 = �. The first moments ofYn can be obtained
from (6) and (44) by recalling thath(1)

n (0), h(2)
n (0) and their derivatives satisfy (15). Thus,

we get the following:

Proposition 20. AssumeM0 = 0 and�1 = �2. If �1 �= �2 then

E(Yn) = n · �1�1 + �2�2

�1 + �2
+ O(1), Var(Yn) = n2 · �1�2(�1 − �2)

2

(�1 + �2)2
+ O(n).

If �1 = �2 = � then

E(Yn) = n · � + O(1), Var(Yn) = n · �1�1 + �2�2

�1 + �2
+ O(1).

Now, let us study the limit distribution. LetUn be the Bernoullian random variable
Un: �n → {0,1} such that for each( ∈ �n

Un(() =
{

1 if ( is entirely contained in the first component,

0 if ( is entirely contained in the second component.

It is easy to show that

Pr{Un = x} =





T
1 M

n
1�1


TMn�
if x = 1,


T
2 M

n
2�2


TMn�
if x = 0.
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We also defineLn = �1Un + �2(1− Un) and observe that if�1 = �2 thenLn = �1 = �2.
Moreover, it is clear thatLn converges in distribution to a random variable�1U+�2(1−U),
whereU is a Bernoullian r.v. of parameterp = �1/(�1+�2). These random variables occur
in the following

Proposition 21. If M0 = 0 and�1 = �2 then the random variable(Yn/n)−Ln converges
to 0 in probability.

Proof. We first evaluate the variance ofYn − nLn. ClearlyYn andLn are not independent,
but we can express their dependence by writingYn = UnY

(1)
n + (1 − Un)Y

(2)
n and hence

Yn − nLn = Un · (Y (1)
n − n�1) + (1 − Un) · (Y (2)

n − n�2).

Moreover, by the previous propositionE(Yn − nLn) = O(1) and hence

Var(Yn − nLn) = ∑
i=0,1

E((Yn − nLn)
2 | Un = i) · Pr{Un = i} + O(1)

= ∑
j=1,2

E((Y
(j)
n − n�j )

2) · �j

�1 + �2
+ O(1)

= n · �1�1 + �2�2

�1 + �2
+ O(1).

Thus, by Chebyshev’s inequality, for everyc > 0 one gets

Pr

{∣∣∣∣Yn

n
− Ln

∣∣∣∣ �c

}
= O

(
1

n

)
. �

Corollary 22. If M0 = 0 and �1 = �2 then the distribution ofYn/n converges to the
distribution having probability mass�1/(�1 + �2) at�1 and probability mass�2/(�1 + �2)

at �2.

The above results intuitively state thatYn asymptotically behaves likenLn, whereLn

may only assume two values. Thus, a natural question concerns the limit distribution of
Yn −nLn. To deal with this problem assume�1 �= 0 �= �2 and consider the random variable
Υ constructed by considering a Bernoullian r.v.U of parameterp = �1/(�1 + �2), two
normal r.v.’sN1, N2 of mean 0 and variance�1 and�2, respectively, and setting

Υ = U · N1 + (1 − U) · N2, (45)

where we assumeU,N1, N2 independent of one another. Note that, if�1 = �2 thenΥ has a
normal distribution of mean 0 and variance�1. The characteristic function ofΥ is given by

E(eitΥ ) = �1

�1 + �2
e−(�1/2)t2 + �2

�1 + �2
e−(�2/2)t2.

It turns out that(Yn − nLn)/
√
n converges in distribution toΥ .

Proposition 23. If M0 = 0, �1 = �2 and �1 �= 0 �= �2 then the distribution of(Yn −
nLn)/

√
n converges to the mixture, with weights�1/(�1 + �2) and�2/(�1 + �2), of two
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normal distributions with mean zero and variance�1 and�2 respectively. In particular, if
�1 = �2 = � then(Yn−nLn)/

√
n� converges in law to a standard normal random variable.

Proof. Let us define the r.v.Υn = (Yn − nLn)/
√
n. Its characteristic function is given by

E(eitΥn) = ∑
i=0,1

E(eitΥn | Un = i) · Pr{Un = i}

= ∑
j=1,2

E
(
eit ((Y (j)

n −n�j )/
√
n)
)

·
(

�j

�1 + �2
+ O(εn)

)

= �1

�1 + �2
e−(�1/2)t2 + �2

�1 + �2
e−(�2/2)t2 + O

(
n−1/2

)
. �

The previous results hold also when�1 = �2 = �; clearly in that caseLn reduces to
the constant� and�1 �= 0 �= �2 otherwise eitherA = 0 or B = 0. Hence we obtain the
following

Corollary 24. AssumeM0 = 0, �1 = �2 and �1 = �2 = �. Then the distribution of
(Yn−n�)/

√
n converges to themixture,with weights�1/(�1+�2) and�2/(�1+�2), of two

normal distributions with mean zero and variance�1 and�2, respectively. In particular, if
�1 = �2 = � then(Yn − n�)/

√
n� converges in law to a standard normal random variable.

9. Summary and conclusions

Most results presented in this work are summarized in Table1. To explain them intuitively,
first recall that in a primitive rational model the limit distribution of our statistics is Gaussian.
Thus, in a model consisting of two primitive components the limit behaviour is determined
by the way how their separate contributions mix together. This combination may produce
quite different limit distributions depending on two main conditions: (i) whether there is a
communication from the first to the second component (i.e.M0 �= 0) and (ii) whether there
exists a dominant component (i.e.�1 > �2 or viceversa). The analysis of the dominant case
splits in two further directions according whether the dominant component is degenerate or
not. The equipotent case (occurring when�1 = �2) has several subcases corresponding to
the possible differences between the leading terms of the mean values and of the variances
associated with each component.

We obtain Gaussian limit distributions only when the dominant component does not
degenerate and hence we can neglect the other component, or when the two components
essentially have the same asymptotic behaviour (i.e. in the equipotent case with equal leading
terms of mean values and variances).

Notice that the existence of a connection between the two components is less relevant
when one is dominant. On the contrary, condition (i) concerningM0 is particularly meaning-
ful in the equipotent case. Here, ifM0 �= 0 the main contribution to the bivariate generating
function is given byG(z,w), which represents the connection from the first to the second
component and is essentially given by the convolution of the two contributions. On the
contrary, whenM0 = 0 the functionG(z,w) vanishes and the two components contribute
separately to the overall behaviour of the system.
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Table 1
This picture summarizes most results presented in this paper

To specify the limit distributions in some cases we refer to theorems proved in the previous sections. Moreover,
we useNm,s andU to denote, respectively, a normal r.v. of mean valuemand variancesand a Bernoullian r.v. of
parameterp = �1/(�1 + �2).
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( a, 1/4 )

( b,1) ( b,1)

1, 1 1/2, 6

( a, 1)

( b, 1 )

( a, 5)

( b,1)

1, 19  1/2, 3

Fig. 3. Two weighted finite automata over the alphabet{a, b}, defining the primitive linear representations
(
i , �i , �i ), i = 1,2.

As a consequence, when the leading terms of the mean values are different, we get a
uniform limit distribution in the caseM0 �= 0, while, ifM0 = 0, we obtain a limit distribution
concentrated in two values that correspond to the separate components. Analogously, when
the main terms of the average values are equal but the leading terms of the variances are
different, we get a mixture of Gaussian distributions having the same mean value: ifM0 �= 0
such distributions have variance uniformly distributed over a given interval; on the contrary,
if M0 = 0 they reduce to two Gaussian distributions, with variances corresponding to the
separate components.

We observe that the dominance condition (ii) plays a key role to determine the limit
distribution in two main cases of the previous classification: the dominant non-degenerate
case and the equipotent case with different leading terms of the mean values. We present
the following example to show how the equipotent case can be considered as a sort of
equilibrium point between two (opposite) dominant cases.

Consider the product model of Example2and define the “factor” components(
i , �i , �i ),
i = 1,2, by means of the weighted finite automata described in Fig.3. The matricesAi =
�i (a) andBi = �i (b) are defined by the labels associated with transitions in the pictures. The
values of the components of the arrays
i and�i are included in the corresponding states.
Multiplying the matricesAi = �i (a) andBi = �i (b) (for i = 1,2) by suitable factors, it is
possible to build from (22) a family of primitive linear representations(
,�, �) where we
may have�1 = �2 or�1 �= �2. In all cases, it turns out that�1 = (1+(1+√

2)2)−1 � 0.146
and�2 = 11/15 � 0.733 (and hence�1 �= �2). Fig. 4 illustrates the probability function
of the random variableY50 in three different cases. If�1 = 2 and�2 = 1 we find a normal
density of mean asymptotic to 50�1. If �1 = 1 and�2 = 2 we have a normal density of
mean asymptotic to 50�2. Both situations correspond to Theorem11. If �1 = �2 = 1, we
recognize the convergence to the uniform distribution in the interval[50�1,50�2] according
to Theorem15.

We conclude observing that some of the previous results clearly extend to rational stochas-
tic models given by more than two primitive components. For instance the result given in
Theorem11also holds in the multicomponent case when only one dominant component ex-
ists and this is not degenerate.Analogously, if two (non-degenerate) equipotent components
dominate the others then a result similar to Theorem15or Proposition23holds (according
whether there exists a communication from the first to the second component). However,
in the multicomponent model the number of subcases grows exponentially since more than
two equipotent components can dominate the others; then the limit distribution depends on
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Fig. 4. Probability functions ofY50 in the product model where the two factor components are defined by
Fig. 3 with weighted expanded by a constant factor. The vertical bars have abscissas 50�1 and 50�2. The curves
correspond to the cases where(�1, �2) are equal to (2,1), (1,2) and (1,1), respectively.

several parameters and properties: the number of dominant components, the geometry of
communication among them, the values of the main constants of mean value and variance
associated with these components and the occurrence of degenerate cases. For this reason,
we think that the general multicomponent model should be first studied by considering a
set of typical situations, rather than by an exhaustive analysis of all possible subcases (as
done in this work).
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