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Plan of the Mini-Course

Decision Procedures (for fragment of logical languages, often modulo
theories) are at the heart of computer science applications, in various
areas ranging from formal verification, knowledge representation,
artificial intelligence, and so on.
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Plan of the Mini-Course

Decision Procedures (for fragment of logical languages, often modulo
theories) are at the heart of computer science applications, in various
areas ranging from formal verification, knowledge representation,
artificial intelligence, and so on.

Concrete problems often are quite heterogeneous in nature, so that
many decision procedures might be needed in the same application.

Modular (i.e black box) composition of decision procedures is an highly
desirable feature in order to save time and resources. When designing
integration/communication interfaces, subtle problems may arise
deserving - besides non trivial implementation effort - also careful
theoretical foundations.

Model-Theoretic Methods for Combining Decision Procedures – p. 2/66



Plan of the Mini-Course

We plan to make a survey of recent developments in the field, starting
from some (hopefully enlightening) motivations arising in the
verification area.

• Part 0 :Motivations.

• Part I :Combined Constraint Satisfiability: the disjoint case.

• Part II :Combined Constraint Satisfiability: the non-disjoint case.

• Part III : Combined Word Problems.

• Tomorrow : Combination Techniques in Model-Checking.
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Part 0

Motivations
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§1. A Software Verification Example

An example (taken from a FroCoS 05 paper) shows what is needed in
certain applications to the verification area. Consider the following two
program fragments written in C language:

for (k=1; k<=n; k++)

a[i+k] = a[i]+k;

for (k=1; k<=n; k++)

a[i+n-k] = a[i+n]-k;

If the execution of either fragment produces the same result in the array
a, then a[i+n]==a[i]+n must hold initially for any value of i and n.

Fixed an integer n, we want to automatically prove the above property.
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§1. A Software Verification Example

This amounts to show the unsatisfiability of the conjunction of literals

Ln
n = Rn

n ∧ a[i + n] 6= a[i] + n (1)

where
Ln

k = Rn
k = a (k = 0)

Ln
k = wr(Ln

k−1
, i + k, a[i + k]) (1 ≤ k ≤ n)

Rn
k = wr(Rn

k−1
, i + n − k, a[i + n − k]) (1 ≤ k ≤ n)
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§1. A Software Verification Example

Satisfiability of (1) has to be checked in the models of the union of
Presburger arithmetic and McCarthy’s theory of arrays (see p.16
below). Satisfiability of conjunctions of literals is known to be decidable
in both theories separately.
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§1. A Software Verification Example

Satisfiability of (1) has to be checked in the models of the union of
Presburger arithmetic and McCarthy’s theory of arrays (see p.16
below). Satisfiability of conjunctions of literals is known to be decidable
in both theories separately.

Usually, one needs the check satisfiability not only of conjunctions of
literals, but more generally of quantifier-free formulae.

Unbounded verification problems are also amenable to a
(semi)automatic analysis through satisfiability of quantifier-free
formulae by the so called abstract-check-refine method, as
implemented in tools like the model-checker BLAST.
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§2. SMT- tools

Before considering more complex satisfiability problems, let’s go back
to usual SAT-problems:
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§2. SMT- tools

Before considering more complex satisfiability problems, let’s go back
to usual SAT-problems:

• Input: a classical propositional formula ϕ.

• Output: yes, if there is a boolean assignment satisfying ϕ; no
otherwise.

The problem is known to be NP-complete. By applying linear time
structural transformations (no expensive distributive law!), we can
assume that ϕ is a conjunction of clauses.
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§2. SMT- tools

Modern SAT-solvers are based on highly optimized variants of classical
DPLL-procedure (Davis-Putnam 1960 + Davis-Logemann-Loveland
1962).
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subsumption, pure literal assignments);
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§2. SMT- tools

Modern SAT-solvers are based on highly optimized variants of classical
DPLL-procedure (Davis-Putnam 1960 + Davis-Logemann-Loveland
1962).

• perform deterministic choices first (unit resolution, backward
subsumption, pure literal assignments);

• then choose an atom for case-distinction (semantic splitting);

• make use of appropriate heuristics.
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§2. SMT- tools

Heuristics include for instance
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§2. SMT- tools

Heuristics include for instance

• selection criteria for splitting atoms;

• non-chronological backtracking;

• conflict-driven learning.

State-of-the-art SAT-solvers like MINISAT, Z-CHAFF, ... currently
handle problems with ≈ 10K variables or even more ....

Efficiency of SAT-solvers increased their application domain (e.g. to
planning, bounded model-checking, security, etc.). DPLL-based
techniques are at the heart of tools for description logics too.
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§2. SMT- tools

As we saw, applications often require solving satisfiability problems of
quantifier-free formulae modulo a first-order theory T.
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As we saw, applications often require solving satisfiability problems of
quantifier-free formulae modulo a first-order theory T.

Systems implementing such specialized satisfiability problems like
Yices, BarcelogicTools, CVC Lite, haRVey, Math-SAT, etc. are called
S(atisfiability) M(odulo) T(heory)-solvers.
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§2. SMT- tools

As we saw, applications often require solving satisfiability problems of
quantifier-free formulae modulo a first-order theory T.

Systems implementing such specialized satisfiability problems like
Yices, BarcelogicTools, CVC Lite, haRVey, Math-SAT, etc. are called
S(atisfiability) M(odulo) T(heory)-solvers.

SMT-competition takes place every year since 2005.

In concrete cases T might be the union of various theories: the design
of appropriate combination algorithms and their properties
(soundness, completeness, termination, etc.) is the main concern of
the present slides.
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§2. SMT- tools

The structure of an SMT-solver is roughly as follows:
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§2. SMT- tools

The structure of an SMT-solver is roughly as follows:

• a boolean assignment that is then checked for T-satisfiability is
found (lazy approach);

• the assignment might be partial and checked before splitting
(early pruning);

• usual heuristics like non-chronological backtracking and learning
are employed.

DPLL(T) is an example of a formally structured extension of DPLL
which is able to cope with the above aspects.
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§3. Statement of the Problem

Let T be a first-order theory (in a first-order signature Σ) and let Γ be
finite set of Σ-literals.a We are asked whether there are a model of T

and a variable assignment in it satisfying Γ. We call this the constraint
satisfiability (CS for short) problem for T .
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§3. Statement of the Problem

Let T be a first-order theory (in a first-order signature Σ) and let Γ be
finite set of Σ-literals.a We are asked whether there are a model of T

and a variable assignment in it satisfying Γ. We call this the constraint
satisfiability (CS for short) problem for T .

Notice that Γ may contain free variables: it should be clear from above
that these variables are meant to be existentially (and not universally)
quantified. To stress this fact, sometimes variables are replaced by free
(i.e. fresh) constants in the constraints to be tested for satisfiability.

a
Equalities among terms and their negations are always included among literals (we consider the identity

predicate as a logical constant).
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§3. Statement of the Problem

Notice that being able to decide CS problem for T is the same as to be
able to decide the universal sentences for T -validity (or again the
quantifier-free fragment for T -satisfiability).
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Notice that being able to decide CS problem for T is the same as to be
able to decide the universal sentences for T -validity (or again the
quantifier-free fragment for T -satisfiability).

However, SMT-techniques are needed in concrete implementations to
expand decision procedures for CS problem to decision procedures for
T -satisfiability of quantifier-free formulae.
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§3. Statement of the Problem

Notice that being able to decide CS problem for T is the same as to be
able to decide the universal sentences for T -validity (or again the
quantifier-free fragment for T -satisfiability).

However, SMT-techniques are needed in concrete implementations to
expand decision procedures for CS problem to decision procedures for
T -satisfiability of quantifier-free formulae.

In particular, modules for T -constraint satisfiability are used by
SMT-solvers when checking (partial) assignments found by the
propositional SAT enumerator.
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§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

Model-Theoretic Methods for Combining Decision Procedures – p. 15/66



§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

Model-Theoretic Methods for Combining Decision Procedures – p. 15/66



§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

• linear (rational or integer) arithmetic;

Model-Theoretic Methods for Combining Decision Procedures – p. 15/66



§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

• linear (rational or integer) arithmetic;

• theories axiomatizing common datatypes (lists, arrays, ...);

Model-Theoretic Methods for Combining Decision Procedures – p. 15/66



§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

• linear (rational or integer) arithmetic;

• theories axiomatizing common datatypes (lists, arrays, ...);

• theories coming from computer algebra (K-algebras, ...);

Model-Theoretic Methods for Combining Decision Procedures – p. 15/66



§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

• linear (rational or integer) arithmetic;

• theories axiomatizing common datatypes (lists, arrays, ...);

• theories coming from computer algebra (K-algebras, ...);

• algebraic counterparts of modal logics (i.e. theories axiomatizing
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§4. Useful Theories

There are many examples of theories in which CS problem is solvable:

• the empty theory (here CS is the so-called congruence closure
problem);

• linear (rational or integer) arithmetic;

• theories axiomatizing common datatypes (lists, arrays, ...);

• theories coming from computer algebra (K-algebras, ...);

• algebraic counterparts of modal logics (i.e. theories axiomatizing
varieties of Boolean algebras with operators).

Notice that in all the above cases there is a big gap in
decidability/complexity between satisfiability of quantifier-free and
arbitrary first order formulae.
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§4. Useful Theories

McCarthy’s theory of arrays has three sorts (for arrays, index and
elements, respectively); axioms are the following:

• wr(a, i, e)[i] = e;

• wr(a, i, e)[j] = a[j] ∨ i = j;

• a = b ↔ ∀i (a[i] = b[i]).

(the last is called the extensionality axiom). Whereas the full first-order
decision problem for this theory is undecidable, the quantifier-free
fragment satisfiability is just NP.
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§4. Useful Theories

The theory of acyclic lists is axiomatized as follows:

• car(cons(x, y)) = x;

• cdr(cons(x, y)) = y;

• cons(car(x), cdr(x)) = x;

• x 6= t(x), where t consists of a (non empty) series of applications
of car, cdr in any order.

Again, constraint satisfiability is decidable in linear time, whereas full
first-order satisfiability is not elementary.
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Suggested Readings:

• On Abstract-Check-Refine :

[1] T. Henzinger, R. Jhala, R. Majumdar, K. McMillan Abstractions
from Proofs, Proceedings of POPL ’04, ACM Press.

• On Satisfiability Modulo Theories :

[2] R. Nieuwhenhuis, A. Oliveras, C. Tinelli Solving SAT and SAT
modulo theories: from an abstract DPLL to DPLL(T), Journal
of the ACM (to appear) [available from authors’ web pages]

[3] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van
Rossum, S. Ranise, R. Sebastiani. Efficient theory
combination via boolean search, Information and
Computation, 204(10), pp. 1493-1525, 2006.
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Suggested Readings:

• On Congruence Closure :

[4] R. Nieuwenhuis, A. Oliveras Fast Congruence Closure and
Extensions, Information and Computation, 205(4):557-580,
2007.

• On Numerical Constraints :

[5] Bockmayr A., Weispfenning V., Solving Numerical Constraints,
in Robinson A., Voronkov A., (eds.) “Handbook of Automated
Reasoning”, vol. I, Elsevier/MIT, pp. 751-842 (2001).
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Suggested Readings:

• On Arrays :

[6] A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable
about arrays?, Proc. of VMCAI’06, vol. 3855 of LNCS, 2006.

[7] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Deciding
extension of the theory of arrays by integrating decision
procedures and instantiation strategies. Proc. of JELIA 06,
vol. 4160 of LNAI, 2006.
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Suggested Readings:

• On Software Verification Theories (with focus on combination):

[8] D. Oppen Complexity, Convexity, and Combination of
Theories, Theor. Comp. Sc, 12, pp. 291-302, 1980.

[9] S. Ranise, C. Ringeissen, D.K. Tran, Nelson-Oppen, Shostak
and the Extended Canonizer: A Family Picture with a
Newborn, Proc. ICTAC ’04, LNCS, 2004.

[10] S. Krstic, A. Goel, J, Grundy, C, Tinelli Combined Satisfiability
Modulo Parametric Theories, Proc. TACAS’07, LNCS, 2007.
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Part I

Combined CS: the Disjoint Case

Model-Theoretic Methods for Combining Decision Procedures – p. 22/66



§1. Combined CS: the Disjoint Case

Our main task: given algorithms for deciding constraint satisfiability in
two theories T1, T2 (over signaturesa Σ1, Σ2), how to build an
algorithm for deciding constraint satisfiability in T1 ∪ T2?
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§1. Combined CS: the Disjoint Case

Our main task: given algorithms for deciding constraint satisfiability in
two theories T1, T2 (over signaturesa Σ1, Σ2), how to build an
algorithm for deciding constraint satisfiability in T1 ∪ T2?

We shall illustrate some techniques for this combination problem.
Once again, such techniques need suitable ‘re-engineering’ in the
SMT-solvers case, where Boolean combinations of atoms (and not just
constraints) must be taken into account.

a
All our signatures are at most countable.
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§1. Combined CS: the Disjoint Case

Let us indicate by Σ0 the common subsignature Σ1 ∩ Σ2 and let us first
analyze the following simpler case:
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§1. Combined CS: the Disjoint Case

Let us indicate by Σ0 the common subsignature Σ1 ∩ Σ2 and let us first
analyze the following simpler case:

• Σ0 is empty (i.e. variable equations and inequations are the only
possible Σ0-literals).
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§1. Combined CS: the Disjoint Case

Let us indicate by Σ0 the common subsignature Σ1 ∩ Σ2 and let us first
analyze the following simpler case:

• Σ0 is empty (i.e. variable equations and inequations are the only
possible Σ0-literals).

This is the case originally considered by Nelson-Oppen in 1979.
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§1. Combined CS: the Disjoint Case

Warning. There cannot be a general effective method for combining
decision procedures leading always to a complete algorithm:
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§1. Combined CS: the Disjoint Case

Warning. There cannot be a general effective method for combining
decision procedures leading always to a complete algorithm:

Theorem 0. [Bonacina, Ghilardi, Ranise, Nicolini and Zucchelli,
IJCAR 06] There are theories T1, T2 having disjoint signatures and
decidable CS problem such that CS problem in T1 ∪ T2 is undecidable.
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§1. Combined CS: the Disjoint Case

Warning. There cannot be a general effective method for combining
decision procedures leading always to a complete algorithm:

Theorem 0. [Bonacina, Ghilardi, Ranise, Nicolini and Zucchelli,
IJCAR 06] There are theories T1, T2 having disjoint signatures and
decidable CS problem such that CS problem in T1 ∪ T2 is undecidable.

Reason for this negative result : the fact that you are able to decide
whether a Σ1-constraint Γ1 is satisfiable in a model of T1 does not
mean that you are able to decide whether it is satisfiable in an infinite
model of T1. However, if T2 has only infinite models, deciding
satisfiability of Γ1 modulo T1 ∪ T2 requires precisely that.
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§2. The Nelson-Oppen Method

Nelson-Oppen method (Nelson-Oppen, 1979) is the most simple
method for combining decision procedures for constraint satisfiability. It
was originally proposed for disjoint (first-order) signatures, but it can be
applied in a broader context. We summarize here the essence of
Nelson-Oppen method from an intuitive point of view.
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Nelson-Oppen method (Nelson-Oppen, 1979) is the most simple
method for combining decision procedures for constraint satisfiability. It
was originally proposed for disjoint (first-order) signatures, but it can be
applied in a broader context. We summarize here the essence of
Nelson-Oppen method from an intuitive point of view.

Let T1, T2, Σ1, Σ2, Σ0 be as above (Σ0 is the common subsignature
which is empty and constraint satisfiability is decidable in T1, T2); we fix
also a finite set of Σ1 ∪ Σ2-literals Γ.
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§2. The Nelson-Oppen Method

Nelson-Oppen method (Nelson-Oppen, 1979) is the most simple
method for combining decision procedures for constraint satisfiability. It
was originally proposed for disjoint (first-order) signatures, but it can be
applied in a broader context. We summarize here the essence of
Nelson-Oppen method from an intuitive point of view.

Let T1, T2, Σ1, Σ2, Σ0 be as above (Σ0 is the common subsignature
which is empty and constraint satisfiability is decidable in T1, T2); we fix
also a finite set of Σ1 ∪ Σ2-literals Γ.

Checking satisfiability of T1 ∪ T2 ∪ Γ by Nelson-Oppen requires the
following phases:
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§2. The Nelson-Oppen Method

• Purification : an equi-satisfiable pure constraint Γ1 ∪ Γ2 is
produced (this is achieved by Purification Rule, replacing a
subterm t by a fresh variables x - the equation x = t is also added
to the current constraint); we let x

0
be the variables occurring in

Γ1 ∪ Γ2.
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§2. The Nelson-Oppen Method

• Purification : an equi-satisfiable pure constraint Γ1 ∪ Γ2 is
produced (this is achieved by Purification Rule, replacing a
subterm t by a fresh variables x - the equation x = t is also added
to the current constraint); we let x

0
be the variables occurring in

Γ1 ∪ Γ2.

• Propagation : the T1-constraint satisfiability procedure and the
T2-constraint satisfiability procedure fairly exchange information
concerning entailed unsatisfiability of Σ0-constraints in which at
most the variables x

0
occur.
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produced (this is achieved by Purification Rule, replacing a
subterm t by a fresh variables x - the equation x = t is also added
to the current constraint); we let x

0
be the variables occurring in

Γ1 ∪ Γ2.

• Propagation : the T1-constraint satisfiability procedure and the
T2-constraint satisfiability procedure fairly exchange information
concerning entailed unsatisfiability of Σ0-constraints in which at
most the variables x

0
occur.

• Until : an inconsistency is detected or a saturation state is
reached.
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§2. The Nelson-Oppen Method

To make the above schema more precise, we need some observations:
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• About Purification : this is not problematic and requires only
linear time;
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• About Purification : this is not problematic and requires only
linear time;

• About Propagation : this is also not problematic, but see below;
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§2. The Nelson-Oppen Method

To make the above schema more precise, we need some observations:

• About Purification : this is not problematic and requires only
linear time;

• About Propagation : this is also not problematic, but see below;

• About the Exit from the Loop : whereas it is evident that the
procedure is sound (if an inconsistency is detected the input
constraint is unsatisfiable), there is no guarantee at all about
completeness, in other words reaching saturation does not imply
consistency. By the above undecidability result, we know that we
need conditions to ensure completeness.
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§3. Propagation

We can implement Propagation in two ways (notice that Σ0-atoms are
variable equations):

• Propagation (Guessing Version) : here we simply make a guess

of a Σ0(x0
)-arrangement (namely we guess for a maximal set of

Σ0-literals containing at most the variables x
0
) and check it for

both T1 ∪ Γ1-consistency and T2 ∪ Γ2-consistency.
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§3. Propagation

We can implement Propagation in two ways (notice that Σ0-atoms are
variable equations):

• Propagation (Guessing Version) : here we simply make a guess

of a Σ0(x0
)-arrangement (namely we guess for a maximal set of

Σ0-literals containing at most the variables x
0
) and check it for

both T1 ∪ Γ1-consistency and T2 ∪ Γ2-consistency.

• Propagation (Backtracking Version) : identify a disjunction of
x

0
-atoms A1 ∨ · · · ∨An which is entailed by Ti ∪Γi (i = 1 or 2) and

make case splitting by adding some Aj to both Γ1, Γ2 (if none of
the A1, . . . , An is already there). Repeat until possible.
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§3. Propagation

• An advantage of the first option is that whenever constraints are
represented not as sets of literals, but as boolean combinations of
atoms, one may combine heuristics of SMT-solvers with specific
features of the theories to be combined in order to produce
efficiently the right arrangement.
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§3. Propagation

• An advantage of the first option is that whenever constraints are
represented not as sets of literals, but as boolean combinations of
atoms, one may combine heuristics of SMT-solvers with specific
features of the theories to be combined in order to produce
efficiently the right arrangement.

• An advantage of the second option is that it works in the non
disjoint case under noetherianity hypotheses (we turn to this later
on).
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§3. Propagation

• Another advantage of the second method is that the procedure
can be made deterministic in case the Ti are both Σ0-convex (Ti

is said to be Σ0-convex iff whenever Ti ∪ Γi entails a disjunction of
n > 1 Σ0-atoms, then it entails one of them).
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• Another advantage of the second method is that the procedure
can be made deterministic in case the Ti are both Σ0-convex (Ti

is said to be Σ0-convex iff whenever Ti ∪ Γi entails a disjunction of
n > 1 Σ0-atoms, then it entails one of them).

Universal Horn theories are Σ0-convex; by using simple properties of
convex sets, we can show that real linear arithemtic is Σ0-convex (this
case explains the reason for the name ‘convex’).
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§3. Propagation

• Another advantage of the second method is that the procedure
can be made deterministic in case the Ti are both Σ0-convex (Ti

is said to be Σ0-convex iff whenever Ti ∪ Γi entails a disjunction of
n > 1 Σ0-atoms, then it entails one of them).

Universal Horn theories are Σ0-convex; by using simple properties of
convex sets, we can show that real linear arithemtic is Σ0-convex (this
case explains the reason for the name ‘convex’).

From the complexity viewpoint, convexity may keep combined
problems tractable, since it avoids don’t-know nondeterminism.
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§4. Completeness

The standard requirement to gain completeness is stably infiniteness:
a theory T is said to be stably infinite iff every T -satisfiable constraint is
satisfiable in an infinite model of T (by compactness, this is the same
as requiring that every model of T embeds into an infinite model of T ).
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§4. Completeness

The standard requirement to gain completeness is stably infiniteness:
a theory T is said to be stably infinite iff every T -satisfiable constraint is
satisfiable in an infinite model of T (by compactness, this is the same
as requiring that every model of T embeds into an infinite model of T ).

Theorem 1. If T1, T2 are both stably infinite and the shared
subsignature Σ0 is empty, then Nelson-Oppen procedure transfers
decidability of constraint satisfiability problems from T1 and T2 to
T1 ∪ T2.
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§5. Asymmetric Approaches

Stable infiniteness requirement is sometimes a real drawback (e.g.
enumerated datatypes theories are not stably infinite!) To overcome it,
asymmetric approaches have been proposed: in these approaches,
different kind of requirements are asked for T1 and T2.
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Stable infiniteness requirement is sometimes a real drawback (e.g.
enumerated datatypes theories are not stably infinite!) To overcome it,
asymmetric approaches have been proposed: in these approaches,
different kind of requirements are asked for T1 and T2.

The Nelson-Oppen combination schema is slightly modified
accordingly.
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§5. Asymmetric Approaches

Stable infiniteness requirement is sometimes a real drawback (e.g.
enumerated datatypes theories are not stably infinite!) To overcome it,
asymmetric approaches have been proposed: in these approaches,
different kind of requirements are asked for T1 and T2.

The Nelson-Oppen combination schema is slightly modified
accordingly.

We give here few more information on these asymmetric approaches,
which are rather simple but sometimes amazingly powerful.
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§5. Asymmetric Approaches

A theory T in the signature Σ is said to be shiny iff for every
T -satisfiable constraint Γ it is possible to compute a finite cardinal κ

such that Γ has a T -model in every cardinality λ ≥ κ.

Model-Theoretic Methods for Combining Decision Procedures – p. 34/66



§5. Asymmetric Approaches

A theory T in the signature Σ is said to be shiny iff for every
T -satisfiable constraint Γ it is possible to compute a finite cardinal κ

such that Γ has a T -model in every cardinality λ ≥ κ.

Theorem 2. [Tinelli-Zarba, 03] If T1 is shiny and the shared
subsignature Σ0 is empty, then decidability of constraint satisfiability
problems transfers from T1 and T2 to T1 ∪ T2.

Model-Theoretic Methods for Combining Decision Procedures – p. 34/66



§5. Asymmetric Approaches

A theory T in the signature Σ is said to be shiny iff for every
T -satisfiable constraint Γ it is possible to compute a finite cardinal κ

such that Γ has a T -model in every cardinality λ ≥ κ.

Theorem 2. [Tinelli-Zarba, 03] If T1 is shiny and the shared
subsignature Σ0 is empty, then decidability of constraint satisfiability
problems transfers from T1 and T2 to T1 ∪ T2.

Since the pure equality theory in any signature is shiny, we get:
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§5. Asymmetric Approaches

A theory T in the signature Σ is said to be shiny iff for every
T -satisfiable constraint Γ it is possible to compute a finite cardinal κ

such that Γ has a T -model in every cardinality λ ≥ κ.

Theorem 2. [Tinelli-Zarba, 03] If T1 is shiny and the shared
subsignature Σ0 is empty, then decidability of constraint satisfiability
problems transfers from T1 and T2 to T1 ∪ T2.

Since the pure equality theory in any signature is shiny, we get:

Corollary 3. [Ganzinger, 2002] If T is any Σ-theory, then decidability
of constraint satisfiability problems transfers from T to any free
extension of T in a larger signature Ω ⊇ Σ.
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§5. Asymmetric Approaches

In verification one often needs combinations of a theory modeling the
elements with (one or more) many-sorted theories (such as lists,
arrays, sets, multisets, etc.) describing container based
data-structures. Whereas the theory describing the elements is rather
arbitrary, the theory modeling data-structures can be subject to
restrictions, provided these restrictions are met in concretely used
cases.
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§5. Asymmetric Approaches

In verification one often needs combinations of a theory modeling the
elements with (one or more) many-sorted theories (such as lists,
arrays, sets, multisets, etc.) describing container based
data-structures. Whereas the theory describing the elements is rather
arbitrary, the theory modeling data-structures can be subject to
restrictions, provided these restrictions are met in concretely used
cases.

This is the genuine motivation for taking the asymmetric approach.
The same motivation leads to extensions to the many-sorted case (see
the notion of politeness in [Ranise, Ringeissen, Zarba 05]) and also to
higher-order contexts (see the notion of parametricity in [Krstic, Goel,
Grundy, Tinelli 07]).
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§5. Asymmetric Approaches

To complete the picture, we must mention that another combination
schema (requiring the existence of so-called ‘solvers’ and ‘canonizers’
for the ingredient theories) has been proposed by Shostak in 1984.
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§5. Asymmetric Approaches

To complete the picture, we must mention that another combination
schema (requiring the existence of so-called ‘solvers’ and ‘canonizers’
for the ingredient theories) has been proposed by Shostak in 1984.

Despite the original paper suffered by various technical drawbacks,
Shostak’s point of view has been quite influential in the
implementations.
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§5. Asymmetric Approaches

To complete the picture, we must mention that another combination
schema (requiring the existence of so-called ‘solvers’ and ‘canonizers’
for the ingredient theories) has been proposed by Shostak in 1984.

Despite the original paper suffered by various technical drawbacks,
Shostak’s point of view has been quite influential in the
implementations.

Nowadays correct approaches like [Ganzinger 2002] clarified the
matter and tend to see Shostak procedure as a refinement of the
Nelson-Oppen one.
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Part II

Combined CS: the Non-Disjoint
Case
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§1. Nelson-Oppen Schema Revisited

Let T1 be a Σ1-theory and T2 be a Σ2-theory; now the common
subsignature Σ0 := Σ1 ∩ Σ2 is not assumed to be empty anymore.

We nevertheless try to apply the (plain symmetric) Nelson-Oppen
combination schema:
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Let T1 be a Σ1-theory and T2 be a Σ2-theory; now the common
subsignature Σ0 := Σ1 ∩ Σ2 is not assumed to be empty anymore.

We nevertheless try to apply the (plain symmetric) Nelson-Oppen
combination schema:

• Purification : no problem, goes as in the disjoint case (but further
optimizations are possible);
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subsignature Σ0 := Σ1 ∩ Σ2 is not assumed to be empty anymore.

We nevertheless try to apply the (plain symmetric) Nelson-Oppen
combination schema:

• Purification : no problem, goes as in the disjoint case (but further
optimizations are possible);

• Propagation : how to do it in a terminating way ??
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§1. Nelson-Oppen Schema Revisited

Let T1 be a Σ1-theory and T2 be a Σ2-theory; now the common
subsignature Σ0 := Σ1 ∩ Σ2 is not assumed to be empty anymore.

We nevertheless try to apply the (plain symmetric) Nelson-Oppen
combination schema:

• Purification : no problem, goes as in the disjoint case (but further
optimizations are possible);

• Propagation : how to do it in a terminating way ??

• Completeness : even more problematic than before ...
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§1. Nelson-Oppen Schema Revisited

The most simple method for avoiding the non-termination risk is to
assume that there is a Σ0-theory T0 contained in both T1, T2 which is
effectively locally finite: this means that Σ0 is finite and that, given a
finite set of variables x

0
, there are only finitely many Σ0(x0

)-terms up
to T0-equivalence. Representative terms for each equivalence class
should also be computable.
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§1. Nelson-Oppen Schema Revisited

The most simple method for avoiding the non-termination risk is to
assume that there is a Σ0-theory T0 contained in both T1, T2 which is
effectively locally finite: this means that Σ0 is finite and that, given a
finite set of variables x

0
, there are only finitely many Σ0(x0

)-terms up
to T0-equivalence. Representative terms for each equivalence class
should also be computable.

If effective local finiteness of a shared theory T0 is assumed, the total
amount of exchangeable information is finite. Propagation can be still
implemented by guessing (guess a maximal set of representative
Σ0(x0

)-literals) or by backtracking (make case-split on disjunctions of
Σ0(x0

)-atoms that are not entailed by both current purified constraints).
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§1. Nelson-Oppen Schema Revisited

We still have to identify sufficient conditions for completeness. To this
aim it is sufficient to analyze carefully from a model-theoretic point of
view the stable infiniteness requirement and the completeness proof in
the disjoint case.
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§1. Nelson-Oppen Schema Revisited

We still have to identify sufficient conditions for completeness. To this
aim it is sufficient to analyze carefully from a model-theoretic point of
view the stable infiniteness requirement and the completeness proof in
the disjoint case.

Ti to be stably infinite means that every model of Ti embeds into a
model of Ti ∪ T ∗

0
, where T ∗

0
is the model completion the pure theory of

equality T0.
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§1. Nelson-Oppen Schema Revisited

We still have to identify sufficient conditions for completeness. To this
aim it is sufficient to analyze carefully from a model-theoretic point of
view the stable infiniteness requirement and the completeness proof in
the disjoint case.

Ti to be stably infinite means that every model of Ti embeds into a
model of Ti ∪ T ∗

0
, where T ∗

0
is the model completion the pure theory of

equality T0.

If we adapt this hypothesis to the non-disjoint case (see below for a
precise formulation), the completeness proof still works: Robinson
Joint Consistency Lemma becomes the main ingredient of it.
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§1. Nelson-Oppen Schema Revisited

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; suppose
also that T0 is universal and has a model completion T ∗

0
. We say that T

is T0-compatible iff every model of T embeds into a model of T ∪ T ∗

0
.
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§1. Nelson-Oppen Schema Revisited

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; suppose
also that T0 is universal and has a model completion T ∗

0
. We say that T

is T0-compatible iff every model of T embeds into a model of T ∪ T ∗

0
.

We recall that T ∗

0
being a model completion of T0 ⊆ T ∗

0
means that: (i)

every model of T0 embeds into a model of T ∗

0
; (ii) the union of T ∗

0
with

the Robinson diagram of a model of T0 is a complete theory.
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§1. Nelson-Oppen Schema Revisited

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; suppose
also that T0 is universal and has a model completion T ∗

0
. We say that T

is T0-compatible iff every model of T embeds into a model of T ∪ T ∗

0
.

We recall that T ∗

0
being a model completion of T0 ⊆ T ∗

0
means that: (i)

every model of T0 embeds into a model of T ∗

0
; (ii) the union of T ∗

0
with

the Robinson diagram of a model of T0 is a complete theory.

Examples can be easily found in standard model theory textbooks.
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§1. Nelson-Oppen Schema Revisited

We are now ready for a first formulation of the combination theorem in
the non-disjoint case:
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§1. Nelson-Oppen Schema Revisited

We are now ready for a first formulation of the combination theorem in
the non-disjoint case:

Theorem 4. [Ghilardi 04] Suppose that there is an effectively locally
finite and universal Σ0-subtheory T0 of T1 and T2 which also admits a
model completion. If T1, T2 are both T0-compatible, then
Nelson-Oppen procedure transfers decidability of constraint
satisfiability problem from T1 and T2 to T1 ∪ T2.
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§1. Nelson-Oppen Schema Revisited

As a Corollary of the above Theorem, one can easily deduce the
decidability transfer result for global consequence relation to fusions of
modal logics [Wolter 1998].
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§1. Nelson-Oppen Schema Revisited

As a Corollary of the above Theorem, one can easily deduce the
decidability transfer result for global consequence relation to fusions of
modal logics [Wolter 1998].

This is because: (i) deciding global consequence relation in a modal
logic means deciding constraint satisfiability in the corresponding
variety of Boolean algebras with operators; (ii) fusion of modal logics
corresponds to union of the equational theories axiomatizing such
varieties; (iii) any equational theory axiomatizing a variety of Boolean
algebras with operators is BA-compatible (here BA is the theory of
Boolean algebras).
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§2. Termination by Noetherianity.

The local finiteness requirement ensures termination of the
Nelson-Oppen algorithm. If we implement Propagation by
backtracking, we can get termination by a requirement that is weaker
than local finiteness:
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§2. Termination by Noetherianity.

The local finiteness requirement ensures termination of the
Nelson-Oppen algorithm. If we implement Propagation by
backtracking, we can get termination by a requirement that is weaker
than local finiteness:

Definition. A Σ0-theory T0 is Noetherian if and only if for every finite
set of variables x

0
, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of Σ0(x0
)-atoms is eventually constant modulo T0 (i.e. there is

an n such that T0 |=
∧

Θn → A, for every natural number m and atom
A ∈ Θm).
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§2. Termination by Noetherianity.

The above definition is suggested by algebraic examples.

Typically, if T0 is any equational theory axiomatizing a variety in which
finitely generated algebras are finitely presented, then T is noetherian.

Thus, the theory of K-algebras (for a field K), of R-modules (for a
noetherian ring R), of abelian groups and semigroups, etc. are
noetherian (for applications to verification, this means in particular that
linear - integer or real - arithmetic is noetherian, provided ordering is
dropped in the signature).
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§2. Termination by Noetherianity.

The above definition is suggested by algebraic examples.

Typically, if T0 is any equational theory axiomatizing a variety in which
finitely generated algebras are finitely presented, then T is noetherian.

Thus, the theory of K-algebras (for a field K), of R-modules (for a
noetherian ring R), of abelian groups and semigroups, etc. are
noetherian (for applications to verification, this means in particular that
linear - integer or real - arithmetic is noetherian, provided ordering is
dropped in the signature).

An argument based on König Lemma shows that Propagation
(implemented through backtracking) must eventually halt if T0 is
noetherian.
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§2. Termination by Noetherianity.

However, it is not true that Noetherianity of T0 and T0-compatibility of
both T1, T2 are sufficient for a decidability transfer result (there are
counterexamples: the trouble is that one may not be able to realize that
Propagation is over).
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§2. Termination by Noetherianity.

However, it is not true that Noetherianity of T0 and T0-compatibility of
both T1, T2 are sufficient for a decidability transfer result (there are
counterexamples: the trouble is that one may not be able to realize that
Propagation is over).

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; given a
Σ-constraint Γ and a finite set of free variables x

0
, a T0-basis for Γ

w.r.t. x
0

is a finite set ∆ of positive Σ0(x0
)-clauses such that

- T |=
∧

Γ → C, for all C ∈ ∆ and

- if T |=
∧

Γ → C then T0 |=
∧

∆ → C, for every positive
Σ0(x0

)-clause C.
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§2. Termination by Noetherianity.

If T0 is noetherian, one can prove that T0-bases exist for every Γ, but
we must ensure that they are computable:
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§2. Termination by Noetherianity.

If T0 is noetherian, one can prove that T0-bases exist for every Γ, but
we must ensure that they are computable:

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; T is an
effectively Noetherian extension of T0 if and only if T0 is Noetherian
and T0-bases are computable (for all Γ and x

0
).
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§2. Termination by Noetherianity.

If T0 is noetherian, one can prove that T0-bases exist for every Γ, but
we must ensure that they are computable:

Definition. Let T0 ⊆ T be theories in signatures Σ0 ⊆ Σ; T is an
effectively Noetherian extension of T0 if and only if T0 is Noetherian
and T0-bases are computable (for all Γ and x

0
).

When ‘good’ decision procedures (e.g. decision procedures based on
some rewriting/completion mechanism) are available for constraint
satisfiability in T , then one may extract T0-bases out of them (such an
extraction might however require little extra work).
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§2. Termination by Noetherianity.

We supply here some examples (see [Nicolini, 2006] for details):
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§2. Termination by Noetherianity.

We supply here some examples (see [Nicolini, 2006] for details):

• standard Gröbner basis computation (if the admissible order
satisfies mild assumptions) shows that the theory of K-algebras is
effectively noetherian over the theory of K-vector spaces;

Model-Theoretic Methods for Combining Decision Procedures – p. 49/66



§2. Termination by Noetherianity.

We supply here some examples (see [Nicolini, 2006] for details):

• standard Gröbner basis computation (if the admissible order
satisfies mild assumptions) shows that the theory of K-algebras is
effectively noetherian over the theory of K-vector spaces;

• one can manifacture Fourier-Motzkin QE in order to show that
linear rational arithmetic (with <) is effectively noetherian over
linear rational arithmetic (without <);
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§2. Termination by Noetherianity.

We supply here some examples (see [Nicolini, 2006] for details):

• standard Gröbner basis computation (if the admissible order
satisfies mild assumptions) shows that the theory of K-algebras is
effectively noetherian over the theory of K-vector spaces;

• one can manifacture Fourier-Motzkin QE in order to show that
linear rational arithmetic (with <) is effectively noetherian over
linear rational arithmetic (without <);

• the theory having infinitely many 0-ary predicates saying that the
domain has less than n elements is noetherian and superposition
calculus (in suitable cases of termination) give examples of
effectively noetherian extensions of this theory;
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§2. Termination by Noetherianity.

• an argument based on Dikson lemma can be used to get
many-sorted versions of the latter example;
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§2. Termination by Noetherianity.

• an argument based on Dikson lemma can be used to get
many-sorted versions of the latter example;

• if T is stably infinite, then the extension of T with a free function
symbol f is effectively noetherian over the empty theory in the
signature {f} (see [Ghilardi, Ranise, Nicolini and Zucchelli,
FroCoS 07]).
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§2. Termination by Noetherianity.

• an argument based on Dikson lemma can be used to get
many-sorted versions of the latter example;

• if T is stably infinite, then the extension of T with a free function
symbol f is effectively noetherian over the empty theory in the
signature {f} (see [Ghilardi, Ranise, Nicolini and Zucchelli,
FroCoS 07]).

In all the above cases, the larger theory T is not only effectively
noetherian over the smaller theory T0, but it is also T0-compatible,
hence all such T satisfy the combinability requirements over T0 stated
in the following:
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§2. Termination by Noetherianity.

Theorem 5. [Ghilardi, Nicolini and Zucchelli, FroCoS 05] Suppose
that there is a noetherian and universal Σ0-subtheory T0 of T1 and T2

which also admits a model completion. If T1, T2 are both T0-compatible
and effectively noetherian extensions of T0, then decidability of
constraint satisfiability problem transfers from T1 and T2 to T1 ∪ T2.
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§2. Termination by Noetherianity.

Theorem 5. [Ghilardi, Nicolini and Zucchelli, FroCoS 05] Suppose
that there is a noetherian and universal Σ0-subtheory T0 of T1 and T2

which also admits a model completion. If T1, T2 are both T0-compatible
and effectively noetherian extensions of T0, then decidability of
constraint satisfiability problem transfers from T1 and T2 to T1 ∪ T2.

For earlier results on non-disjoint combined CS problems, see [Tinelli,
Ringeissen 2003]. Further non-disjoint combination results arise also
in connection to locality of theory extensions - a subject deserving a
little course by itself (see [Sofronie-Stokkermans 06] for a survey).
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§2. Termination by Noetherianity.

Theorem 5. [Ghilardi, Nicolini and Zucchelli, FroCoS 05] Suppose
that there is a noetherian and universal Σ0-subtheory T0 of T1 and T2

which also admits a model completion. If T1, T2 are both T0-compatible
and effectively noetherian extensions of T0, then decidability of
constraint satisfiability problem transfers from T1 and T2 to T1 ∪ T2.

For earlier results on non-disjoint combined CS problems, see [Tinelli,
Ringeissen 2003]. Further non-disjoint combination results arise also
in connection to locality of theory extensions - a subject deserving a
little course by itself (see [Sofronie-Stokkermans 06] for a survey).

The combined CS problems we analyzed so far can be generalized in
various ways.
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§3. Variations and Extensions.

One can consider combination constructions acting on theories
different from set-theoretic union: an example of this is the theory
connection schema analyzed in [Baader, Ghilardi 2007]: this is a
special case of a cocomma category construction from categorical
logic and is analogous to the E-connections known from
modal/description logics.

Model-Theoretic Methods for Combining Decision Procedures – p. 52/66



§3. Variations and Extensions.

One can consider combination constructions acting on theories
different from set-theoretic union: an example of this is the theory
connection schema analyzed in [Baader, Ghilardi 2007]: this is a
special case of a cocomma category construction from categorical
logic and is analogous to the E-connections known from
modal/description logics.

One can go beyond the limits of first-order logics: in [Ghilardi, Nicolini,
Zucchelli 05] higher order logic is used to specify a combination
schema that, once applied to decidable fragments of first-order
languages, may produce interesting new decidable fragments (for
instance, one can analyze in this way monodic fragments of first order
temporal logics and recover decidability results from recent literature
as instances of generalized Nelson-Oppen combination algorithms).
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Part III

Combined Word Problems
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§1. The Problem.

In the remaining part of today slides we assume our signatures to be
purely functional and our theories to be first-order equational theories.
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§1. The Problem.

In the remaining part of today slides we assume our signatures to be
purely functional and our theories to be first-order equational theories.

The word problem for such an equational Σ-theory T is to show
whether a given Σ-atom t = u is a logical consequence of T or not.a
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§1. The Problem.

In the remaining part of today slides we assume our signatures to be
purely functional and our theories to be first-order equational theories.

The word problem for such an equational Σ-theory T is to show
whether a given Σ-atom t = u is a logical consequence of T or not.a

The combined word problem for T1, T2 is the following: suppose that
T1, T2 have decidable word problem, what can we say about
decidability of the word problem in T1 ∪ T2?
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§1. The Problem.

In the remaining part of today slides we assume our signatures to be
purely functional and our theories to be first-order equational theories.

The word problem for such an equational Σ-theory T is to show
whether a given Σ-atom t = u is a logical consequence of T or not.a

The combined word problem for T1, T2 is the following: suppose that
T1, T2 have decidable word problem, what can we say about
decidability of the word problem in T1 ∪ T2?

Warning . One cannot directly use Nelson-Oppen schema for attacking
this: purification and propagation steps produce constraints that
cannot be handled by the input algorithms!

a
Notice that when people in computer algebra speak of ‘word problems’, they deal with identity of ele-

ments in finitely presented algebras: these problems usually correspond to CS problems in our sense.
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§1. The Problem.

The following result was known since long time:
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§1. The Problem.

The following result was known since long time:

Theorem 6. [Pigozzi, 1974] If T1 and T2 have disjoint signatures, then
decidability of word problem transfers from T1 and T2 to T1 ∪ T2.
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§1. The Problem.

The following result was known since long time:

Theorem 6. [Pigozzi, 1974] If T1 and T2 have disjoint signatures, then
decidability of word problem transfers from T1 and T2 to T1 ∪ T2.

An early attempt to drop the disjoint signature requirement was done
by [Domenjoud, Klay, Ringeissen, 1994]: the results from this paper
were strenghtened by the next theorem (proved independently - and
with different techniques - in [Baader, Tinelli 2002] and [Fiorentini,
Ghilardi 2003]).
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§2. A First Combination Result.

Let T0, T be equational theories in respective signatures Σ0, Σ such
that Σ0 ⊆ Σ and T0 ⊆ T .
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§2. A First Combination Result.

Let T0, T be equational theories in respective signatures Σ0, Σ such
that Σ0 ⊆ Σ and T0 ⊆ T .

Definition We say that T is constructible over T0 iff T is a conservative
extension of T0 and there is a set G of Σ-terms such that:

(i) G contains the variables and is closed under renamings;

(ii) every Σ-terms factors “uniquely” (modulo T - and T0-equivalence)
as

u(g1, . . . , gk)

where u is a Σ0-term and {g1, . . . , gk} ⊆ G.
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§2. A First Combination Result.

T is said to be effectively constructible over T0 iff the terms u, g1, . . . , gk

in (ii) above can be effectively computed.
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§2. A First Combination Result.

T is said to be effectively constructible over T0 iff the terms u, g1, . . . , gk

in (ii) above can be effectively computed.

One can get typical examples of this definition in abstract algebra (but
not only there): rings are effectively constructible over abelian groups,
differential rings are constructible over rings, etc.
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§2. A First Combination Result.

T is said to be effectively constructible over T0 iff the terms u, g1, . . . , gk

in (ii) above can be effectively computed.

One can get typical examples of this definition in abstract algebra (but
not only there): rings are effectively constructible over abelian groups,
differential rings are constructible over rings, etc.

Theorem 7. [cit., 2002-03] If T1 and T2 are both effectively
constructible over a theory T0 in the common subsignature, then
decidability of word problem transfers from T1 and T2 to T1 ∪ T2.
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§3. A Second Combination Result.

The assumptions of Theorem 7 are symmetric, but of syntactic nature.
We give here a second recent result (Theorem 8 below) having
symmetric model-theoretic assumptions.
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§3. A Second Combination Result.

The assumptions of Theorem 7 are symmetric, but of syntactic nature.
We give here a second recent result (Theorem 8 below) having
symmetric model-theoretic assumptions.

We try to adapt Nelson-Oppen schema; besides T0-compatibility, we
need an extra assumption on the shared subtheory, whose role is that
of allowing the conversion of positive constraints into rewrite rules.
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§3. A Second Combination Result.

The assumptions of Theorem 7 are symmetric, but of syntactic nature.
We give here a second recent result (Theorem 8 below) having
symmetric model-theoretic assumptions.

We try to adapt Nelson-Oppen schema; besides T0-compatibility, we
need an extra assumption on the shared subtheory, whose role is that
of allowing the conversion of positive constraints into rewrite rules.

Such an extra assumption is inspired by Gaussian elimination from
linear algebra. Thus, among such ‘Gaussian’, theories we have the
theory of vector spaces on a given field, but also some others, like -
surprisingly! - Boolean algebras.
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§3. A Second Combination Result.

An e-formula is a conjunctions of equations; we use x, y for tuples of
variables.
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§3. A Second Combination Result.

An e-formula is a conjunctions of equations; we use x, y for tuples of
variables.

Definition An equational theory T0 is Gaussian iff for every e-formula
ϕ(x, y) it is possible to compute an e-formula C(x) and a term s(x, z)

with fresh variables z such that

T0 |= ϕ(x, y) ↔ (C(x) ∧ ∃z.(y = s(x, z)))
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§3. A Second Combination Result.

An e-formula is a conjunctions of equations; we use x, y for tuples of
variables.

Definition An equational theory T0 is Gaussian iff for every e-formula
ϕ(x, y) it is possible to compute an e-formula C(x) and a term s(x, z)

with fresh variables z such that

T0 |= ϕ(x, y) ↔ (C(x) ∧ ∃z.(y = s(x, z)))

We call the formula C the solvability condition of ϕ w.r.t. y, and the
term s a (local) solver of ϕ w.r.t. y in T0.
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§3. A Second Combination Result.

We are ready for our second combination result concerning word
problems:
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§3. A Second Combination Result.

We are ready for our second combination result concerning word
problems:

Theorem 8. [Baader, Ghilardi, Tinelli 2006] Let T0, T1, T2 be three
equational theories of respective signatures Σ0, Σ1, Σ2 such that

• Σ0 = Σ1 ∩ Σ2;

• T0 is Gaussian and effectively locally finite;

• for i = 1, 2, the theory Ti is T0-compatible and a conservative
extension of T0.

If the word problem in T1 and in T2 is decidable, then the word problem
in T1 ∪ T2 is also decidable.
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§3. A Second Combination Result.

Since the theory of Boolean algebras can be shown to be Gaussian,
the following result follows, solving a long-standing open problem in
modal logic:
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§3. A Second Combination Result.

Since the theory of Boolean algebras can be shown to be Gaussian,
the following result follows, solving a long-standing open problem in
modal logic:

Corollary 9. If two classical multimodal logics are decidable, so is
their fusion.
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§3. A Second Combination Result.

Since the theory of Boolean algebras can be shown to be Gaussian,
the following result follows, solving a long-standing open problem in
modal logic:

Corollary 9. If two classical multimodal logics are decidable, so is
their fusion.

Notice that we used Segerberg’s definition, according to which a modal
logic is classical iff it has an algebraic semantics (i.e. classical modal
logics are in bijective correspondence to equational classes of
Boolean-algebras-endowed-with-further-operations). In particular, a
classical modal logic needs not be normal.
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§3. A Second Combination Result.

Let’s try to give some informal explanation about the use of
Gaussianity in the combined algorithm of Theorem 8.
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§3. A Second Combination Result.

Let’s try to give some informal explanation about the use of
Gaussianity in the combined algorithm of Theorem 8.

If we negate the input equation to be tested for validity and if we purify
it, we get a constraint (to be tested for un-satisfiability) of the kind

u1 6= u2 ∧ a1 = t1 ∧ · · · ∧ an = tn (2)

(we use free constants like a1, a2, . . . instead of variables), where each
of the tj is a pure term and u1, u2 are Σ0-terms.
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§3. A Second Combination Result.

Let’s try to give some informal explanation about the use of
Gaussianity in the combined algorithm of Theorem 8.

If we negate the input equation to be tested for validity and if we purify
it, we get a constraint (to be tested for un-satisfiability) of the kind

u1 6= u2 ∧ a1 = t1 ∧ · · · ∧ an = tn (2)

(we use free constants like a1, a2, . . . instead of variables), where each
of the tj is a pure term and u1, u2 are Σ0-terms.

The equational part of (2) can be shown to consists on two pure and
convergent rewrite systems R1 ∪ R2 (where equations aj = tj are
oriented as ground rewrite rules aj → tj).
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§3. A Second Combination Result.

The trick is that of updating R1, R2 in such a way to keep them
convergent and to force them to entail the same Σ0-equations (if this
task is accomplished, then it is sufficient to Ri-normalize and check for
Ti-validity the equation u1 = u2, for i = 1 or i = 2 indifferently).
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§3. A Second Combination Result.

The trick is that of updating R1, R2 in such a way to keep them
convergent and to force them to entail the same Σ0-equations (if this
task is accomplished, then it is sufficient to Ri-normalize and check for
Ti-validity the equation u1 = u2, for i = 1 or i = 2 indifferently).

In fact, this updating is done by induction on any strict total order on
the constants ‘compatible’ with the rewriting system R1 ∪ R2.
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§3. A Second Combination Result.

The trick is that of updating R1, R2 in such a way to keep them
convergent and to force them to entail the same Σ0-equations (if this
task is accomplished, then it is sufficient to Ri-normalize and check for
Ti-validity the equation u1 = u2, for i = 1 or i = 2 indifferently).

In fact, this updating is done by induction on any strict total order on
the constants ‘compatible’ with the rewriting system R1 ∪ R2.

When examining aj → tj (suppose tj is a Σ1-term) one collects all
representative Σ0(a1, . . . , aj)-equations that normalize to a T1-valid
equation using R1. The conjunctions of these equations is then solved
with respect to aj and the skolemized solver s gives a new rewrite rule
aj → s to be added to R2 in order to update it.
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§3. A Second Combination Result.

Theorem 6 and Theorem 7 both imply the disjoint signature case
covered by Theorem 5, but none of them is stronger than the other.

Model-Theoretic Methods for Combining Decision Procedures – p. 65/66



§3. A Second Combination Result.

Theorem 6 and Theorem 7 both imply the disjoint signature case
covered by Theorem 5, but none of them is stronger than the other.

Whereas it is well-known that combined word problems may be
undecidable in the non-disjoint signature case, we tend to believe that
substantial work can still be done in this area.
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