Numerical Integration of
Ordinary Differential Equations



* Cauchy’s Initial Value Problem in normal Form:

{y’m = flz,y(x))  forz el =[x, xp]
y(zo) = Yo

* Recall:
* if Fis locally Lipschitz-continuous
- there is an unique local solution
* if Fis (uniformly) Lipschitz-continuous on all /
- there is an unique solutionin / i.e.
global solution



* |If solution can hardly be explicited > numerical

* Numerical Analysis is the branch of mathematics
studying approximation methods For solving
equations - applications on calculators



* For finding an approximate (or numerical)
solution of an ODE in normal form, First discretize
the domain /into nsubintervals of width A:
TN< 1 <9< ...<Tp=2TF
S.t. Tyl — T =h

* Discretize the derivative y'(x) with the (Forward)
Finite dlfference:y,(xk) . y(xkﬂ)h— y(xp)
* Denote y;. = y(x1),Vk =0,....,nand
* suppose to be able to calculate

f(@p, y(zr) = fog, yi)




* The ODE can then be approximated as

Ykt1 = Y+ hf (g, yi)
* Approximate solution:

Upy1 = upthf(zg,u,) forall k=0,..,n—1

* This formula for calculating the approximate
solution is called Explicit/Forward Euler Method
* Necessary:

* Inltlally o, Uy = Yo € R

* At each step: f(x},ug)

* Decide discretization step h
* |t can be shown consistent. h -0 = u—y



* Conversely, if we take the backward finite

difference y(xp) — y(zr_1)

h

y () ~

we have the approximation:

Up+1 = Ugt+hf(zri, uper) forall k=0,...,n—1

* This Formula is called Implicit/Backward Euler

Method

* However, in this method we have to solve the

equation (with fappearing) in the un
* In practice, when f(x,y) behaves bad
method is preferred if computationa

KNOWNU 4
y, Implicit

ly Feasible



* Instead, fix ¢ in [0,1] and take the intermediate
value of £

Y (1) = 0f (@) + (1= 0)f ()
* Then it is easy to derive a generalization of EMs:
U1 = TR0 f (21, wpy1)+(1-0) f (g, ug)]

* This formula is called the g-method

* Clearly, with 9 = 0, 1it is Explicit/Implicit EM
* |s it explicit or implicit?

* |t has better convergence properties




* Find the numerical solution to Cauchy’s IVP

{y’(t) =3t —ty(t) forte =115
y(l) =1

* Compare it with the exact solution y(t) =3 — 2e272

—

. Define the M-file for function f(ty) = 3t-ty

2. Fix h>0and find numerical solution u by
EEM

3. Draw y, uand the error y-u



* Let's try to numerically solve previous IVP with
IEM. Unluckly, this time it is not possible to use
MATLAB for inverting f(ty) w.r.t. y. Hence, invert it
with paper & pencil

2pi1 =2 +Fhf(teit, 2pe1) =

. = 2 + M3ty — L1 2541]
* That yields

fl+1 =

* Compare IEM's to EEM's and exact solution y,
finding maximum absolute error and sum-of-
squares error



* Luckly, MATLAB already has algorithms for ODEs
* ode45 fFunction fFinds approximate solutions for
most of simple non-stiff problems. Basic syntax:
[T,Y] = ode45(@fun,[x0 xF],initvals);
* @Fun is handle to Funcion fun defining f(x,y)
* x0,xF are initial and final values of interval /
 vector initvals contains Cauchy'’s initial value(s)
of the solution(s): y(x0)
* odeset Function can set some options of ODE
Solver specified as additional argument. Eq.:
odeopt = odeset('RelTol',le-4, 'AbsTol’,..
[1e-4 le-4 1le-5]);



* Find the numerical solution to Cauchy’s IVP

{y’(t) =3t —ty(t) forte =115
y(l) =1

* Compare it with the exact solution y(t) =3 — 2e272
1. Define the function f(ty) = 3t-ty

2. Call ode45 function
3. Draw y, uand the error y-u



* Find the numerical solution to Cauchy’s IVP

{y’(t) — t32t) — %W forte I =][210]

y(2) = -1
* Compare it with the exact solution
16
Y = 6 1og(t) — 13 161022))

1. Define the function f(ty)
2. Call ode45 Function
3. Draw y, uand the error y-u



* A n-th order ODE y”=f(ty,y"....y" ") can be
transformed into a system of n ODEs with n
variables
* Example: equation of Van der Pol Oscillator
2 — p(l—2¥)z’ + 2 =0
after assigning y=x/, it can be rewritten as system

I',:y
y = p(l—a)y —x

* Try solving through MATLAB with
p=2,2(0)=2,y(0) =0
in the interval [0, 20]



* Create the M-file vaderpol.m defining the vector
function f(t,y) needed by ode45:

function out = vanderpol(t,x)
%as stated in the documentation this function has
%to take as arguments: time t and state-variable x.
mu = 2; %parameter of the Van der Pol oscillator

out = [0; 0O];

out(1) = x(2);

out(2) = mu*(1-x(1)72)*x(2) - x(1);
end



*Then in the command window run the instruction
[T,Y] = oded45(@vanderpol, [0 20], [2 0]);

» and draw the trajectory:
plot3(T,Y(:,1),Y(:,2));
xlabel('t'); ylabel('x'), zlabel('y');




	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13

