
Numerical Integration of
Ordinary Differential Equations

Mathematical Methods and Modeling
Laboratory class

Exact Solutions of ODEs

• Cauchy’s Initial Value Problem in normal form:

• Recall:
• if f is locally Lipschitz-continuous

 there is an unique local solution
• if f is (uniformly) Lipschitz-continuous on all I

 there is an unique solution in I, i.e.
global solution

Numerical Analysis

• If solution can hardly be explicited  numerical

• Numerical Analysis is the branch of mathematics
studying approximation methods for solving
equations  applications on calculators

Explicit Euler Method

• For finding an approximate (or numerical)
solution of an ODE in normal form, first discretize
the domain I into n subintervals of width h:

s.t.
• Discretize the derivative y’(x) with the (forward)
finite difference:

• Denote and
• suppose to be able to calculate

Explicit Euler Method

• The ODE can then be approximated as

• Approximate solution:

• This formula for calculating the approximate
solution is called Explicit/Forward Euler Method
• Necessary:
• Initially:
• At each step:
• Decide discretization step h
• It can be shown consistent:

Implicit Euler Method

• Conversely, if we take the backward finite
difference

we have the approximation:

• This formula is called Implicit/Backward Euler
Method
• However, in this method we have to solve the
equation (with f appearing) in the unknown
• In practice, when f(x,y) behaves badly, Implicit
method is preferred if computationally feasible

Theta-Method

• Instead, fix in [0,1] and take the intermediate
value of f:

• Then it is easy to derive a generalization of EMs:

• This formula is called the -method
• Clearly, with it is Explicit/Implicit EM
• Is it explicit or implicit?
• It has better convergence properties

Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the M-file for function f(t,y) = 3t-ty
2. Fix h>0 and find numerical solution u by

EEM
3. Draw y, u and the error y-u

Example

• Let's try to numerically solve previous IVP with
IEM. Unluckly, this time it is not possible to use
MATLAB for inverting f(t,y) w.r.t. y. Hence, invert it
with paper & pencil

• That yields

• Compare IEM's to EEM's and exact solution y,
finding maximum absolute error and sum-of-
squares error

MATLAB ODE Solver

• Luckly, MATLAB already has algorithms for ODEs
• ode45 function finds approximate solutions for
most of simple non-stiff problems. Basic syntax:

[T,Y] = ode45(@fun,[x0 xF],initvals);
• @fun is handle to funcion fun defining f(x,y)
• x0,xF are initial and final values of interval I
• vector initvals contains Cauchy’s initial value(s)

of the solution(s): y(x0)
• odeset function can set some options of ODE
Solver specified as additional argument. Eg.:

odeopt = odeset('RelTol',1e-4,'AbsTol',…
[1e-4 1e-4 1e-5]);

Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the function f(t,y) = 3t-ty
2. Call ode45 function
3. Draw y, u and the error y-u

Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the function f(t,y)
2. Call ode45 function
3. Draw y, u and the error y-u

Higher order ODE

• A n-th order ODE y(n)=f(t,y,y',...,y(n-1)) can be
transformed into a system of n ODEs with n
variables
• Example: equation of Van der Pol Oscillator

after assigning y=x', it can be rewritten as system

• Try solving through MATLAB with

in the interval [0, 20]

Higher order ODE

• Create the M-file vaderpol.m defining the vector
function f(t,y) needed by ode45:

function out = vanderpol(t,x)
 %as stated in the documentation this function has
 %to take as arguments: time t and state-variable x.
 mu = 2; %parameter of the Van der Pol oscillator

 out = [0; 0];
 out(1) = x(2);
 out(2) = mu*(1-x(1)^2)*x(2) - x(1);
end

Higher order ODE

•Then in the command window run the instruction
[T,Y] = ode45(@vanderpol, [0 20], [2 0]);

• and draw the trajectory:
plot3(T,Y(:,1),Y(:,2));
xlabel('t'); ylabel('x'), zlabel('y');

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13

