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Exact Solutions of ODEs

• Cauchy’s Initial Value Problem in normal form:

• Recall:
•  if f is locally Lipschitz-continuous

 there is an unique local solution
•  if f is (uniformly) Lipschitz-continuous on all I

 there is an unique solution in I, i.e. 
global solution



Numerical Analysis

• If solution can hardly be explicited  numerical

• Numerical Analysis is the branch of mathematics 
studying approximation methods for solving 
equations  applications on calculators



Explicit Euler Method

• For finding an approximate (or numerical) 
solution of an ODE in normal form, first discretize 
the domain I into n subintervals of width h:

s.t. 
• Discretize the derivative y’(x) with the (forward) 
finite difference:

• Denote                                          and
• suppose to be able to calculate



Explicit Euler Method

• The ODE can then be approximated as

• Approximate solution:

• This formula for calculating the approximate 
solution is called Explicit/Forward Euler Method
• Necessary:
•  Initially: 
•  At each step:
•  Decide discretization step h
• It can be shown consistent:



Implicit Euler Method

• Conversely, if we take the backward finite 
difference

we have the approximation:

• This formula is called Implicit/Backward Euler 
Method
• However, in this method we have to solve the 
equation (with f appearing) in the unknown
• In practice, when f(x,y) behaves badly, Implicit 
method is preferred if computationally feasible



Theta-Method

• Instead, fix    in [0,1] and take the intermediate 
value of f:

• Then it is easy to derive a generalization of EMs:

• This formula is called the    -method
• Clearly, with              it is Explicit/Implicit EM
• Is it explicit or implicit?
• It has better convergence properties



Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the M-file for function f(t,y) = 3t-ty
2. Fix h>0 and find numerical solution u by 

EEM
3. Draw y, u and the error y-u



Example

• Let's try to numerically solve previous IVP with 
IEM. Unluckly, this time it is not possible to use 
MATLAB for inverting f(t,y) w.r.t. y. Hence, invert it 
with paper & pencil

• That yields

• Compare IEM's to EEM's and exact solution y, 
finding maximum absolute error and sum-of-
squares error



MATLAB ODE Solver

• Luckly, MATLAB already has algorithms for ODEs
• ode45 function finds approximate solutions for 
most of simple non-stiff problems. Basic syntax:

[T,Y] = ode45(@fun,[x0 xF],initvals);
•  @fun is handle to funcion fun defining f(x,y)
•  x0,xF are initial and final values of interval I
•  vector initvals contains Cauchy’s initial value(s) 

of the solution(s): y(x0)
•  odeset function can set some options of ODE 
Solver specified as additional argument. Eg.:

odeopt = odeset('RelTol',1e-4,'AbsTol',…
[1e-4 1e-4 1e-5]);



Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the function f(t,y) = 3t-ty
2. Call ode45 function
3. Draw y, u and the error y-u



Example

• Find the numerical solution to Cauchy’s IVP

• Compare it with the exact solution

1. Define the function f(t,y)
2. Call ode45 function
3. Draw y, u and the error y-u



Higher order ODE

• A n-th order ODE y(n)=f(t,y,y',...,y(n-1)) can be 
transformed into a system of n ODEs with n 
variables
• Example: equation of Van der Pol Oscillator

after assigning y=x', it can be rewritten as system

• Try solving through MATLAB with 

in the interval [0, 20]



Higher order ODE

• Create the M-file vaderpol.m defining the vector 
function f(t,y) needed by ode45:

function out = vanderpol(t,x)
    %as stated in the documentation this function has     
    %to take as arguments: time t and state-variable x.
    mu = 2; %parameter of the Van der Pol oscillator
    
    out = [0; 0];
    out(1) = x(2);
    out(2) = mu*(1-x(1)^2)*x(2) - x(1);
end



Higher order ODE

•Then in the command window run the instruction
[T,Y] = ode45(@vanderpol, [0 20], [2 0]);

• and draw the trajectory:
plot3(T,Y(:,1),Y(:,2));
xlabel('t'); ylabel('x'), zlabel('y');
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