Mathematical Methods and Modeling Laboratory class

Numerical Integration of Ordinary Differential Equations

Exact Solutions of ODEs

Cauchy's Initial Value Problem in normal form:

$$\begin{cases} y'(x) = f(x, y(x)) & \text{for } x \in I = [x_0, x_F] \\ y(x_0) = y_0 \end{cases}$$

- Recall:
 - if f is locally Lipschitz-continuous
 - → there is an unique local solution
 - if f is (uniformly) Lipschitz-continuous on all /
 - \rightarrow there is an unique solution in I, i.e.

global solution

Numerical Analysis

- If solution can hardly be explicited \rightarrow numerical
- Numerical Analysis is the branch of mathematics studying approximation methods for solving equations
 applications on calculators

Explicit Euler Method

 For finding an approximate (or numerical) solution of an ODE in normal form, first discretize the domain / into n subintervals of width h:

$$x_0 < x_1 < x_2 < \ldots < x_n = x_F$$
 s.t. $x_{k+1} - x_k = h$

• Discretize the derivative y'(x) with the (forward) finite difference: $y'(x_k) \simeq \frac{y(x_{k+1}) - y(x_k)}{h}$

$$y'(x_k) \simeq \frac{g(x_{k+1}) - g(x_k)}{h}$$

- Denote $y_k := y(x_k), \forall k = 0, ..., n$ and
- suppose to be able to calculate

$$f(x_k, y(x_k)) = f(x_k, y_k)$$

Explicit Euler Method

The ODE can then be approximated as

$$y_{k+1} \simeq y_k + hf(x_k, y_k)$$

Approximate solution:

$$u_{k+1} = u_k + hf(x_k, u_k)$$
 for all $k = 0, ..., n-1$

- This formula for calculating the approximate solution is called Explicit/Forward Euler Method
- Necessary:
 - Initially: $x_0, u_0 = y_0 \in \mathbb{R}$
 - At each step: $f(x_k, u_k)$
 - Decide discretization step h
- It can be shown *consistent*: $h \to 0 \implies u \to y$

Implicit Euler Method

• Conversely, if we take the backward finite difference $y'(x_k) \simeq \frac{y(x_k) - y(x_{k-1})}{h}$

we have the approximation:

$$u_{k+1} = u_k + hf(x_{k+1}, u_{k+1})$$
 for all $k = 0, ..., n-1$

- This formula is called Implicit/Backward Euler Method
- However, in this method we have to solve the equation (with f appearing) in the unknown u_{k+1}
- In practice, when f(x,y) behaves badly, Implicit method is preferred if computationally feasible

Theta-Method

• Instead, fix θ in [0,1] and take the intermediate value of f:

$$y'(x_{k+1}) \simeq \theta f(x_{k+1}) + (1 - \theta)f(x_k)$$

• Then it is easy to derive a generalization of EMs:

$$\left|u_{k+1} = u_k + h[\theta f(x_{k+1}, u_{k+1}) + (1-\theta)f(x_k, u_k)]\right|$$

- This formula is called the θ -method
- Clearly, with $\theta = 0, 1$ it is Explicit/Implicit EM
- Is it explicit or implicit?
- It has better convergence properties

Find the numerical solution to Cauchy's IVP

$$\begin{cases} y'(t) = 3t - ty(t) & \text{for } t \in I = [1, 5] \\ y(1) = 1 \end{cases}$$

- Compare it with the exact solution $y(t) = 3 2e^{\frac{1}{2} \frac{t^2}{2}}$
 - 1. Define the M-file for function f(t,y) = 3t-ty
 - 2. Fix *h>0* and find numerical solution *u* by EEM
 - 3. Draw *y, u* and the error *y-u*

• Let's try to numerically solve previous IVP with IEM. Unluckly, this time it is not possible to use MATLAB for inverting *f(t,y)* w.r.t. *y*. Hence, invert it with paper & pencil

$$z_{k+1} = z_k + hf(t_{k+1}, z_{k+1}) =$$

= $z_k + h[3t_{k+1} - t_{k+1}z_{k+1}]$

That yields

$$z_{k+1} = \frac{z_k + 3ht_{k+1}}{1 + ht_{k+1}}$$

 Compare IEM's to EEM's and exact solution y, finding maximum absolute error and sum-ofsquares error

MATLAB ODE Solver

- Luckly, MATLAB already has algorithms for ODEs
- ode45 function finds approximate solutions for most of simple non-stiff problems. Basic syntax:

```
[T,Y] = ode45(@fun,[x0 xF],initvals);
```

- @fun is handle to funcion fun defining f(x,y)
- x0,xF are initial and final values of interval I
- vector initvals contains Cauchy's initial value(s)
 of the solution(s): y(x0)
- odeset function can set some options of ODE Solver specified as additional argument. Eg.:

```
odeopt = odeset('RelTol',1e-4,'AbsTol',...
[1e-4 1e-4 1e-5]);
```

Find the numerical solution to Cauchy's IVP

$$\begin{cases} y'(t) = 3t - ty(t) & \text{for } t \in I = [1, 5] \\ y(1) = 1 \end{cases}$$

- Compare it with the exact solution $y(t) = 3 2e^{\frac{1}{2} \frac{t^2}{2}}$
 - 1. Define the function f(t,y) = 3t-ty
 - 2. Call ode45 function
 - 3. Draw *y, u* and the error *y-u*

Find the numerical solution to Cauchy's IVP

$$\begin{cases} y'(t) = t^3 y^2(t) - \frac{4y}{t} & \text{for } t \in I = [2, 10] \\ y(2) = -1 & \end{cases}$$

Compare it with the exact solution

$$y(t) = \frac{16}{t^4(-16\log(t) - 1 + 16\log(2))}$$

- 1. Define the function *f(t,y)*
- 2. Call ode45 function
- 3. Draw *y, u* and the error *y-u*

Higher order ODE

- A *n*-th order ODE $y^{(n)} = f(t,y,y',...,y^{(n-1)})$ can be transformed into a system of *n* ODEs with *n* variables
- Example: equation of Van der Pol Oscillator

$$x'' - \mu(1 - x^2)x' + x = 0$$

after assigning y=x', it can be rewritten as system

$$\begin{cases} x' = y \\ y' = \mu(1 - x^2)y - x \end{cases}$$

Try solving through MATLAB with

$$\mu = 2, x(0) = 2, y(0) = 0$$

in the interval [0, 20]

Higher order ODE

• Create the M-file vaderpol.m defining the vector function f(t,y) needed by ode45:

```
function out = vanderpol(t,x)
    %as stated in the documentation this function has
    %to take as arguments: time t and state-variable x.
    mu = 2; %parameter of the Van der Pol oscillator

    out = [0; 0];
    out(1) = x(2);
    out(2) = mu*(1-x(1)^2)*x(2) - x(1);
end
```

Higher order ODE

Then in the command window run the instruction

```
[T,Y] = ode45(@vanderpol, [0 20], [2 0]);
```

and draw the trajectory:

```
plot3(T,Y(:,1),Y(:,2));
xlabel('t'); ylabel('x'), zlabel('y');
```

