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1. Introduction

Estimating the frequency of given patterns in a random text is a classical problem stud-
ied in several research areas of computer science and mathematics that has well-known
applications in molecular biolog{L0,15,8,14,17]Pattern statistics studies this problem in
a probabilistic framework: one or more patterns are fixed and a text of langtandomly
generated by a memoryless source (also cakhoulli mode) or a Markovian source (the
Markovian modélwhere the probability of a symbolin any position only depends on a finite
number of previous occurrencgd,15,13,5] Main goals of research in this context are the
asymptotic expressions of mean value and variance of the number of pattern occurrences
in the text and its limit distribution. Several results show a Gaussian limit distribution of
these statistics in the sense of the central or local limit thegiémin particular in[13]
properties of this kind are obtained for a pattern statistics which represents the number of
(positions of) occurrences of words from a regular language in a random string of fength
generated in a Bernoulli or a Markovian model.

This approach has been extended3m] to the so-calledational stochastic model
where the text is generated at random according to a probability distribution defined by
means of a rational formal series in non-commutative variables. In particular cases, this is
simply the uniform distribution over the set of words of given length in an arbitrary regular
language. We recall that there are well-known linear time algorithms that generate a word
at random under such a distributif8]. The relevance of the rational stochastic model is
due to the connection with the classical Markovian random sources in pattern statistics.
This relationship can be stated precisely as foll§8}s the frequency problem of regular
patterns in a text generated in the Markovian model (as studid@®]his a special case of
the frequency problem of a single symbol in a text over a binary alphabet generated in the
rational stochastic model; it is also known that the two models are not equivalent.

The symbol frequency problem in the rational model is studief8]jrin the primitive
case, i.e. when the matrix associated with the rational formal series (counting the transitions
between states) is primitive and hence it has a unique eigenvalue of largest modulus, which
is real positive. Under this hypothesis asymptotic expressions for the mean value and the
variance of the statistics under investigation are known, together with their limit distributions
expressed in the form of both central and local limit theoré3ng.

In the present paper we study the symbol frequency problem isi¢benponent rational
mode] which is a non-primitive case of the rational model, defined by a formal series that
admits a linear representation with two primitive components. In this context there are two
special examples of particular interest: they occur when the formal series defining the model
is, respectively, the sum or the product of two primitive formal series. We will call them the
sumand theproduct modelrespectively, and they will represent the leading examples of
our discussion.

We determine the asymptotic evaluation of mean value and variance and the limit dis-
tribution of the number of symbol occurrences in a word randomly generated according
to such a bicomponent rational model. The behaviour of this random variable mainly de-
pends on two conditions: whether there exists a communication from the first to the second
component and whether one component is dominant, i.e. its main eigenvalue is strictly
greater than the main eigenvalue of the other one (if the main eigenvalues are equal we
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say that the components are equipotent). The analysis of the dominant case splits in two
further directions according whether the dominant component is degenerate oiThet.
equipotent case has several subcases corresponding to the possible differences between the
leading terms of the mean values and of the variances of the statistics associated with each
component.

Our main results are summarized in a table presented in the last section. It turns out that
if one component is dominant and does not degenerate then it determines the main terms of
expectation and variance of our statistics, and we get a Gaussian limit distribution. On the
contrary, in the dominant degenerate case the limit distribution can assume a large variety
of possible forms depending even on the other (hon-main) eigenvalues of the dominated
component and including the geometric law in some simple cases. In the equipotent case,
if the leading terms of the mean values (associated with the components) are different, then
the overall variance is of a quadratic order showing there is not a concentration phenomenon
around the average value of our statistics; in this case the typical situation occurs when there
is communication from the first to the second component: here we obtain a uniform limit
distribution. On the contrary, when the leading terms of the mean values are equal, we have
again a concentration phenomenon with a limit distribution given by a mixture of Gaussian
laws, which reduces again to a normal distribution when the local behaviour of our statistics
in the two components is asymptotically equal.

The main contribution of these results is related to the non-primitive hypothesis. To
our knowledge, the pattern frequency problem in the Markovian model is usually studied
in the literature under primitive hypothesis and Gaussian limit distributions are generally
obtained. On the contrary, here we get in many cases limit distributions quite different from
the Gaussian one.

We think our analysis is significant also from a methodological point of view: we adapt
methods and ideas introduced to deal with the Markovian model to a more general stochastic
model, the rational one, which seems to be the natural setting for these techniques.

The material we present is organized as follows. After recalling some preliminaries in
Section2 and the rational stochastic model in Sect®yrwe revisit the primitive case in
Section4 by using a simple matrix differential calculus. In Secti®nve introduce the
bicomponent rational model and then we study the dominant case, i.e. when the main
eigenvalue of one component is greater than the main eigenvalue of the other. In 3ection
we consider the equipotent case, when the two main eigenvalues are equal. Finally Section
8is devoted to the analysis of the sum models while the last section contains the summary
and a comparison of the results.

The computations described in our examples are executed byMsitihgmaticg18].

2. Preliminaries

In this section we recall some basic notions and properties concerning non-negative
matriceqg16] and probability theory9].

1Here, a component is degenerate if all its transitions are labelled by the same symbol.
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2.1. Perron—Frobenius theory

The Perron—Frobenius theory is a well-known subject widely studied in the literature (see
for instancg16]). To recall its main results we first establish some notation. For every pair
of matricesT = [T;;], S = [S;;], the expressiol > S means that;; > S;; for every
pair of indicesi, j. As usual, we consider any vectoras a column vector and denote by
vT the corresponding row vector. We recall that a non-negative niktsixalledprimitive
if there existsn € N such thaf™ > 0. The main properties of such matrices are given by
the following theorenjl6, Section 1]

Theorem 1(Perron—Frobenius Let T be a primitive non-negative matrix. There exists
an eigenvaluel of T (called Perron—Frobenius eigenvalue of 3uch that (i) 4 is real
and positive (ii) with A we can associate strictly positive left and right eigenvectiiy

|v| < Aforevery eigenvalue # 4; (iv) if 0 C < T andy is an eigenvalue of Ghen|y| </,
moreover|y| = A impliesC = T; (v) / is a simple root of the characteristic polynomial
of T.

The following proposition is a first consequence of the theorem ald®ydheorem 1.2]

Proposition 2. If T is a primitive matrix andl is its Perron—Frobenius eigenvalughen

N

n o__ T n
T" = uv +D(n)~}7,

wheres € N, h > 1, D(n) is a real matrix such thatD (n);;| <c for all n large enough
everyi, j and some constant > 0, while v and u are strictly positive left and right
eigenvectors of T corresponding to the eigenvdlugormed so that”u = 1.

Moreover, under the same hypotheses, the matrix > °° ; D(n)n® / h" is well defined

and, by the properties efandu, satisfies the equality

vI'D = Du =0. 1)
2.2. Notations on matrix functions

Assume thatd (x) is a square matrix the entries of which are complex functions in the
variablex. The derivative ofd (x) with respect ok is the matrixD, A (x) = [A’(x);;] of its
derivatives. Thus, ifi (x) and B(x) are square matrices of the same size, then the following
identities can be easily proved:

Dy (A(x) - B(x)) = DxA(x) - B(x) + A(x) - DxB(x), 2

DAY = 3= AL DyAG) - A"
i=1

Dy(A() ™) = —A) ™t DA - AL ®3)
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Moreover, the traditional big-O notation can be extended to matrix functiond:(}etbe
defined in an open domaiB C C, let g(x) be a complex function also defined Ehand
let xg be an accumulation point &; asx tends toxg in E, we write A(x) = O(g(x)) to
mean that for every pair of indicésj, A(x);; = O(g(x)), namely there exists a positive
constant such thatA(x);;| <c|g(x)|, for everyxin E nearxo. Thus, if the entries of (x)
are analytic at a pointg, thenA(x) = A(xo) + A’ (xo)(x — x0) + O ((x — x0)?). On the
contrary, if some entries of (x) have a pole of degree 1 at a poigt while the others (if
any) are analytic at the same point, then

R
Ax) = — + S+ O — xp)
X —Xxp

for suitable matriceR andS(R # 0).

2.3. Moments and limit distribution of discrete random variables

Let Xbe arandom variable (r.v.) with values ina gef, x1, ..., xk, ...} of real numbers
and setp, = Pr{X = x;}, for everyk € N. We denote byFy its distribution function,
i.e. Fx(r) = P{X <t} for everyt € R. If the set of indicegk|pr # 0} is finite we can
consider the moment generating functiongfyjiven by

Yx(z) = EE€¥) = 3 pre™,
keN

which in our case is well-defined for everye C. This function can be used to compute
the first two moments oX,

E(X) = ¥ (0), EX?) = V50 )
and yields the characteristic functionXfgiven by
Dy (1) = EE%) = Py (ir).

The function®@y (¢) (well-defined for every € R) completely characterizes the distribution
function Fy and represents the classical tool to prove convergence in distribution. We recall
that, given a sequence of random varialflés},, and a random variabl§, X,, converges to
Xindistribution(orin law) if lim ,,_. o Fx, (t) = Fx(t) for every pointr € R of continuity

for Fy. Itis well-known thatX,, converges tin distribution if and only if®x, (r) tends

to @ (r) for everyr € R. Several forms of the central limit theorem are classically proved
in this way[9,7].

A convenient approach to prove the convergence in law to a Gaussian random variable
relies on the so-called “quasi-power” theorems introducefd #} (see alsd7]) and im-
plicitly used in the previous literatuf@]. For our purpose it is convenient to recall such a
theorem in a simple form (for the proof sg& Theorem 9.6br [1, Theorem 1}.

Theorem 3. Let{X,} be a sequence of random variahlesere eachx, takes values in
{0, 1, ..., n} and assume there exist two functietis), u(z), both analytic at = 0, where
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they take the value(0) = «(0) = 1, and two positive constants g, such that for every
lz| < ¢

Yx, (@) =r() - u@)" +0(p") and p < |u(2)).

Also sety = u/(0) and ¢ = u”(0) — (u'(0))? and assume > 0 (variability condition).
Then(X, — un)/+/on converges in distribution to a normal random variable of m@an
and variancel, i.e. for everyx € R

. Xn_,un 1 /X _ 272
lim PriZt <yl = — e /2 dt.
n—s+0o { Jon x} 21 00

Finally, we recall that a sequence of random variablg convergesn probabilityto a
random variable if, for everye > 0, P{|X,, — X| > ¢} tends to 0 a® goes totoo. It is
well-known that convergence in probability implies convergence in law.

3. The rational stochastic model

The stochastic model we consider in this work is defined by using the notion of lin-
ear representation of a rational formal sefs Let R, be the semiring of non-negative
real numbers. We recall thatfarmal seriesover X~ with coefficients inR, is a func-
tionr : 2* — R,. Usually, the value of at w is denoted by(r, ) and we write
r = ,ex(r, ) - w. Moreoverr is calledrational if it admits alinear representation
that is a triple(&, u, 1) where, for some integer. > 0, £ andn are (column) vectors
in R} andp : X* — R}™™ is a monoid morphism, such thét ) = M p(w)
holds for eachw € X*. We say thaim is the size of the representation. Observe that
considering such a tripl€, u, n) is equivalent to defining a (weighted) non-deterministic
automaton, where the state set is given{ly2, ..., m} and the transitions, the initial
and the final states are assigned weight®Rin by u, ¢ and 5 respectively. Note that
(&, u, n) represents a deterministic finite automaton wijesnd n are the characteristic
arrays of the initial state and the final states, respectively, and for every> and ev-
eryi =1,2,...,m there exists an indexsuch thatu(s);; = 1, while u(c);;; = 0 for
any j’ # j:in this case is the characteristic series of the languages recognized by the
automaton.

From now on we assumg = {a, b} and setA = u(a), B = u(b) andM = A + B.
Thus, for every positive integersuch thaﬁTM"n # 0, we can define a probability space
as follows. Let us define @omputation pattof lengthn as a string of the form

€ = qox1q91x2q2 . . . Gn—1Xnqn,

whereg; € {1,2,...,m} andx; € {a,b} foreveryj = 0,1,...,n and everyi =
1,2,...,n. We denote by2, the set of all computation paths of lengthand, for each
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¢ € Q,, we define the probability of as

6q0ﬂ(x1)q0411u(x2)4142 e lu(x”)q’zflqn 7],1,,

Pr{¢} =
e} £TMH,,I

Denoting byP(£2,)) the family of all subsets of2,, it is clear that(Q2,, P(Q,), Pn is a
probability space.

Now, let us consider the random variablg Q, — {0, 1, ..., n} such that’,, (¢) is the
number ofa occurring in¢, for eacht € Q,. Itis clear that, for every integer<Qk <n, we
have

(n)

®
PrY, =k} = ﬁ where " = S .

j=0 QDJ- lw|=n,|w|,=k

Note that when(¢&, i, ) represents a deterministic finite automat@jp,is the number of
occurrences oé in a word randomly chosen under uniform distribution in the set of all
strings of lengtn in the language recognized by the automaton. This observation may
suggest that,, could be defined over a sample space simpler fBafa natural candidate
would beX" as in[3]). However, the sample spafk is really necessary in our context, as

it will be clear in Section® and8, since we will have to distinguish different paths having
the same labelling word.

We remark that classical probabilistic models as the Bernoulli or the Markov processes,
frequently used to study the number of occurrences of regular patterns in random words
[11,15,13] are special cases of rational stochastic models. The relationship between Marko-
vian processes and rational stochastic models can be formally stated as follows (for the proof
see[3, Section 2.1). Given a regular languadge over a finite alphabet and a Markovian
processlT generating words at random over the same alphabet,,Jeé® J7) denote the
number of (positions of) occurrences of element&dafi a word of lengtin generated by
I1. It turns out that for every sucR and I1 there exists a linear representati@n u, 1)
over the alphabefa, b} such that, for every € N, the corresponding random variable
Y, has the same probability function ag @, I1), i.e. P{Y, = k} = Pr{O, (R, II) = k}
foranyk = 0,1,...,n. The opposite inclusion is not true: there are rational stochastic
models which cannot be simulated by any Markovian process. This is due to the fact that
the generating function of the bivariate seque{iR¢O, (R, II) = k}}, « is a rational ana-
lytic function for anyR, I1, while there exist linear representatiaids u, ) such that the
generating function of the corresponding sequeiRtl,, = k}}, « is not algebraic.

To study the asymptotic behaviour 8f, one should consider the moment generating
function of the random variablg, which is defined as

hn(2)

Py, (2) = 11, 0)

where  h,() = 3 o™e* = &T (A€ + BY'y (5)
k=0

and observe that byl we have

hy(©) <h21<0>>2

1,(0) and Var(y,) = 70

H =50 1 (0)

(6)
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In order to study the asymptotic behaviourgf0), 2, (0) andi/ (0), itis useful to introduce
the bivariate matrix functiort (z, w), well-defined in a neighbourhood @, 0), given by

400
H(z,w) = Y (A€ + B)"w" = [I — w(A€ + B)]"L. (7)
n=0

Denote byH. andH.. its partial derivatived H /0z andd? H /3z2, respectively, and observe
that

g n T
zohn(z)w =& H(z,w) 1. (8)

Finally, the characteristic function of the random varialjlés given by

ha(it)

_ itYyy _
Dy, (1) = E(e''") = 0

4. The primitive case

The asymptotic behaviour 6f, is studied i3] in the case wher, u, 1) is aprimitive
linear representation, i.e. when the matrga) + u(b) is primitive. In this section, we
present some steps of those proofs by using a more general approach. The discussion will
be useful in subsequent sections.

As above, letA = u(a) andB = u(b). Since the matrix¥ = A + B is primitive we can
consider the Perron—Frobenius eigenvalwd M and, by Propositio, we have

M"' =" (uvT+C(n)), 9)
whereC (n) is a real matrix such that (n) = O(¢") for some 0<¢ < 1 andv” andu are

strictly positive left and right eigenvectors Bf corresponding to the eigenvaldgnormed
so thatv” u = 1. Moreover, we know that the matrix

M2

C = C(n)

0

n

is well-defined and, byl), v/ C = Cu = 0.

SinceA + B is primitive, by Perron—Frobenius Theorem, the functi(, w) defined
in (7) has a unique singularity of smallest modulusuat= 1/ which is a simple pole.
Thus, by 8), alsoH, (0, w) and H,.(0, w) have a unique singularity of smallest modulus
atw = 1/1. The following lemma gives a more precise analysis.

Lemma 4. Inaneighbourhood ab = 1/4,the matriced? (0, w), H,(0, w) andH_, (0, w)
admit a Laurent expansion of the form

HQO, w) = +C+0(1 - w), (10)

1-Aw
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B Aw _ T D
2/’{21112 2 T
H. = 12
ZZ(07 w) (1 _ )w)3 ﬂ uv ( )
w JACA 1
+—(1—Zw)2 (Puv’ 4+ 26D + 2uv 2 uv )+O<1—Zw ,

where the matrix D and the constgfare defined by

A A TA
l):?rmﬁ+uﬂjg, ﬁ:”}”_ (13)

Proof. First observe that relation)(and @) imply the following equalities:

+00 +00
HO,w)=Y M"w" =Y v’ +Cm)"w"
n=0 n=0

+00 +00
=Y wl w+ 3 C) w". (14)
n=0 n=

0

Since each entry df, C(n)x" converges uniformly fox near 1 to a rational function, we
have

o0
Cn)x"=C+0(1—-x)
n=0

and hence the second seriesid)(equalsC + O(1 — Aw), which proves 10).
Now observe that from?) and @) we get

H,(0,w) = HO, w) Aw H(O, w),
H,,(0,w) = H,(0,w) - [I +2Aw H(0, w)].

Replacing 10) in the previous expressions, one can easily find Eg9.dnd (12). O
Theorem 5. If M is primitive then the mean value and the varianc& pfatisfy the relations
0
Em»=&+;+owm Var(Y,) = yn + O(1),

where|e| < 1andf is defined in(13), while o, y and ¢ are given by
TACA
o=y, y=p-fr2=—z . s=c

Proof. By Eg. ), from the previous lemma it is easy to prove that

hn(0) = A" - a4 O(p"),
R () = ni - aff + "8 + O(p"), (15)

TACA
hﬁ@:n%“aﬁ+nﬂ-@B—ﬂﬁ+ﬂ%+2ﬁL%;ﬁ)+Ouﬁ
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where|p| < 4 gives the contribution of smaller eigenvalueMbfThen, the result follows
from ). O

Note thatB = 0 impliesff = 1 andy = 6 = 0, while A = 0 impliesff =y =6 = 0; on
the contrary, ifA # 0 # B then clearly O< < 1 and one can prove also thak0y [3].

In [3] it is proved thatY,, converges in law to a Gaussian random variable, wien
primitive andA # 0 # B. The proof is based on Theor&nTo see its main steps, consider
the generating function df, (z), given by

T .
T _CAdj (I —w(Ae+ B)n
CHGE W = e T T e Ae T By

SinceA + B is primitive, its Perron—Frobenius eigenvalués a simple root of déy/ —
A — B). Thus the equation

det(y/ — A€ —B) =0
defines an implicit functiorny = y(z) analytic in a neighbourhood af = 0 such that
y(0) = Aandy’(0) # 0.
A further property of primitive matrices (see for instanfks, p.7) states that
Adj (I — A — B) > 0 and hence, by continuity, all entries Hf(z, w) are different from

0 for everyznear 0 and every nearl L. These properties allow us to prove the following
proposition[3].

Proposition 6. For every z neaf, as n tends to infinity we have
ha(2) = E"R@)1 - y(@)" + O(p"),
wherep < |y(z)| and R(z) is a matrix function given by

y(2) -Adj(I — y(z)"1(A€ + B))

K@ = =5 ow)detr —w(Ae 1 B) Iy’

Note that any entry oR(z) is analytic and non-null at= 0. Moreover, from the previous
result one can also express the momentsg,ads function ofy(z), obtaining

YO YO (YO)?
o TT T i)
Since in our casg > 0, we can apply Theore@which implies the following

p=

(16)

Theorem 7. If M is primitive andA # 0 # B, then(Y,, — fn)/./yn converges in distri-
bution to a normal random variable of me@rand variancel.

We conclude this section observing thHatH (z, w)n is the generating function ¢#,, (z)}
and hence, by Propositid for everyz near 0 we have
R(z)

H(z,w) = ——— + O(1) asw — y(z)~ L. (17)
1-y@w
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5. The bicomponent model

Here we consider a linear representationu, n) where the matrixi(a) + u(b) consists of
two primitive components. More formally, we consider a trigleu, 1) such that there exist
two primitive linear representatioiié,, 1, 1) and(&,, py, 11,), of sizesandt, respectively,
satisfying the following relations:

F=@l.d = (“15‘) Zzg;) n= (Z;) (18)

whereyy(x) € Riﬁt for everyx € {a, b}. In the sequel, we say théf, u, ) is abicompo-
nentlinear representation.

For sake of brevity we use the notatiod$ = ;(a), B; = p;(b) andM; = A; + B,
for j =0, 1, 2. Hence, we have

A = ua) = (%1 ig), B = u(b) = (%1 gg),

M1 M0>

M:A—i—B:( 0 M

Intuitively, this linear representation corresponds to a weighted non-deterministic finite state
automaton (which may have more than one initial state) such that its state diagram consists
of two disjoint strongly connected subgraphs, possibly equipped with some further arrows
from the first component to the second one.

To avoid trivial cases, throughout this work we assuine# 0 # 1, together with the
following significancenypothesis:

(A1 #00rAz #0) and (By # 0 or By # 0). (29)

Note that if the last condition is not true théf may assume two values at most (either
{0, 1} or {n — 1, n}). Assuming the significance hypothesis means to forbid the cases when
both components only have transitions labelled by the same letter (aitimé).

In our automaton, a computation path= gox1g1x292...q,—1x,g, can be of three
different kinds:

(1) allg;'s are in the first component (in which case we say thiatcontainedin the first
component).

(2) Thereisanindexfs < nsuchthattheindiceg, ¢1, .. ., gs are inthe first component
while gs+1, ..., g, are in the second one. In this case1 is the label of the transition
from the first to the second component.

(3) allg;’s are in the second component (in which case we say‘timtontainedin the
second component).

Using the notation introduced in the previous section, from now on we refer the vglit¢s

and H (z, w) to the triple(&, u, n). We also agree to append indices 1 and 2 to the values

associated with the linear representatiofys i, 1) and(&o, us, 115), respectively. Thus,

for eachj = 1,2, the valuesl;, C;, D;, hy(2), HV (z, w), uj, vj, %), B;, 7, 85, v;(2)

andR;(z) are well-defined and associated with the linear represent@i}om(,, n;)-
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Now consider the matri¥l (z, w). To express its value as a function &f? (z, w) and
H®@(z, w), we use the following identities, which can be proved by induction. For any
matricesP, Q, S of suitable sizes, we have

PO\ _ (Pt Y5 Piosi
0os) ~\o s" ’

moreover, also in the case of matrices, for any pair of sequépges{s, } and any fixed,
we have

oo /n—1 00 00
> <Z Piqsn—l—i) w" = (Z pnw”> qw (Z snw”> .
n=0 n=0 n=0

i=0

Then, a simple decomposition éf(z, w) follows from the previous equations:

+oo
H(z,w) = Y (A + B)"w" =

|: HY(z, w) G(z, w) }
n=0

0 HP(z, w)
where
G(z,w) = HY(z, w) (Ao€ + Bo)yw H? (z, w). (20)

Thus the functiork, (z) defined in b) now satisfies the equality

o0
> ha@uw" = ETH(z, wyn = ETHY (2, wyng + E Gz, wing + ELHP (2, wyn,
n=0

and setting", g, (z)w”" = & G(z, w)n, we obtain
ha(z) = h$P(2) + gn(2) + 1P (2). (21)

The bicomponent model includes two special cases which occur, respectively when the
formal series defined by(&, u, n) is the sum or the product of two rational formal series
that have primitive linear representation.

Example 1(Sun). Letr be the series defined by

(r, ) = & py(o)ny + &S pp(w)n, Vo € {a, by,

where (¢, pj, n;) is a primitive linear representation fgr = 1, 2. Clearly,r admits a
bicomponent linear representation u, ) which satisfies18) and such thaMy = 0. As
a consequence, the computation paths of type 2 cannot occur and hence

hn(2) = hP () + P ).
Example 2 (Produc). Consider the formal series

(rw)= Y al vi(x) 11-74 v2(y) 12 VYo € {a, b},
w=xy
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where(r;, v;, ;) is a primitive linear representation fgr= 1, 2. Theny admits a bicom-
ponent linear representati@d, u, 17) such that

oo, = (M) (2R) e

v2(x) T2

In this case, the three terms/of(z) can be merged in a unique convolution

n
ha(2) = 3 & (1€ + By 1) (A€ + B)" 1.

i=
Now let us go back to the general case: we need an asymptotic evaluatigraofiH.
To this end, sincé\f; and M» are primitive, we can first apply Eqsl%) to h,ﬂl)(O) and
hﬁ,z) (0) obtaining asymptotic evaluations for them and their derivatives. As fgr @ and
its derivatives are concerned, we have to compute the derivativ@$z0fv) with respect
to z, using Eqgs. %) and @):

G,(z, w) = HY (z, w) - (Ao€ + Bo)w - H? (z, w)
+HD(z, w) - Ao€w - H? (z, w)
+HY(z, w) - (A€ + Bo)yw - H® (z, w), (23)

G (z,w)= Hz(zl)(z, w) - (Ao€ + Bo)w - H? (z, w)
+ ZHZ(]')(Z, w) - Ag€w - H? (z, w)
+2HP (z, w) - (Ao€® + Bo)yw - HP (z, w)
+HY(z,w) - Ag€w - H? (z, w)
+2HD (2, w) - AgEw - Hz(z)(z, w)
+HP(z, w) - (A€ + Bo)yw - H? (z, w). (24)

We shall see that the propertiesigfdepend on whether the Perron—Frobenius eigenvalues
A1, A2 of M1 and M» are distinct or equal. In the first case the rational representation
associated with the largest one determines the main characteristis @fe say that

(&, ;. n;) is thedominantcomponentifi; # 42 and4; = max{.1, 42}; we study this case

in the next section. On the contrary/Jif = 1, we say that the components @aguipotent

and they both give a contribution to the asymptotic behaviout, oT his case is considered

in Section?.

6. Dominant component

In this section we study the behaviour {&f,} assumingly > A2 (the casel; < Az is
symmetric). We also assuniéy = 0 since the cas#fp = 0, corresponding to Example
1, is treated in SectioB. We first determine asymptotic expressions for mean value and
variance ofY,, and then we study its limit distribution.
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6.1. Analysis of moments in the dominant case

To study the first two moments &f, we develop a singularity analysis for the functions
H(O, w), H;(0, w) and H,,(0, w), which yields asymptotic expressions for(0), 4, (0)
andn), (0). In the following analysis a key role is played by the matixiefined by

0=l —M) t=J7*H@©, 7Y,
Note thatQ is well-defined sincé; > /2. Moreover, we have
HP?©0, =2 0M0 and  H?(0,iY = 1- 0420.

First of all we can apply Lemméto HV (0, w) andH ® (0, w) and their partial derivatives.
Moreover we need asymptotic expression@and its derivatives. Sincl > A2, by using
(20) and applying 10) to #™ (0, w), asw tends tol; *, we get

ugv! 1 1-Aw
G(O,w)=<1_1/111w+C1>M0</1—1— )11)

x (H<2> ©, 7Y + H® 0, i (w — A;l))

+0(1 — Jqw) = ~ugvd MoQ + O(1). (25)

1
1- 4w
In a similar way one can prove that in a neighbourhood ef 1//1, the matrice<s, (0, w)
andG,, (0, w) admit a Laurent expansion of the form

qw
T g PraviMo0

: [DlMoQ +u1v{ (Ao — f1Mo) Q

G.0,w)=

!
1- 1w

+ u1v] MoQ(Az — 1M2) 0| +O(D), (26)
22,%11}2
(1~ dqw)®

A
1 _];“:-}w)z ’ {zﬁl ’ I:ulv{(AO + MoQA») + DlMO] 0

— 2f%urv] Mo(I + QMz)Q}

G..(0,w) = B2urv] MoQ

Aw TA1C1A1 T
T w2 ”1<ﬂ1+ 1T ”l> R
1
0 . 27
+ <l—)vlw> 27)

Proposition 8. If 41 > A2 then the mean value and variance 6f satisfy the following
relations

E(Y,) = fin+0(1),  Var(¥,) = yin + O1).
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Proof. By applying elementary identities, the previous expansions yield asymptotic ex-
pressions fog, (0) and its derivatives, which by2Q) lead to the following relations:

ha(0) =21 - (Efua) - vi (71 + MoQnyp) + O(p™),
h,(0) =nift - By(Efur) - vf (g + MoQny)
+24 - (Efua) - vl (Ao + MoQA2) Oy + 24 - E1 Da(ny + MoQny)
— 24 - B1(ELu1) - v Mo(I + QM2) Qnp + O(p™),
h(0) =n22 - B2(EL u1) - vi (1 + MoQnp)
+nil - 2P [(f{ul) -v] (Ao + MoQA2) Qnp + &1 D1 - (1, + MoQ'?z)]
2y [28y(E un) o] Mol + M) 01y

A1C1A
+nij - (/ﬁ — B+ 2] %m) (€T ur) - o] (11 + MoQup) + O,
1

where|p| < A1. Then, the result follows fron6j. [
From the last proposition we easily deduce expressions of the mean value for degenerate

cases. [fB1 = 0 thenf; = 1, D1 = 0 and, by the significance hypotheshs, # 0; thus

we get

v{ (Bo+ MoQB2) Qi
vi (11 + MoQnp)

E(Y,) =n— E +0O(¢"), where E = andle| < 1. (28)

On the contrary, ifA1 = 0 thenf; = 0, D1 = 0, A2 # 0 and we get

vl (Ao + MoQ A2) On,

E(Y,) = E' +O(¢"), where E' = -
v1 (N1 + Mo Q1)

(el < 1.  (29)

Note that bottE and E’ are strictly positive sinc@® > O.
Now the problem is to determine conditions that guaranjeg O.

6.2. Variability conditions in the dominant case

To answer the previous questions we first recall that, by The@8iierf8] and Proposition
8, if 11 > A2 andAj1 # 0 # By thenVar(Y,) = y1n + O(1) with y; > 0.

Clearly, if eitherA; = 0 or By = 0 theny; = 0 and the question is wheth&far(Y,,)
keeps away from 0. To study the variability condition in this case (the degenerate dominant
case), it is convenient to express the variance by means of polynomials. Given a non-null
polynomialp(x) = ), prx, wherep, >0 for eachk, consider the random variabk,
such that PiX, = k} = px/p(1). Let V(p) be the variance ok, and setV (0) = 0. Then

_ PO+ (p’(l))z

1%
P p(@) p(D)
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Moreover, in[3, Theorem 3]t is proved that for any pair of non-null polynomials ¢ with
positive coefficients, we have

Vipg) =V(p)+Vig),
r1) q(1)
Vp+g)z2————V(p)+ ————V(g). 30
R T TS M T P Te TR (30
In particular,V(p + g) > min{V(p), V(q)} holds.
A similar approach holds for matrices. Consider a matfxx) of polynomials in the

variablex with non-negative coefficients: we can define its matrix of variances as
V(Mx) =[V(M@x)i)].

Then, for each finite family of matricga/ ® (x)}xe; having equal size and non-null poly-
nomial entries, the following relation holds

— M® (1)

v (Z M<k><x>) > | Xm0
kel ket 2ser MW (D)

Moreover, if M (x) andN (x) are matrices of non-null polynomials of suitable sizes, then

M(L)ixN (D
M(DN(L);;

V(M“‘)(x)l-,-)} :

V(M(x)-N(x)) > [Z (VM @) + V(N(x)kj)}] . (31)

k
Finally, from Theorem3 in [3] one can also deduce that, for every primitive matrix
M = A+ B,if A # 0% Bthen

V(Ax + B)";; = O(n) (32)

for any pair of indices, j.2
Now we are able to establish the variability condition in the dominant degenerate case.

Proposition 9. If My £ 0,41 > Az andeitherBy = 0or A; = OthenVar(Y,) = ¢+0(e")
for somec > Oand|¢| < 1.

Proof. First observe that the asymptotic expression of the variance given in Prop@sition
can be refined as

Var(Y,) = yin + ¢ + O(e"), (33)

wherec is a constant ani¢| < 1. In order to prove it note that the sequenkg®), 4, (0),
h)(0) have a generating function with a pole of smallest modull,lg%lbf degree (at most)
1, 2, 3, respectively: hence their asymptotic expressions are of thecfotfn+ O(p™),
bon " 4 ¢ 4+ O(p™), azn?2" + ban " + c3} + O(p™), respectively, for some constants
ai, bi, ci and|p| < 1, thus, Eq.83) follows by replacing these expressionséh@nd taking
into account Propositio8.

2 In this work we use the symb@ to represent the order of growth of sequences: given two sequgnges C
and{b,} € R4, the relatioru, = ®(b,) means that1b,, <|a,| < c2by, for two positive constants; andcp and
all nlarge enough.
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Now, since eitheB; = 0 or A1 = 0 we havey; = 0 and we only have to prove> 0. To
this end we show thatar(Y,) > ®(1). Consider the casB; = 0 and first assumg, # 0.

Note that, by the significance hypothesis also=- 0 holds, and hencg, > 0.
Moreover, we have

Var(y,) = V (& Afm” + & Pa(omy + & (Aax + B2)"1p)

where
n—1 ,
Py(x) = Y Alx'(Aox + Bo)(Agx + Bp)" 1,
i=0

hence, by Eq.30),

I mz T =1 4ige pgn—1-i

Var(Y,) > M(Vzn‘i‘o(l))-l- $1 2200 Tl oM, P

¢ M"n £ My

XV (&1 Pu(x)112)- (34)

Now, applying Egs.30) and @1), we get
V(& Pa)1lp)
n—1 Al M Mn—l—i . - '
> min { ¥ (AiMoMy ) jk (V(A2x+32)n—l—t>.k ’
J

/('k)el h n=1 45 n—1-s
- i=0 (Zx:O A1MoM; ‘)jk

wherel = {(j, k): 1, Pa(x) jknp, # 0}. Replacing this value ir3d), by relation 82) we
get ‘

n—21 4i yn—i .
Vary,)> 0 (Zi:o '1?1 (n ”) — ).
1

On the other hand, ii; = 0 we have

E My + &L MY Agn,
&M Mmy

PH{Y, = n} = — O(1).

Moreover, Eq. 28) impliesE(Y,) = n — E + O(¢"), whereE > 0, and hence

Var(Y,) = f (E — k)2PHY, = n — k} + O(e") > E2Pr{Y,, = n} + O(e")
k=0
= 0(1)

which completes the proof in the caBg = 0.

Now, let us study the casé; = 0.1f B, 20 then\/ar(Y,fz)) = @(n) and the result can
be proved as in the cagg = 0 with A2 # 0. If B = 0 then by usingZ9) we can argue
asinthecas8; =0withA, =0. O
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6.3. Limit distribution in the dominant case

Now we study the limit distribution ofY,,} in the casel; > Ay stillassumingVlp # O. If
the dominant component does not degenerate we obtain a Gaussian limit distribution as in
the primitive casg3]. On the contrary, if the dominant component degenerates we obtain
a limit distribution that may assume a large variety of forms, mainly depending on the
dominated component. In both cases the proof is based on the analysis of the characteristic
function ofY,,, that ish,, (it) /h, (0).

Recalling that,, (z) = h,ﬁl) (2)+gn(2) +h§,2) (z), we can apply Propositiofito h,(f)(z) for
i =1, 2, and we need an analogous resultdp(z). First consider the generating function
of {g,(2)} that is

é{G(z, Wi, = Y gn(w" = éfH(l)(z, w)(Ao€ + Bo)ywH@ (z, w)n,.
By applying Eq. 17) to HV, sincel; > 1, for everyznear 0, we get

1 R1(2) (Ao + Bo) y1(2) " H@(z, y1(z2) " Hn,
1-yi@w
o

TGz, winp = +0(1)

asw tends toy1(z) 1. The contribution of botth
for v,.

andg, yields a quasi-power condition

Proposition 10. If My # 0and /1 > /2, then for every z nedDd, as n tends to infinity we
have

ha(z) = s(2)y1(2)" + O(p"),

wherep < |y1(z)| ands(z) is a rational function given by
5) = & R1@) {1 + (A0 + Bo) 1) HO(e, 310 Dma

Observe that the functianz) is analytic and non-null at = 0.
Then, ifA1 # 0 # B1thenf; > 0,y > 0 and by the previous proposition we can apply
Theorem3 which yields the following.

Theorem 11. If Mo # 0,41 > A2 and A1 # 0 # Bj then(Y,, — 1)/ /711 converges in
distribution to a normal random variable of me&@rand variancel.

On the other hand, if eithet; = 0 or By = 0 theny; = 0 and Theoren8 cannot
be applied. Thus, we study two cases separately, dealing directly with the characteristic
function of{Y,}. First, letB1 = 0 and se¥,, = n — Y,,. We have

R (z) = €1 (M1€) 'y = (Ja€)" &L (uav] + C1(n))ny,
n—1 . R .
8 (2) = Y (21€) E vl + C1(n))! (Ao€ + Bo)(A2€° + B2)" 1/,
j=0

hP(z) = €1 (A€ + B2)"ny.
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Hence the characteristic functionsf can be computed by replacing the previous values in
E(e%") = €"h,(z)/ h,(0). A simple computation shows that, agoes to+oco, for every
t € R we have

vI'ng + vl (Ao + Bo€")(Jal — A2 — B€") "1y,
vl (ny + MoQny)

Note that by 19) this function cannot reduce to a constant. The ese- O can be treated
in a similar way. Hence we have proved the following:

Ee"%r) = +0(1).

Theorem 12. Let Mg # 0and/; > /2. If By = Othenn — Y,, converges in distribution to
a random variable W of characteristic function

vl + vl (Ao + Bo€") (U1l — Az — B26") "1,
v (111 + MoQny)

If A1 = 0, thenY, converges in distribution to a random variable Z of characteristic
function

Dy (1) =

v{l’]l + v{(Aoeit + Bo) (A1l — Azeit — Bz)_lrlz

Dy(1) =
? oI (1 + Mo Q)

(35)

Now, let us discuss the form of the random variaMéandZ introduced in the previous
theorem. The simplest cases occur when the mathiesnd M, have size Xk 1 and hence
My = A1, M» = J» and bothA, and B, are constants. In this cageé = R(S + G), where
RandSare Bernoullian r.v. of parametgy and p,, respectively given by

Mo(i1 — 42)"tn,
N+ Mo(A1 — 22) "1,
while G is a geometric r.v. of paramet®p/(/1 — A2). Clearly a similar expression holds
for Z.

Moreover, in the product mod®V andZ further reduce to simple geometric r.v.’s (still
in the monodimensional case). More precisely{ifu, ) is defined as in Exampl2and
both My and M> have size Ix 1, then one can prove that

1-Az/(J1— B2) 1— By/(Ja— A2)
1— (A2/(J1— B2))€" 1— (B2/(41 — A2))€!
which are the characteristic functions of geometric random variables of parameter
Az/(A1 — B2) andBy/ (A1 — A2), respectively.

However, the range of possible formsWfandZ is much richer than a simple geometric
behaviour. To see this fact consider the funct@n(r) in (35); in the product model it can
be expressed in the form
8 (Al — A2€" — Bp) "l

nd (Gal — M2)~11p

x I'(My/22) 12 - (J2/21)!
> :oz( 2/42) Tzi (42/21) b0,
=02 0nd (Ma/22) 2 (A2fA)t

pr = and ps = Bo/ Mo,

Dy (1) = and Dy (1) =

Pz(1) =
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Pr{N=j}
Pr{N=j}

50 100 150 200 50 100 150 200
] ]

Fig. 1. Probability law of the random variabdefined in 86), for j = 0,1,..., 200. In the first picture we
compare the cage = 0.00001 and-0.89. In the second one we compare the gase0.00001 andt0.89.

wheren, andr; are defined as in Examp2e This characteristic function actually describes

the random variablé(](\,z), whereN is the random variable with probability law

T e (7473\
PIN = ] — 13 (M2/22) 12 - (A2/71) . (36)

Y onE (Ma/ i)tz - (22/ 1)

If B, = 0 then by 85) Z reduces td\, and an example of the rich range of its possible
forms is shown by considering the case whete & 0 = By) 11 = 1.009,/, = 1 and

the second component is represented by a gexric2)-matrix with eigenvalues 1 and
usuchthat-1 < u < 1. In this case, since the two main eigenvalues have similar values,
the behaviour of RtV = j} for smallj depends on the second component and in particular
on its smallest eigenvalue. In Fig. 1 we plot the probability law oN defined in 86)

for j = 0,1,...,200 in three casest = —0.89, u = 0.00001 andu = 0.89; the first
picture compares the curves in the cgges —0.89 and 0.00001, while the second picture
compares the curves when= 0.00001 and 0.89. Note that in the second case, when

is almost null, we find a distribution similar to a geometric law while, foe= —0.89 and
0.89, we get a quite different behaviour which approximates the previous one for large
values ofj.

7. Equipotent components

Now, we study the behaviour af, in the casel; = 1, still assumingMg # 0. Under
these hypotheses two main subcases arise. They are determined by the asymptotic mean
values associated with each component, namely the congteentsl5,. If they are different
the variance of,, is of the ordei®(n2) andY, itself converges in distribution to a uniform
random variable. On the contrary, whegn= f, the order of growth of the variance reduces
to @ (n) and hence the asymptotic behavioutpis again concentrated around its expected
value. As before we first study the asymptotic behaviour of the momentsarid then we
determine the limit distributions.
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7.1. Analysis of moments in the equipotent case

For sake of brevity lef. = A1 = 4. As in the dominant case, to study the first two
moments ofY,, we can apply Egs.16) to get asymptotic evaluations fhé,l) (0), hff) 0
and their derivatives. We need an analogous result concerning the fuggtion In this
case, sinceMy # 0, G(0, w) has a pole of degree 2 ir® and then it gives the main
contribution toh, (0).

Proposition 13. Assumé.; = A = JZandletMp # 0.Then the following statements hold

(1) If By # P, thenE(Y,) = (B + B2)/2n +O(1) andVar(Y,) = ((f1 — f2)%/12n* +
O(n);

(2) If p; = pp = P, thenE(Y,) = fn + O(1) and Var(Y,) = ((y1 + 72)/2)n + O(1),
wherey; > 0for eachi € {1, 2}.

Proof. We argue as in the proof of Propositi@nFor this reason we avoid many details
and give a simple outline of the proof. First consider the ggsg f,. From relations15)

one gets the asymptotic expressionSth 0, hﬁlz)(O) and corresponding derivatives. In
order to evaluatg, (0), g, (0) andg, (0), one can proceed as in the dominant case: use Egs.
(20), (23) and @4) and apply Lemma to HD (0, w) andH @ (0, w). It turns out that, in a
neighbourhood ofy = 1/4, the matrice%; (0, w), G, (0, w) andG (0, w) admit a Laurent
expansion of degree 2, 3 and 4, respectively. This leads to asymptotic expressggri8)or
g,(0) andg// (0), which can be used together with1] to get the following expressions:

M,
ha(0) =ni"- é{ul vlT -0 us va112 + 0,

A
M
h;,(0) = njn. @ . g{ul vlT TO u va112 + 0Om"),
2 2
M
h'(0) = n3i" . Bt Biba + B ﬁlfz +Fh2 g ol —AO uz v, + 02"y .

Point 1 now follows by applying6).
If B, = B, = f, the previous evaluations yieldY,) = fin +0O(1) butVar(y,) = O(n).
Then, terms of lower order are now necessary to evaluate the variance. These can be obtained
as above by a singularity analysis G0, w), G, (0, w) and G, (0, w) and recalling that
pC1 = pC2 = 0. The overall computation leads to the following relations:

T T T
vi MoD2ny &1 D1Mouz v] Aou2
E(Y) =n-p+ {2 —F4 + 2= 1=C _ Bt +0E",
vy Mougvynp &y ugvy Mouz vy Mouz
A2C2A A1C1A
\/ar(yn)=n-(ﬁ—ﬁ2+u§ 2}22 2u2+u{—1)21 1u1>+0(1)
=“/1‘12‘“/2n+o(1).

Finally observe that, sinc;, = f, Eq. 19) implies A; # 0 # B; for eachi = 1,2 and
hence alsg; # 0, which proves point 2. [
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7.2. Limit distribution in the equipotent case

To study the limit distribution in the equipotent cade & 1> = 1) with the assumption
Mgy # 0, we consider again the characteristic functionYpf that is h,(it)/ h,(0). In
this case, we do not obtain a quasi-power Theorem, since the contributigiizofto the
behaviour ofz, (z) has a different form. In fact, consider the generating function

é{G(z, win, = Y gn(w" = ﬁH(l)(z, w)(Ao€ + Bo)w HP(z, w)n,.

We study its behaviour for near 0 andw nearA L. To this end, first define the analytic
function

s(z) = €] R1(z)(Ao€ + Bo) R2(2) (37)

and observe that(0) # 0. Then apply Eq.17) to H® and H®. Since/y = Jp = /4, for
everyznear O we get

T o o)
G(z, ), = T5now
AO@ W= G S A ow T O\ T ow

o —— o1 38
* (1—y2(z)w)jL @ (38)

oo n—1 1
_ k n—1-k.  n _—
=s(2) nglkgo v1(2)"y2(2) w" +0 (1 _ yl(z)w>

1
o ———— O(1
* (1—y2(z)w>+ @

asw tends tod 1. Thus, at; = 0, sincey1(0) = y»(0) = A by (21) we have
h,(0) = s(0) - nA"~L + OU™M). (39)
However, forz # 0, the asymptotic behaviour g, (z) depends on the conditighy # f3.

Proposition 14. If Mg # 0,41 = 22 = Aand ff; # f», then for every z nedD, different
fromO0, we have

y1(2)" = y2(2)"

hn(2) = s(z) - MP1 = P2)z + O(z2)

+ 0 (y1(2)") + O (y2(2)") + O™,

where0<p < /.

Proof. Sincefi; # 55, from (38) we get, for anyz near O different from O

on(@) = s(o) - T2 (0 ) 40 (1)) + O, (40)
y1(z) — y2(2)

Also observe that, byl@), for anyi = 1, 2 and every near 0 we can write

yi(z) = A+ APz + 0. (41)



D. de Falco et al. / Theoretical Computer Science 327 (2004) 269—-300 291

Hence, the result follows by replacing the previous relations i#@) &nd recalling that
the contribution ofhf,l)(z) and hf,z)(z) is of the order Q@yi(z)") and Qy2(z)"),
respectively. O

Theorem 15. If Mg # 0,21 = A2 = Aandf; # f,,thenY, /n converges in distribution to
arandom variable uniformly distributed over the interyiad, b,], whereby = min{f, f»}

andby = max{fi1, o).

Proof. By Propositionl4 and Eq. 41), for every non-nulk € R, we have

it _ o (A+itBy/n+0(1/n?))" — (1+itBy/n +O(1/n?))"
. ( ) =0 it (B~ fp) + O (1/n)

+00")

which, by 39), yields the following expression for the characteristic functiot,gfn:
i itfy _ gtp

hn(it/n) _ e' 1— ¢z +O<E>.
hn(o) |t(ﬂ1 - ﬂZ)

Observe that the main term of the right-hand side is the characteristic function of a uniform
distribution in the required interval. [J

E(itY,/n) =

n

Now, let us consider the cagg = f, = f. Then point (2) of Propositiod3 holds
and hence there is a concentration phenomenon around the mean v&juerae limit
distribution can be deduced from E40}, which still holds in our case but assumes different
forms according whether, # 7, or not. In the following theorem, letbe defined by =

(11 +72)/2.

Theorem 16. If Mg # 0, A1 = A2, 1 = B, andy, # y, then(Y,, — fn)/./yn converges
in distribution to a random variable T of characteristic function

e 02/2D12 _ o= (1/2)12
(11/2y = 72/2)12

Proof. First observe that in our case, foe 1, 2,

Dr(t) = (42)

y:(z)—ﬂ<1+ﬂ + A2 ﬁ 2+o<z~°’>)

Hence, replacing these values intd), for eacty € R different from 0 we get

i ) —(90/2012 o (yy/2)t?
i <_«/It>=s(0)-n)."1-éﬁfm.e R — e
mn (71/2y — 72/29)1?

wheres(z) is defined as in37). The required result follows from the previous equation and

(1 + O(nil/z)) ,

from relation B9), recalling thatéitﬁ\/?’-h,, (it/ﬁ) / h, (0) is the characteristic function
of (Y, — pn)//ymn. O
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By direct inspection, one can see that the probability density corresponding to the charac-
teristic function 42) is a mixture of Gaussian densities of mean 0, with variances uniformly
distributed over the interval with extremesy; andy/y,. Indeed, we have

Or(t) = ﬁly e 2" dy. (43)

Y2—"1

Finally we deal with the case where also the main terms of the variances are equal.

Theorem 17.If Mg # 0, A1 = A2, 1 = B, andy, = 7, then(Y,, — fn)/./yn converges
in distribution to a normal random variable of me@rand variancel.

Proof. In this case, for = ®@(n~Y?), the convolution in 88) satisfies the relation

1
n—1 . ) + 2 n

Z yl(Z)ij(Z)nflfl = n;L’l_l (1 + fz + %Z2> 1+ 0(23))7171.
j=0

Replacing this value in the same equation, we get

; 2
I (%) = 5(0) -n),"_lexp{iﬁt\/n/"/ — %} (1+ O(n*l/2)> .
Hence, reasoning as in the previous proof one can see that the characteristic function of
(Y, — pn)/ /77 converges to € /2. [

We conclude this section with some examples which illustrate the result obtained in the
equipotent case whefy = f,. In Fig. 2 we illustrate the form of the limit distributions
obtained in Theorem%6 and17. We represent the density of the random variable having
characteristic functiond), for different values of the ratip = y,/7,. Whenp approaches
1, the curve tends to a Gaussian density according to Thebrgifny, is much greater than
1, then we find a density with a cuspid in the origin corresponding to The@fm

One may also ask whether the hypotheses of Thedi@ane satisfied for some pairs of
primitive linear representations. As an example of such a pair, consider the&tiplg , 71)

where
1/2 3/20 1
Go=m= ( (/) ) Ar=u(a) = (1;16 9/40)’

and the triple(&,, iy, 17,) such thatt, = &, = 15,

o (340 1 (27740 ©
AZ—NZ(“)—<1/16 3/10) and BZ—“Z(b)—( 0 9/20)'

In this caseM1 = M and hencé.; = 4p; moreover, by direct computation one can show
thatf, = f, = 7/16, whiley; = 1611/6400 andy, = 1899/6400. Thus the hypotheses
of the theorem are satisfied for any possible non-negative valig gt 0.
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Fig. 2. The first picture represents the density of the random variable having characteristic function
(42), according to the parametgr = 7,/y;. The second picture represents some sections obtained for
p =1.0001 5, 15, 50, 20 000.

8. The sum model

In this section we study the behaviour Xjf assumingMy = 0. This case corresponds
to Examplel, where the stochastic model is defined by the sum of two primitive formal
series, having linear representatiads, iy, 1) and(&,, uy, 11,), respectively. Since here
Mp = 0, to avoid trivial cases, we also assute 0 # 1.

The main difference with respect to the general analysis is thaghéredisappears and
hence

ha(z) = hP(2) + h2 (2). (44)

Thus, if 41 > A2 the leading term iﬁ,sl) (z) and hencé, (z) behaves almost as in the case
My # 0. On the other hand, if; = A the analysis of the sum model differs significantly
from the general case: without the contributiorzpfz) the functionz,, (z) now has a simple
pole in the main singularity, rather than a pole of order 2.

8.1. Dominant case in the sum model

Let us assume; > Ay. First, reasoning as in the proof of Proposit@nve easily get
the following expressions for mean value and variance:

E(Y,) = pin + % + O(e"), Var(Y,) =yn+01)  (lel <D,
1

where, according to our notatios, fi1, 71, 41 are the constants associated with the first
component defined as in Theoré&m

As far as the limit distribution is concerned, observe ﬂrfé)c(z) satisfies Propositiof
and hence the following theorem holds.
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Theorem 18. If Mp = 0, 11 > A2 and A1 # 0 # By then(Y,, — 1n)/. /711 converges in
distribution to a normal random variable of me@rand variancel.

Now consider the degenerate casgs= 0 or By = 0. If By = 0 thenfi; = 1 and
y1 = 01 = 0, hence we geE(Y,) = n + O(¢"). On the other hand, ii; = 0 then
p1 = y1 = 01 = 0 and hence we géi(Y,) = O(¢"). In both cases we havg = 0 and a
direct computation prove¥ar(Y,) = O(¢"), showing thatt,, almost surely reduces to a
single value if or O, respectively). In fact, by Chebyshev’s inequalityBif = 0 we have
for everyc > 0

Var(Y,)
c2

Pr{|Y, —n| > ¢} < = 0(")

and hencey,, —n = o(1) in probability. A similar result can be obtained in the cdge= 0.

Theorem 19. AssumeVlp = Oand /1 > Ap. If By = 0 (resp.A1 = 0) thenn — Y, (resp.
Y,) tends td0 in probability.

8.2. Equipotent case in the sum model

Here we study the equipotent calge= /4, = /. The first moments of, can be obtained
from (6) and @4) by recalling thalhfll) (0), h,(f) (0) and their derivatives satisfil §). Thus,
we get the following:

Proposition 20. AssumeVlp = 0 and i1 = Z2. If 1 # f, then

bt By o) yary) < 2. 22— P2

E(Y,) =n
(¥n) + o2 (a1 + o2)?

+ O(n).

If ﬁl - ﬁz e ﬁthen

o1yq + %2)7

E(Y,) =n-B+0(1), Var¥,) =n-
(Yp) =n-p+0(1) ar(¥,) =n P

+0(D).

Now, let us study the limit distribution. Lel/, be the Bernoullian random variable
U,: Q, — {0, 1} such that for each € Q,

U, (6) = 1 if ¢ is entirely contained in the first component
"Y1 0 if £ is entirely contained in the second component
It is easy to show that
T
Mﬂ

L Mlnnl if x =1,
PH{U, = x} = éMJ7

f222l2 g 2o,

&My
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We also defind.,, = .U, + (1 — U,) and observe that §; = f§, thenL, = f; = fo.
Moreover, itis clear that,, converges in distribution to a random variaBlé/ + ,(1—U),
whereU is a Bernoullian r.v. of parameter= o1 /(a1 + o2). These random variables occur
in the following

Proposition 21. If My = 0andA; = A then the random variabl€y,, /n) — L, converges
to 0 in probability.

Proof. We first evaluate the variance Bf — nL,,. ClearlyY, andL, are notindependent,
but we can express their dependence by writipg= U, Y,fl) +@1- U,,)Y,EZ) and hence
Yo —nLy = Uy - YV —nf) + @A —Uy) - (Y2 —npy).
Moreover, by the previous propositidiiY,, — nL,) = O(1) and hence
Var(Y, —nL,) = Y. E((Y, —nLy)? | U, =i)-PU, =i} + O(1)

i=0,1
= B —npn? - —2 1o
j:Zl,Z ((Yn B9 P (D)
zn.w_,_o(l)_
o1+ o2

Thus, by Chebyshev’s inequality, for evary- 0 one gets

1
>c} _0 (_) .o
n
Corollary 22. If Mg = 0 and A1 = 1, then the distribution of’,,/n converges to the

distribution having probability mass; /(x1 + «2) at 1 and probability massy/ (a1 + o2)
at f3,.

2L _L,

{Y
Pr

n

The above results intuitively state thgt asymptotically behaves likeL,,, whereL,,
may only assume two values. Thus, a natural question concerns the limit distribution of
Y, —nL,. To deal with this problem assume # 0 # 7, and consider the random variable
T constructed by considering a Bernoullian tJof parameterp = a1/(x1 + a2), two
normal r.v.’sN1, N of mean 0 and variancg andy,, respectively, and setting

T=U-N1+@1—-U)- N, (45)

where we assumé, N1, N2 independent of one another. Note thap,it= 7, thenY" has a
normal distribution of mean 0 and variange The characteristic function af is given by

[E(ei’r) B e‘(""l/z”2 + %2 e_(VZ/Z)’Z.
og + o oy + o2

It turns out thatY,, — nL,)/+/n converges in distribution ta.

Proposition 23. If Mg = 0, A1 = 42 andy; # 0 # y, then the distribution ofY, —
nL,)/«/n converges to the mixturevith weightsxy /(o1 + a2) and o/ (a1 + o2), of two
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normal distributions with mean zero and variangeand y, respectively. In particulgrif
y1 = v, = ythen(Y, —nL,)/./ny converges in law to a standard normal random variable

Proof. Let us define the r\I;, = (Y, — nL,)/+/n. Its characteristic function is given by
EET) = Y EET" | Uy =1i)-PiU, =i}

i=0.1
) o
— Z |E <ell((yn/ 7”,[}/)/\&)) . ('/ —|— O(Sn)>
iH02 o+ o
= TLoe 2 2 g2 oY) O
o1 + o2 a1+ o2

The previous results hold also wh@n = , = f3; clearly in that caséd., reduces to
the constanf andy; # 0 # y, otherwise eithe’d = 0 or B = 0. Hence we obtain the
following

Corollary 24. AssumeMy = 0, 41 = 42 and ; = f, = f. Then the distribution of
(Y, —nf)//n converges to the mixturevith weightsxy / (o1 + o2) andoz/ (o + or2), of two
normal distributions with mean zero and variangeandy,, respectively. In particularif

71 = V2 = y then(Y, —np)/,/ny converges in law to a standard normal random variable

9. Summary and conclusions

Most results presented in this work are summarized in Thle explain them intuitively,
firstrecall thatin a primitive rational model the limit distribution of our statistics is Gaussian.
Thus, in a model consisting of two primitive components the limit behaviour is determined
by the way how their separate contributions mix together. This combination may produce
quite different limit distributions depending on two main conditions: (i) whether there is a
communication from the first to the second component#g # 0) and (ii) whether there
exists a dominant component (i/&. > A or viceversa). The analysis of the dominant case
splits in two further directions according whether the dominant component is degenerate or
not. The equipotent case (occurring whan= 1) has several subcases corresponding to
the possible differences between the leading terms of the mean values and of the variances
associated with each component.

We obtain Gaussian limit distributions only when the dominant component does not
degenerate and hence we can neglect the other component, or when the two components
essentially have the same asymptotic behaviour (i.e. in the equipotent case with equal leading
terms of mean values and variances).

Notice that the existence of a connection between the two components is less relevant
when one is dominant. On the contrary, condition (i) conceriigg particularly meaning-
ful in the equipotent case. Here Mifg # 0 the main contribution to the bivariate generating
function is given byG (z, w), which represents the connection from the first to the second
component and is essentially given by the convolution of the two contributions. On the
contrary, whenVp = 0 the functionG (z, w) vanishes and the two components contribute
separately to the overall behaviour of the system.
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Table 1
This picture summarizes most results presented in this paper
Conditions Results
Dominance| Degeneracy Mean value Variance Limit distribution
Yn — /}I n
A #0# B Byn+0O(1) 71n +O(1) W—m No,1
0< [}I <1 0< )’I
Al >y B =0 n—FE+0(@E" ¢+ 0@™) n—Y, —q W
E>0 ¢c>0 Theorem 12
A1 =0 E' + O(e") ¢ 4+ 0(e™) Yo —u 7
E'>0 >0 Theorem 12
Mo # 0 2
- Y,
1 # Pa Wn +0(1) wnz +0m)| £ —>4 Unif(h;., ba)
n
Theorem 15
Y, —
=is | Pi=Pr=p Bn +O(1) 4+ 0(1) b p
S
"1 #E 72 Y= % Theorem 16
Yy, — pn
Br=p=p Bn+0(1) yn 4 0(1) = —d Noi
/
N="72=7
yn — Blﬂ
AL #0# By Bin+0(1) 7in+O(1) W—)d No.1
0< ﬁ] <1 0< 7
Al > B =0 n+ O(s") O(e™) n—Y, —,0
Theorem 19
A1 =0 O(e") o) Yp —p 0
Theorem 19
2 Yy
By # B cin+0O(1) can” + O(n) o d
My=0 2
o ff + o oo —
PV oY I L () /322) LU + ol — 1)
oy + o (o) +op)
Corollary 22
Y, —
=2y | P1=h=p pn+0(1) c3n +O(1) n[ﬂ" —>yg
n
o171+ oY
} } 3= ————= | UNg, 1—-U)Ny.,
) 3 ot 0.9, + ( )NO .4,
Corollary 24
s . Yn — fn
Bi=B=F pn+0() yn +0(1) N No,1
=7 =7 Corollary 24

To specify the limit distributions in some cases we refer to theorems proved in the previous sections. Moreover,
we useN,, s andU to denote, respectively, a normal r.v. of mean vatuend variances and a Bernoullian r.v. of
parametep = a1/(0q + o2).
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(a 1/4) (b 1)
(b1) @y (b)

Fig. 3. Two weighted finite automata over the alphafetb}, defining the primitive linear representations
(TL',', Vi, ‘E,‘), i = 1, 2.

As a consequence, when the leading terms of the mean values are different, we get a
uniform limit distribution inthe cas&fy # 0, while, if Mo = 0, we obtain a limit distribution
concentrated in two values that correspond to the separate components. Analogously, when
the main terms of the average values are equal but the leading terms of the variances are
different, we get a mixture of Gaussian distributions having the same mean vallge;Af0
such distributions have variance uniformly distributed over a given interval; on the contrary,
if Mo = 0 they reduce to two Gaussian distributions, with variances corresponding to the
separate components.

We observe that the dominance condition (ii) plays a key role to determine the limit
distribution in two main cases of the previous classification: the dominant non-degenerate
case and the equipotent case with different leading terms of the mean values. We present
the following example to show how the equipotent case can be considered as a sort of
equilibrium point between two (opposite) dominant cases.

Consider the product model of Exam@land define the “factor” components;, v;, 1;),

i = 1, 2, by means of the weighted finite automata described inFighe matricesA; =
v;(a) andB; = v;(b) are defined by the labels associated with transitions in the pictures. The
values of the components of the arraysandz; are included in the corresponding states.
Multiplying the matricesA; = v;(a) andB; = v;(b) (for i = 1, 2) by suitable factors, it is
possible to build fromZ2) a family of primitive linear representationis, u, ) where we
may havel; = Jpor 1 # Jo. Inallcases, itturns out thff = (1+(14++/2)%) "1 ~ 0.146
andp, = 11/15 ~ 0.733 (and hencg; # f,). Fig. 4 illustrates the probability function
of the random variabl&s in three different cases. Iy = 2 and/, = 1 we find a normal
density of mean asymptotic to BQ. If 11 = 1 and/, = 2 we have a normal density of
mean asymptotic to 3. Both situations correspond to Theordm If 41 = 4> = 1, we
recognize the convergence to the uniform distribution in the int¢5@#, , 50f,] according

to Theoreml5.

We conclude observing that some of the previous results clearly extend to rational stochas-
tic models given by more than two primitive components. For instance the result given in
Theoreml1also holds in the multicomponent case when only one dominant component ex-
ists and this is not degenerate. Analogously, if two (non-degenerate) equipotent components
dominate the others then a result similar to Theoté&rar Propositior23 holds (according
whether there exists a communication from the first to the second component). However,
in the multicomponent model the number of subcases grows exponentially since more than
two equipotent components can dominate the others; then the limit distribution depends on
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Pr{ Yso=k}

Fig. 4. Probability functions of'sg in the product model where the two factor components are defined by
Fig. 3 with weighted expanded by a constant factor. The vertical bars have abscifga806(,. The curves
correspond to the cases whérg, /5) are equal to (2,1), (1,2) and (1,1), respectively.

several parameters and properties: the number of dominant components, the geometry of
communication among them, the values of the main constants of mean value and variance
associated with these components and the occurrence of degenerate cases. For this reason,
we think that the general multicomponent model should be first studied by considering a
set of typical situations, rather than by an exhaustive analysis of all possible subcases (as
done in this work).
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