
Uni�cation through ProjectivitySilvio Ghilardi�Dipartimento di MatematicaUniversit�a degli Studi di MilanoItalyMay 24, 2002AbstractWe introduce an algebraic approach to E-uni�cation, through the notions of �nitely presentedand projective object. As applications and examples, we determine the uni�cation type ofvarieties generated by a single �nite quasi-primal algebra, of distributive lattices and of someother equational classes of algebras corresponding to fragments of intuitionistic logic.1 IntroductionIn this paper we present an algebraic approach to uni�cation under equational condi-tions (see [3] for a survey of the subject), mainly in order to have a conceptual methodfor the determination of the uni�cation type.Usual algebraic or categorical approaches in the literature [1], [7], [15], [16] repre-sent a uni�cation problem as a pair of parallel morphisms between �nitely generatedfree algebras. We shall follow a di�erent idea here (see the appendix at the end of thepaper for comparison and further motivations) and represent a uni�cation problem asa �nitely presented algebra (fp algebra, for short) A. A solution to A (or a uni�er forA) will be a morphism A �! P with a fp projective algebra as a codomain. We shallformally prove in section 3 that this conceptualization does not alter the uni�cationtype.The main feature of the above sketched approach is that uni�cation depends onlyon the notion of �nitely presented and projective object, hence it can be introduced inany abstract category and uni�cation type is preserved under categorical equivalence.As an immediate consequence, unitarity of uni�cation type in varieties generated by aprimal algebra (see [14] for this result and the related uni�cation algorithms) followsfrom unitarity of Boolean uni�cation [13], given the equivalence of the correspondingcategories. Unitarity of Boolean uni�cation, in its turn, becomes a trivial consequenceof the fact that �nite non degenerate Boolean algebras are all projective (so thatidentity morphisms are `algebraic' mgu's).�The author wishes to thank one of the anonymous referees for information and helpful remarks.1



Another advantage of the present approach is that for locally �nite varieties (i.e.for varieties in which �nitely generated algebras are �nite), we can always replace inthe de�nitions of section 3 `�nitely presented' by `�nite', thus making the algebraicapproach concretely operative. If, in addition, we have nice �nite duality theorems,like in the case of distributive lattices and of Brouwverian semilattices, we can canshift all the relevant de�nitions (after reversing the direction of arrows) to the dual`geometric' category in order to get the informations we look for.The choice of the examples in sections 5, 6 below is mainly motivated by theauthor's interests and work projects in the �eld of algebraic logic; however, as pro-jective algebras are widely investigated, there is concrete feeling that general resultsconcerning them could be applied to uni�cation theory.2 The symbolic approachWe begin by an abstract approach in the style of e.g. [2]. Let (P;�) be a preorderedset (� is supposed to be re
exive and transitive); recall that we can turn it into aposet (P=�;�) by introducing the equivalence relation p � q i� (p � q & q � p) andby ordering equivalence classes by [p] � [q] i� p � q.A �-set for (P;�) is a subset M � P such that: i) every p 2 P is less or equalto some m 2 M ; ii) all elements of M are mutually �-incomparable. There mightbe no �-set for (P;�) (in this case we say that (P;�) has type 0) or there might bemany of them, due to the lack of antisymmetry. However all �-sets for (P;�), if any,must have the same cardinality. This is because the map associating each elementwith its own equivalence class restricts to a bijection from each �-set M onto the setof all maximal elements of (P=�;�).1 We say that (P;�) has type 1; !;1 i� it hasa �-set of cardinality 1, of �nite (greater than 1) cardinality or of in�nite cardinality,respectively.We say that two preordered sets (P;�) and (Q;�) are equivalent i� they are equiv-alent as categories. One way of saying this is the following [12]: (P;�) is equivalentto (Q;�) i� there exists a map e : P �! Q such that(E1) for every q 2 Q there is p 2 P such that e(p) � q;(E2) for every p1; p2 2 P , p1 � p2 i� e(p1) � e(p2).Notice that, by using choice axiom, it is possible to prove that this relation of equiv-alence is symmetric. Anyway, we are basically interested only in the following trivialfact:Lemma 1 Two equivalent preordered sets have the same type.Proof First notice that if e : P �! Q satis�es (E1)-(E2), then it maps each �-setfor (P;�) onto a �-set for (Q;�). Thus if (P;�) has type 1; !;1 so does (Q;�). Incase (P;�) has type 0, there cannot be any �-set M for (Q;�), otherwise one couldget a �-set for (P;�) by choosing for every m 2 M exactly one p 2 P such thate(p) � m.1Thus if the set of all maximal elements of (P=�;�) satis�es (i) above (within (P=�;�) itself),then there are �-sets for (P;�) and each of them is obtained by picking exactly one element fromeach maximal equivalence class, otherwise there are no �-sets at all (this is essentially said in [2]).2



Let us now introduce the standard background [3] for E-uni�cation. We are givena signature F = (F; �) in the usual sense (F is a �nite set of function symbols and� an arity function). T (F) is the set of terms built up from F with the help of acountable set V ar of variables. A substitution is a map � : V ar �! T (F) which isconstant on a co�nite subset of V ar. Substitutions can be extended to T (F) in thedomain and do compose in the standard way.An equation is a pair of terms which is usually written as t1 = t2. In this paper,sets of equations will be used to handle both equational theories and relations amonggenerators (in the usual algebraic sense). So we introduce the following notation:given two sets of equations E and S, byS `E t1 = t2we mean that some formula of the kindE80 ! (S0 ! (t1 = t2))is logically provable, where S0 is a �nite conjunction of members of S and E80 is a�nite conjunction of universal closures of members of E (this makes clear that onlyequations in E are seen as axioms of a theory). If, as it will happen in many cases, Sis empty, we simply write t1 =E t2instead of ; `E t1 = t2.Example 2 (to be used later on). Let E be the theory of Boolean algebras and letS = f:x1^x2 = 0g. Let t0; t1; t2; t3 be the terms :x1^x2; x1^x2; x1^:x2;:x1^:x2,respectively. For every term t(x1; x2) containing at most the variables x1; x2 thereexists exactly one subset J � I , where I = ft1; t2; t3g, such that S `E t = Wti2J ti.In fact equations E can be used in order to reduce t into disjunctive normal form andassumption S can be used in order to remove t0 (if needed).For substitutions, given a theory E and a set of variables X , we say that � and� are E-equivalent under X , brie
y � =XE � i� �(x) =E �(x) holds for every variablex 2 X . We also say that � is more general than � (with respect to E and X), insymbols � �XE � or simply � � �, i� there is a substitution � such that � =XE � � �(this means that, up to E-equivalence and as far as only variables in X are considered,� is an instantiation of �).An E-uni�cation problem is a �nite set of pairs of terms(a) (s1; t1); : : : ; (sk; tk)and a solution to it (or a uni�er for it) is a substitution � such that�(s1) =E �(t1); : : : ; �(sk) =E �(tk):UE(a) is the set of uni�ers for the uni�cation problem (a); it is a preordered set withrespect to the restriction of the preorder relation �XE , where X is the set of variablesoccurring in (a).We are now ready for the main de�nition: we say that E has uni�cation type:3



- 1, i� for every solvable uni�cation problem (a), UE(a) has type 1;- !, i� for every solvable uni�cation problem (a), UE(a) has type 1 or ! - and thereis a solvable uni�cation problem (a) such that UE(a) has type !;- 1, i� for every solvable uni�cation problem (a), UE(a) has type 1 or ! or 1 - andthere is a solvable uni�cation problem (a) such that UE(a) has type 1;- 0, i� there is a solvable uni�cation problem (a) such that UE(a) has type 0.Examples of each kind are supplied in [3], see also section 5 below for further examples.Notice that the above de�nitions do not allow extra free constants (di�erent fromthose explicitly considered in the signature) to occur in a uni�cation problem (a) andin its solutions; see section 6 for this important extension.3 The algebraic approachIn this section, we give another de�nition of uni�cation type and in next section weshall prove that it is equivalent to the previous one.Given an equational theory E, VE is the variety of models of E, i.e. it is thecategory of algebras satisfying the equations in E with related morphisms. Amongalgebras in VE , we are expecially interested in those which are �nitely presented: werecall the related de�nition below.A presentation is just a pair (X;S) consisting of a set X and of a set S of equationswith variables among X . The presentation is said to be �nite i� both X and S are�nite. Given a presentation (X;S), we can build the algebra F(X;S) 2 VE as follows:take the set of all terms with variables among X and by divide it by the equivalencerelation t � s i� S `E t = s:Operations are introduced by using representative elements of each equivalence class,i.e. for f 2 F with �(f) = n, we havef([t1]; : : : ; [tn]) = [f(t1; : : : ; tn)]:Example 3 Let E be the theory of Boolean algebras and let S; t0; t1; t2; t3; I be as inthe example from the previous section. F(fx1; x2g; S) is (isomorphic to) the Booleanalgebra P(I).It can be shown that F(X;S) is uniquely determined, up to an isomorphism, bya suitable universal property; in case S is empty, we write F(X) instead of F(X; ;)and call it the free algebra over X .We say that A is �nitely presented (fp for short) i� A ' F(X;S) for some �nitepresentation (X;S). The notion of �nitely presented algebra is important because itis a purely categorical notion: in fact, it is well-known [8] that A is �nitely presentedi� the representable functor VE [A;�] preserves �ltered colimits. So the notion of�nitely presented object makes sense in any abstract category and does not need anysymbolic apparatus in order to introduce it. For this reason, it is clearly preservedunder equivalence of categories. 4



We need another kind of objects which are categorially characterizable, namelythe projective objects. An object P in a category is said to be projective i� forevery regular epic q : A �! B and for every arrow f : P �! B, there is an arrowg : P �! A such that the triangle
A B-qPg ����	 f@@@@Rcommutes. We recall that a regular epi is an arrow which is the coequalizer of somepair of arrows. In categories like VE , it is easily seen that regular epis are justsurjective morphisms (the same is not true, however, for merely epic arrows). Weshall make use of the following more or less standard Lemma:Lemma 4 Let P 2 VE be �nitely presented. The following are equivalent:(i) P is a projective object in VE ;(ii) P is a projective object in V fpE , i.e. in the full subcategory of VE determined by�nitely presented algebras;(iii) P is a retract of a free algebra F(X) for a �nite X (i.e. there are morphismsm : P �! F(X) and q : F(X) �! P such that q �m = 1P ).Proof (i))(ii): this is immediate, because coequalizers in V fpE are coequalizers inVE .2(ii))(iii): let P be F(X;S) for �nite S;X . Consider the canonical quotientmap q : F(X) �! F(X;S) and the identity map F(X;S) �! F(X;S). As q isa coequalizer in V fpE ,3 it is su�cient to apply the de�nition of projective object.(iii))(i): consider a regular epi (i.e. a surjective morphism) h : A �! B anda morphism f : P �! B. Let P be a retract of F(X), where X = fx1; : : : ; xng is�nite, i.e. let m : P �! F(X) and q : F(X) �! P be such that q �m = 1P . Forevery xi 2 X pick ai 2 A such that h(ai) = f(q([xi])). The way F(X) is built (or,better, its universal property) shows that the map g de�ned as g([t(x1; : : : ; xn)]) =tA(a1; : : : ; an) is well de�ned and is a morphism from F(X) into A (here tA is ofcourse the interpretation of the term t in A). Then we have h � g = f � q, because the[xi] generate F(X). Composing on the right with m, we get h � (g �m) = f , i.e. P isprojective.The above Lemma makes clear that the class of fp projective algebras is an ex-tension of the class of �nitely generated free algebras (the extension is indeed proper2The coequalizer (both in VE and in V fpE ) of a couple of morphisms among fp algebras f1 :F(Y; T ) �! F(X;S) and f2 : F(Y; T ) �! F(X;S) is the obvious quotient map F(X; S) �!F(X;S [ S0), where S0 is any set of pairs (ty1 ; ty2) (varying y in Y ), in which terms ty1 ; ty2 are chosenin such a way that f1([y]) = [ty1 ] and f2([y]) = [ty2 ].3See the previous footnote (consider the free algebra on a set having the same cardinality as Sand the two morphisms into F(X) de�ned in the obvious way at the free generators, etc.).5



and large, for instance all �nite Boolean algebras are projective, whereas only thoseof cardinality 22n are free).We are now ready to introduce the relevant de�nition for E-uni�cation from analgebraic point of view. In this context an E-uni�cation problem is simply a �nitelypresented algebra A and a solution for it (also called a uni�er for A) is a pair givenby a projective fp algebra P and a morphismu : A �! P:The set of uni�ers for A is denoted by UE(A) (A is said to be uni�able or solvable i�UE(A) is not empty). Given two uni�ers for A, say u1 : A �! P1 and u2 : A �! P2,we say that u1 is more general than u2 i� there exists a morphism making the triangle
P1 P2-Au1 ����	 u2@@@@Rcommute. The de�nition of uni�cation type is the expected one, namely we say thatVE has uni�cation type:- 1, i� for every solvable uni�cation problem A, UE(A) has type 1;- !, i� for every solvable uni�cation problem A, UE(A) has type 1 or ! - and thereis a solvable uni�cation problem A such that UE(A) has type !;- 1, i� for every solvable uni�cation problem A, UE(A) has type 1 or ! or 1 - andthere is a solvable uni�cation problem A such that UE(A) has type 1;- 0, i� there is a solvable uni�cation problem A such that UE(A) has type 0.4 Equivalence of the two approachesIn this section, we shall premit the words `symbolic' and `algebraic', respectively, toany concept which has been introduced both in section 2 and in section 3. Thus,we shall provisionally speak of `symbolic' and `algebraic' uni�cation types as distinctentities. Our aim is the proof of the following:Theorem 5 For any equational theory E, the symbolic and the algebraic uni�cationtype coincide.Proof Let a symbolic uni�cation problem(a) (s1; t1); : : : ; (sk; tk)be given; suppose that X = fx1; : : : ; xng is the set of the variables occurring inthe terms sj ; tj (j = 1; : : : ; k). We shall prove that the preordered set UE(a) isequivalent to the preordered set UE(A), where A is the fp algebra F(X;S), for S =f(s1; t1); : : : ; (sk; tk)g (then Lemma 1 applies). We de�ne an equivalence mape : UE(a) �! UE(A)6



as follows. Let � 2 UE(a) and suppose that Y is the set of variables occurring in theterms �(x1); : : : ; �(xn). Consider the free algebra F(Y ), it is projective as all freealgebras are. De�ne the algebraic uni�er e� : A �! F(Y ) by(u) e�([t]) = [�(t)]:In order to see that the de�nition is correct, recall the construction of A = F(X;S)from section 3: if t � t0, then S `E t = t0, hence `E �(t) = �(t0), given that� 2 UE(a). We now have to prove conditions (E1)-(E2) from section 2.Proof of (E1): let u : A �! P be an algebraic uni�er for A. By Lemma 4, P is arectract of a �nitely generated free algebra, hence there exist some �nite Y 0 and somemorphisms P m�! F(Y 0) q�! P;such that q �m = 1P . Let us consider the morphism m � u : A �! F(Y 0); de�ne thesubstitution � by taking �(xi) (for i = 1; : : : n, the other variables are left unchanged)to be any term ti such that m(u([xi])) = [ti]. Otherwise said, by de�nition, we havefor all xi 2 X m(u([xi])) = [�(xi)]:By an easy induction, we can get also thatm(u([t])) = [�(t)]for every term t containing at most the variables X . In particular, for every j =1; : : : ; k, we have that (m � u)[sj ] = [�(sj)] and that (m � u)[tj ] = [�(tj)]. But[sj ] = [tj ] (by the construction of A = F(X;S)), hence [�(sj)] = [�(tj)], which means�(sj) =E �(tj) (by the construction of free algebras). This shows that � 2 UE(a).Now let Y � Y 0 be the set of variables of Y 0 occurring in the terms �(x1); : : : ; �(xn).We have to show that u � e� and that e� � u, where e� is de�ned by (u) above.Let � : F(Y ) �! F(Y 0) be the map associating the equivalence class of any t inF(Y ) with the equivalence class of the same t in F(Y 0); as F(Y ) cannot be empty,4 wecan de�ne r : F(Y 0) �! F(Y ) by putting r([t]) = [�(t)], for a substitution � mappingthe variables in Y into themselves and the variables in Y 0nY into some arbitrarily�xed term. We trivially have that r � � is the identity map.We also have that the square
F(Y ) F(Y 0)-�A P-u?e� ?mcommutes, as for every term t, m(u([t])) and �(e� [t])) are both equal to [�(t)]. Nowwe have that r �m � u = r � � � e� = e� ;4This cannot happen, even in the case that the signature does not contain constant symbols, forthe following reason: F(Y ) must contain [�(xi)] for all xi 2 X, so if it is empty, X is empty too. Butthen, if also the signature does not contain constants, the uni�cation problem (a) and the algebra Aare both empty, so there is nothing to prove at all.7



thus e� � u holds; on the other hand,q � � � e� = q �m � u = u;thus u � e� holds too.Proof of left-to-right side of (E2): suppose that for �; � 2 UE(a), we have that� �XE �; this means that there exists a substitution � such that � � � =XE � . Let Y; Zbe the variables occurring in the �(xi); �(xi), respectively; we can freely suppose that�(y) (for y 2 Y ) contains at most the variables in Z.5 Let g : F(Y ) �! F(Z) be themorphism so de�ned g([v]) = [�(v)]for every [v] 2 F(Y ). For every [t] 2 A, we have thatg(e�([t])) = g([�(t)]) = [� � �(t)] = [�(t)] = e� ([t]);that is e� � e� .Proof of right-to-left side of (E2): let �; � be such that e� � e� ; in other words,we have a commutative triangle
F(Y ) F(Z)-gAe� ����	 e�@@@@RConsider any substitution � satisfying the condition g([y]) = [�(y)] for all y 2 Y . Byinduction, we get g([t]) = [�(t)], for all [t] 2 F(Y ), hence for xi 2 X we get[�(xi)] = e� ([xi]) = g(e�([xi])) = g([�(xi)]) = [� � �(xi)]:This means that �(xi) =E � � �(xi), i.e. that � �XE �.In the case of Boolean algebras to be uni�able and to be projective do coincidefor fp algebras: this is because to be uni�able here means to be non degenerateand because all fp (=�nite) non degenerate Boolean algebras are projective [9]. Soany solvable uni�cation problem A does trivially have a most general uni�er (in thealgebraic sense) which is the identity map 1A : A �! A. We shall see how to extractfrom this argument explicit formulas for symbolic mgu's in the next section. Now weonly give an example showing how the proof of the above Theorem works in concretecases.Example 6 Let E be the theory of Boolean algebras and let t0; t1; t2; t3; I be as inthe example from section 2. Let (a) be the uni�cation problem t0 = 0. We sawin section 3 that A is (isomorphic to) P(I), which is projective. This means that1A : A �! A is an algebraic uni�er. To get a symbolic mgu for (a) from the algebraicuni�er 1A, let us follow the argument of the above `Proof of (E1)' and so let us �rst5If there are extra variables, they can be instantiated by some term in Z, thus passing to asubstitution �0 still satisfying the condition �0 � � =XE � . Notice that F(Z) cannot be empty, for thesame reason as above. 8



look for a free algebra F(Y 0) and for morphisms m : A �! F(Y 0), q : F(Y 0) �! Asuch that q � m = 1A. We take Y 0 = fx1; x2g (notice that F(Y 0) is nothing butP(I [ft0g)); q is just intersection with I and a suitable m is de�ned by m(U) = U (ift1 62 U), m(U) = U [ ft0g (if t1 2 U). Now to �nd an mgu we must look at what theequivalence class of xi (i = 1; 2) is in A and at what its image under m is in F(Y 0).Clearly [x1] in A is ft1; t2g, because these are the two clauses containing x1; on theother hand m([x1]) = ft0; t1; t2g = [(:x1 ^ x2) _ (x1 ^ x2) _ (x1 ^ :x2)]which can be simpli�ed to [x1 _ x2]. Analogously, we get [x2] = ft1g and m([x2]) =[x2].6 So our mgu is given byx1 7! x1 _ x2 x2 7! x2:We give also an example showing the inverse passage, i.e. from a symbolic uni�er toan algebraic one (this passage is less important in the applications). Let us considerthe uni�er � (which is not maximal) mapping x1 into > and x2 into x1. Here we musttake the free algebra F(fx1g) (which is conveniently represented as P(fx1;:x1g)) andwe must �nd a morphism u : A �! P(fx1;:x1g) mapping the equivalence class ofx1 into the quivalence class of > and the equivalence class of x2 into the equivalenceclass of x1. The existence of such a morphism (which must be unique because [x1]; [x2]generate A) is guaranteed precisely by the fact that � is a solution to (a): the requiredu is the inverse image along the set-theoretic function fx1;:x1g �! I mapping x1 tot1 and :x1 to t2.5 Applications and ExamplesIn this section, we shall exclusively use the algebraic approach of section 3 in orderto determine uni�cation types.We saw above that in the case of Boolean algebras (and in the equivalent caseof varieties generated by a primal algebra) to be uni�able and to be projective docoincide for fp algebras. This situation (coincidence of `uni�able' and `projective') isindeed a larger phenomenon.A �nite algebra A is said to be quasi-primal i� there exists a ternary term t(x; y; z)such that for every a; b; c 2 A, we have that t(a; b; c) = a if a 6= b and t(a; b; c) = c ifa = b. Equivalently (see [5]), A is quasi-primal i� all subalgebras of A are simple andthe variety V (A) generated by A is arithmetical (that is, congruence-permutable andcongruence-distributive). Being A �nite, V (A) is locally �nite, so that fp algebras arejust �nite algebras. We shall make use of the following characterization Theorem for�nite projective algebras in V (A):Theorem 7 [17] Let A be a �nite quasi-primal algebra; a �nite algebra in V (A) isprojective i� it admits every non-trivial minimal subalgebra of A as a direct factor.Theorem 8 If A is a �nite quasi-primal algebra, then the variety V (A) has unitaryuni�cation type.6Notice that we do not use subscripts for square brackets, because the context makes clear whereequivalence classes are taken. 9



Proof We shall show that each �nite uni�able algebra B 2 V (A) is projective. AsB is uni�able, there is a morphism u : B �! P , where P is �nite and projective. IfA1; : : : ; An are the non-trivial minimal subalgebras of A, it follows from Theorem 7that for each i = 1; : : : ; n there exists at least one morphism fi : B �! Ai (compose uwith the appropriate projection). Now consider the algebra B�A1�� � ��An (whichis projective again by Theorem 7) and the morphismh1B ; f1; : : : ; fni : B �! B �A1 � � � � �An;associating hb; f1(b); : : : ; fn(b)i with b 2 B. If pB is the projection onto B, we havethat pB � h1B ; f1; : : : ; fni = 1B ;so B is projective being the retract of a projective algebra (see Lemma 4(iii)).We give a further example in which `uni�able' and `projective' coincide for fpalgebras. A Brouwerian semilattice B is a semilattice with unit (i.e. a commutativeidempotent monoid, or equivalently a poset with �nite infs) endowed with a furtherbinary operation ! satisfying the condition:b1 ^ b2 � b3 i� b1 � b2 ! b3for every b1; b2; b3 2 B. It can be shown that Brouwerian semilattices are a variety,indeed a locally �nite variety (for this and other basic properties see [10]).We need some easy background about adjoints among posets. Suppose that f :(P;�) �! (Q;�) is an order-preserving map between posets; suppose also that (P;�)is complete and that f preserves meets. Then there exists another order-preservingmap f� : (Q;�) �! (P;�) satisfying the condition:(A) f�(q) � p i� q � f(p)for every p 2 P; q 2 Q (f�(q) turns out to be the in�mum of the set of all r such thatq � f(r)). If f is surjective, we have that(S) f � f� = 1Q;because f � f� � f = f follows from (A). If (P;�) and (Q;�) are Brouwerian semilat-tices and f preserves implication, we have also that the so-called Frobenius condition(F ) p ^ f�(q) = f�(f(p) ^ q)holds for every p 2 P; q 2 Q.Theorem 9 The variety of Brouwerian semilattices has unitary uni�cation type.Proof Notice that all �nite (=fp)7 algebras are uni�able, as the one element algebrais projective, being the free algebra on zero generators. We show that all �nitealgebras are projective: for this, it is su�cient to show that every surjective morphism7Any �nite algebra is �nitely presented if the signature contains only �nitely many functionsymbols (take the multiplication tables as a presentation). The converse is true for locally �nitevarieties (i.e. for varieties in which �nitely generated free algebras are �nite).10



q : A �! B between �nite Brouwverian semilattices has a section, i.e. that there isa morphism s : B �! A such that q � s = 1B (see Lemma 4(ii) and the de�nition ofprojective). Indeed, we leave the reader to check (by using (A); (S); (F ) above) thatwe can put s(b) = q�(1)! q�(b) in order to get an appropriate s.8The case of Brouwerian semilattices is quite instructive for the problem of extract-ing symbolic uni�ers from algebraic proofs. In fact from the mere statement that all�nite algebras are projective and from an e�ective description of �nitely generatedfree algebras (see e.g. [10]), it is in principle possible to get a uni�cation algorithm(the procedure is the same as in the example of section 4 for Boolean algebras). How-ever, the extremely fast-growing size of free algebras makes this proposal unfeasibleeven for very small values of the cardinality of the set of variables involved in the uni-�cation problem.9 On the other hand, the proof of Theorem 9 contains a quite simpleformula for most general uni�ers. First notice that any uni�cation problem si = ti(i = 1; : : : ; n) can be reduced to the matching problem t = 1, where t = Vni=1(si $ ti);secondly, the left adjoint q� to a canonical quotient map q : F(X) �! F(X; ft = 1g)maps [v] onto [t^v]. Consequently, the morphism s described in the proof of Theorem9, maps [x] into [1^ t]! [t^ x], which can be simpli�ed to [t! x]. This means thatthe uni�cation problem t = 1 has mgu given by x 7! (t ! x), for every variable xoccurring in t (keep in mind again the `Proof of (E1)' within Theorem 5).Similar formulas (coincident with the `L�owenheim formulas' of [13]) can be givenfor the Boolean case too. In fact, one can prove that �nite uni�able (i.e. non de-generate) Boolean algebras are projective just by a slight modi�cation of the proofof Theorem 9. The modi�cation is the following: if F(X; ft = 1g) is non degenerate,then there exists a morphism � : F(X; ft = 1g) �! 2, where 2 is the two elementBoolean algebra (� is induced by a two-valued assignment satisfying t). Build a sec-tion s of the quotient map q : F(X) �! F(X; ft = 1g) by putting s([v]) = q�([v]) (if�([v]) = 0) and s([v]) = q�([1]) ! q�([v]) (if �([v]) = 1).10 We consequently get anmgu for the solvable uni�cation problem t = 1 by �xing an assignment satisfying tand by mapping each variable x into t ^ x or into t ! x depending on the fact thatx is sent to either 0 or 1 by that assignment. So, once again, we obtained explicitformulas for an mgu, although in the present case a satis�ability problem must besolved �rst.Anther way of applying the results of section 4 is through duality theorems for fpalgebras:11 we give here a couple of examples, both for locally �nite varieties.Theorem 10 The category of �nite distributive lattices12 is dual to the categoryof �nite posets and order-preserving maps. A �nite distributive lattice is projectivei� its dual poset is a semilattice with unit.8An alternative proof of this Theorem can be easily obtained through K�ohler duality [10] (seesection 6).9The free Brouwerian semilattice on three generators has more than 1014 elements!10We leave the reader to check that s so de�ned is a Boolean morphism, by using the fact that q�preserves ^, as a consequence of (F ) and (S) above (notice however that q� does not preserve >, soit could not be directly used instead of s).11According to the standard terminology, we say that a category C is dual to another category Di� D is equivalent to the opposite category of C.12We consider part of the de�nition of being a lattice the presence of zero and one elements.11



Proof The proof of this Theorem can be essentially found in textbooks, such as [4],[9]. We merely sketch it. The dual of a �nite poset is the distributive lattice of itsdownward closed subsets and the dual of an order-preserving map is the inverse imagemorphism. The dual of a �nite distributive lattice is the poset of its join-irreducibleelements (i.e. the non-zero elements which are less or equal to a or to b in case theyare less or equal to a _ b); the dual of a morphism is easily found just by observingthat its left adjoint maps join-irreducible elements into join-irreducible elements.In order to determine injective objects (i.e. dual of projective objects) in thecategory of �nite posets and order-preserving maps (so that Lemma 4(ii) applies),�rst observe that an order-preserving map is regular monic i� it is injective and alsore
ects the partial order relation. Given that, it is easy to check that semilatticeswith unit are injective; vice versa, if (P;�) is injective, then the embedding into itsdownward closed subsets is regular monic, hence it must have a retract and it is notdi�cult to see that this retract must map a downward closed subset into its sup.We are now ready to determine the uni�cation type of distributive lattices. Weshall work in the dual category of �nite posets and order-preserving maps, henceall the de�nitions of section 3 must be dualized (i.e. direction of arrows must bereversed): a uni�cation problem now is a �nite poset, a uni�er for it a map withdomain a semilattice with unit, a uni�er u1 is more general than a uni�er u2 i� thereexists an order-preserving map f such that u1 � f = u2, etc.Let us introduce the six element poset P = f?; e; o; l; g;>g, whose partial orderrelation � is given by the following diagram
� ��@@@@@@�������@@@ ���
��� @@@�

�
>
?e o

l g

Lemma 11 For every natural number n, there is a uni�er un : (Pn;�) �! (P;�)such that any uni�er for (P;�) which is more general than un has as a domain aposet having at least n elements.Proof Let (Pn;�) be (P(n);�), where n is the set f1; : : : ; ng. Notice that (P(n);�)is a semilattice with unit. De�ne un(S) to be:- ?, if S is empty; 12



- >, if S has at least 3 elements or if it has two elements which are both odd or even;- g, if S has two elements, say i and j, such that i is odd, j is even and i > j;- l, if S has two elements, say i and j, such that i is odd, j is even and i < j;- e, if S contains only one element, which is even;- o, if S contains only one element, which is odd.It is not di�cult to see that un is order-preserving, i.e. a uni�er. Now suppose thatv : (Q;�) �! (P;�) is more general than un, i.e. that we have an order-preservingmap h such that the triangleP(n) Q-hPun@@@@R v����	commutes. We prove that we cannot have h(fig) = h(fjg) for i < j. Suppose thecontrary, then i; j must be for instance both even (they cannot be one odd and theother one even, as h cannot collapse elements with di�erent un-values). Take anodd k such that i < k < j and let s be the sup of h(fig) and h(fkg): it exists, as(Q;�) is a �nite semilattice. We have that s is greater or equal to h(fkg) and toh(fig) = h(fjg). Furthermore, h(fi; kg) � s, by the fact that fig and fkg are bothincluded in fi; kg, by the fact that h is order-preserving and by the de�nition of sup.Similarly, h(fj; kg) � s. As v preserves the partial order relation and the trianglecommutes, we get v(s) � e; v(s) � o; l � v(s); g � v(s);which is impossible, given the above diagram for (P;�).Lemma 12 If a �nite poset (Q;�) has both a minimum and a maximum element,then the preordered set of its uni�ers is �ltered.Proof We have to show that, given two uni�ers u1 : (Q1;�) �! (Q;�) andu2 : (Q2;�) �! (Q;�) for (Q;�), there is a uni�ers which is more general than bothof them. Let (R;�) be obtained by adding a new top element > and a new bottomelement ? to the disjoint union of (Q1;�) and (Q2;�). Clearly (R;�) is again asemilattice with unit and the canonical injection �i of (Qi;�) (i = 1; 2) into it isorder-preserving. Now de�ne a new uni�er u : (R;�) �! (Q;�) by mapping r intoui(r), if r comes from Qi, and by mapping it into the top or the bottom element ofQ if it is equal to > or ?, respectively. As we have that u � �1 = u1 and u � �2 = u2,u is more general than u1; u2.Theorem 13 The variety of distributive lattices has uni�cation type 0.13



Proof Take the �nite poset (P;�) of Lemma 11; by Lemma 12, the preordered setof its uni�ers is �ltered and a �ltered preordered set can have only type 0 or 1. Thelatter is impossible, by Lemma 11, as we are not allowed to introduce in�nite posetsin building uni�ers.A pseudocomplemented distributive lattice is a distributive lattice D endowed witha further unary operation : satisfying the conditiona ^ b � 0 i� a � :b;for every a; b 2 D. Pseudocomplemented distributive lattices are a locally �nitevariety (�nitely generated free algebras are described in [18]). The following Theoremcan be proved by complicating the arguments used in the proof of Theorem 10 (seein any case [19]):Theorem 14 The category of �nite pseudocomplemented distributive lattices isdual to the category of �nite posets and order-preserving maps f : (P;�) �! (Q;�)satisfying the following further requirement (let m(P );m(Q) be the sets of minimalelements of (P;�) and (Q;�), respectively):(1) 8� 2 m(Q) 8p 2 P (� � f(p) ) 9� 2 m(P ) (� � p & f(�) = �)):A �nite pseudocomplemented distributive lattice is projective i� its dual poset P isnot empty, has sups of pairs of elements and satis�es the further requirement:(2) 8� 2 m(P ) 8p1; p2 2 P (� � p1 _ p2 ) � � p1 or � � p2):Theorem 15 The variety of pseudocomplemented distributive lattices has uni�ca-tion type 0.Proof Notice that Lemma 11 can be proved in the same way as in the case ofdistributive lattices (with trivial observations like that P(n) satis�es (2) and un sat-is�es (1)). Lemma 12 also holds, with slight modi�cations in the proof: (R;�) is nowobtained by adding only a new top element > to the disjoint union of (Q1;�) and(Q2;�). The new uni�er u : (R;�) �! (Q;�) is again de�ned by mapping r intoui(r), if r comes from Qi, and by mapping it into the top element of Q if it is equalto >. The fact that (Q;�) has a bottom element (i.e. a unique minimal element) isused in order to show that u satis�es (1). The remaining facts to check (namely that(R;�) satis�es (2) and that �1; �2 satisfy (1)) are trivial. Given that Lemmas 11, 12hold, Theorem 15 follows by the same argument we used in the proof of Theorem 13.Theorems 9, 13, 15 shows the behaviour of E-uni�cation in relevant fragments ofintuitionistic logic, for the whole intuitionistic logic (i.e. for Heyting algebras) theuni�cation type is !, as shown in [6].6 Uni�cation with extra constantsAs remarked in section 2, we have not considered uni�cation problems and relatedsolutions containing an additional �nite set of constants C not appearing in the sig-nature. These constants might be subjected to a further �nite set of equations S014



(if S0 is empty, then they are free).13 This extension of the approach of section 2corresponds to consider uni�cation problems in the theory E(C; S0) obtained from Eby adding the constants C to the signature and the equations S0 to the axioms. So wemay de�ne the stable uni�cation type of E as the `worst' uni�cation type of E(C; S0),varying the pair (C; S0) (i.e. E has unitary stable uni�cation type i� E(C; S0) hasunitary uni�cation type for all �nite pairs (C; S0), E has ! as stable uni�cation typei� all E(C; S0) have uni�cation type 1 or ! - and there is a �nite pair (C; S0) suchthat E(C; S0) has uni�cation type !, etc.).In order to deal with stable uni�cation types, the key point, from an algebraicpoint of view, is given by the following Proposition:Proposition 16 Given a �nite pair (C; S0) as above, we have that the categoryVE(C;S0) is isomorphic to the comma category A=VE ,14 where A is the fp algebraF(C; S0); moreover, V fpE(C;S0) is isomorphic to A=(V fpE ).Proof Suppose that C = fc1; : : : ; cng; algebras in VE(C;S0) are the algebras B 2 VEendowed with further speci�ed elements (to be preserved by morphisms in VE(C;S0))cB1 ; : : : ; cBn such that B j= tB1 (cB1 ; : : : ; cBn ) = tB2 (cB1 ; : : : ; cBn ) holds for every (t1; t2) 2S0. The isomorphism functor VE(C;S0) �! A=VE acts `identically' on morphisms andassociates with the algebra (B; cB1 ; : : : ; cBn ) the morphism � : A �! B de�ned by�([t(c1; : : : ; cn)]) = tB(cB1 ; : : : ; cBn ). The inverse functor A=VE �! VE(C;S0) still actsidentically on morphisms and associates with the object � : A �! B the algebra(B; �([c1]); : : : ; �([cn])).For the second part of the Proposition, given the above description of the iso-morphism functor, it is su�cient to show that (B; cB1 ; : : : ; cBn ) is �nitely presentedin VE(C;S0) i� B is �nitely presented in VE . In fact, if (X;S) is a presentation for(B; cB1 ; : : : ; cBn ) in VE(C;S0), then (X [ fc1; : : : ; cng; S [ S0) is a presentation for B inVE . Vice versa, if (X;S) is a presentation for B in VE , then pick terms t1; : : : ; tn suchthat cB1 = [t1]; : : : ; cBn = [tn]: it turns out that (X;S [ fc1 = t1; : : : ; cn = tng) is apresentation for (B; cB1 ; : : : ; cBn ) in VE(C;S0).In order to see a �rst simple example of the application of the above Proposition,let us consider the case in which VE is the category B of Boolean algebras. Thecategory of �nite Boolean algebras Bfp is dual to the category of �nite sets Setfin.Thus, recalling the de�nitions of comma category under and over a given object,for every �nite Boolean algebra A, the category A=(Bfp) is dual to the categorySetfin=X , where X is the �nite set which is dual to A. It is easily seen that inSetfin=X , an object �Z : Z �! X is injective i� �Z is a surjective map and it is(co)-uni�able i� there exists a commutative triangleI Z-X�I@@@@R �Z����	13Usually S0 is taken to be empty in the literature. The reason why we prefer not to do so is becausewe would not like free algebras (which, unlike fp algebras, are not categorially characterizable) toappear in statements like Proposition 16 below.14We recall that this category has morphisms with domain A as objects and the obvious commu-tative triangles as arrows (see [12]). 15



where (I; �I) is an injective object, i.e. where �I is surjective. But this implies that�Z is surjective too, hence once again to be uni�able and to be projective do coincidein A=(Bfp), thus showing the unitarity of stable uni�cation type for Boolean algebras.The same result applies also to varieties generated by a primal algebra because `tohave stable unitary uni�cation type' is a categorical property (it depends only on theuni�cation types of the comma categories under �nitely presented objects). Moregenerally, it is possible to show that varieties V (A) generated by a single �nite quasi-primal algebra A have unitary stable uni�cation type: in fact, the essential point inthe proof of Theorem 7 depends only on some few categorical properties which areinherited from V (A)fp by the comma categories we are interested in.15Let us concentrate now on the case of Brouwerian semilattices which is moreintersting. The key point for our investigations is the following duality Theorem (see[10]):Theorem 17 The category of �nite Brouwerian semilattices is dual to the categoryK of �nite posets and strict open partial maps.A partial map f : (P;�) �! (Q;�) between �nite posets is said to be strict openi� the following two conditions are satis�ed:- for all p; q 2 dom(f), if p < q then f(p) < f(q);- for all p 2 dom(f), for all q 2 Q, if q < f(p) then there exists p0 2 dom(f) suchthat p0 < p and f(p0) = q.In order to deal with the stable uni�cation type of Brouwverian semilattices, we shallconsequently work with (duals of) uni�cation problems in the category K=(P;�),where (P;�) is an arbitrary �xed �nite poset. Objects in K=(P;�) are just triples(Q;�; �Q), where (Q;�) is a �nite poset and �Q : Q �! P is a strict open partialmap; an arrow in K=(P;�) of domain (Q;�; �Q) and codomain (R;�; �R) is a strictopen partial map f : Q �! R such that the triangle(Q;�) (R;�)-f(P;�)�Q@@@@R �R����	commutes. Notice that the commutativity of the triangle means that the compositionof f and �R (as relations) is equal to �Q: in particular, for every q 2 Q, q is in thedomain of �Q i� both (q is in the domain of f and f(q) is in the domain of �R).15We give some further details for the interested reader. Let us consider only the case in which thesignature contains at least one costant symbol (there is no loss of generality in that for signaturesaugmented with extra constants): this implies that (i) projections are regular epi (i.e. they aresurjective). Moreover standard arguments from universal algebra (essentially Corollaries 6.10 and10.2 of [5]) can be used in order to prove that in V (A)fp (ii) every regular epi is isomorphic to aprojection. Now it is easy to show that in any regular category with an initial object and satisfying(i) and (ii), projective objects are just those containing the initial object as a direct factor. As (ii)can be transferred from V (A)fp to our comma categories by a general argument, at this point it ispossible to repeat word by word the proof of Theorem 8.16



Lemma 18 An arrow f : (Q;�; �Q) �! (R;�; �R) is regular monic in K=(P;�)i� it is injective and totally de�ned.Proof Given a pair of parallel arrows f1 : (S;�; �S) �! (T;�; �T ) and f2 : (S;�; �S) �! (T;�; �T ), their equalizer in K=(P;�) is just the subset of S given byfs 2 S j 8s0 � s either (s0 2 dom(f1) \ dom(f2) and f1(s0) = f2(s0)) or (s0 62 dom(f1)and s0 62 dom(f2))g, endowed with the restriction of � and of �Q. Hence regularmonics are injective totally de�ned functions.Vice versa, if f : (Q;�; �Q) �! (R;�; �R) is injective and totally de�ned, then itis an equalizer: to see it, take its cokernel, that is take the object (R0;�; �R0) obtainedfrom (R;�; �R) by duplicating points not in the image of f . We have two injections(which are both arrows in K=(P;�)) from (R;�; �R) into (R0;�; �R0), of which f isan equalizer.Next step is the characterization of injective objects in K=(P;�). We need someprevious de�nitions. A sieve of a poset (Q;�) is just a downward closed subset. Anelement q 2 Q is said to dominate a sieve S i� S = fq0 j q0 < qg (notice that nothingprevents S from being empty). An arrow f : (Q;�) �! (R;�) in K always preservesdomination, in the sense that if q dominates S and if q 2 dom(f), then f(q) dominatesf(S). We say that f re
ects domination (is d-re
ective for short) i� for every sieveS of Q, for every r 2 R, if r dominates f(S) then there exists q 2 Q such that qdominates S, q 2 dom(f) and f(q) = r.Lemma 19 An object (I;�; �I) is injective in K=(P;�) i� �I is d-re
ective.Proof Suppose that (I;�; �I) is injective in K=(P;�), that S is a sieve of (I;�)and that p dominates �I(S). Build (I 0;�; �I0) just by adding a new point � aboveS and by mapping it into p (the resulting �I0 is a strict open partial map because pdominates �I(S)). As the inclusion � of (I;�; �I) into (I 0;�; �I0) is regular monic bythe previous Lemma, it must have a retract. This retract r : (I 0;�; �I0) �! (I;�; �I)must be a strict open partial map such that r � � = 1I (because r is a retract of �)and such that �I � r = �I0 (because r is an arrow of K=(P;�)). The �rst conditionimplies that r(�) dominates S (recall that � dominates S and that strict open partialmaps preserve domination), whereas the second condition implies that �I maps r(�)onto p (as �I0(�) = p).Vice versa, suppose that �I is d-re
ective. Consider a regular monic i : (Q0;�; �Q0) �! (Q;�; �Q) and a morphism f : (Q0;�; �Q0) �! (I;�; �I) in K=(P;�).If we apply Lemma 20 below to f0 = f � iop, we get �f : (Q;�) �! (I;�) suchthat f0 � �f , �I � �f = �Q and dom( �f) � dom(f0) [ dom(�Q). Thus in particular�f : (Q;�; �Q) �! (I;�; �I) is a morphism of K=(P;�). We need only to prove that�f � i = f . As f = f � iop � i and as f � iop � �f , we trivially have that f � �f � i. For theother inclusion, it is su�cient to prove that dom( �f � i) � dom(f) (we are dealing withpartial functions, not with arbitrary relations). If q 2 dom( �f � i), then i(q) 2 dom( �f ),i.e. either i(q) 2 dom(f � iop) or i(q) 2 dom(�Q). In the former case, q 2 dom(f),in the latter case q 2 dom(�Q0 ) (because �Q � i = �Q0) and again q 2 dom(f), asdom(�Q0 ) = dom(�I � f) � dom(f).Lemma 20 Let (Q;�; �Q) and (I;�; �I) be objects of K=(P;�) and let f0 : (Q;�) �! (I;�) be a strict open partial map; suppose also that the above data satisfythe following conditions: 17



(i) �I is d-re
ective;(ii) �I � f0 � �Q;(iii) for all q 2 Q, if q 2 dom(�Q) \ dom(f0), then f0(q) 2 dom(�I );(iv) for all q; q0 2 Q, if q 2 dom(f0), q0 < q and q0 2 dom(�Q), then q0 2 dom(f0).Then there exists a strict open partial map �f : Q �! I such that f0 � �f , �I � �f = �Qand dom( �f ) � dom(f0) [ dom(�Q).Proof We build an increasing sequence of strict open partial mapsf0 � f1 � � � � � fi � � � �satisfying (ii)-(iii)-(iv) and satisfying also the condition dom(fi) � dom(f0) [dom(�Q). We shall stop only when dom(�Q) � dom(fi) (for this i, we shall get�I � fi = �Q from (ii)-(iii)). The process ends because our posets are �nite.Suppose, by induction, that fi is given and that dom(�Q) 6� dom(fi). Pick q 2dom(�Q) such that q 62 dom(fi) and such that all q0 < q which are in the domain of�Q are also in the domain of fi. Now �Q(q) dominates the sieve f�Q(q0) j q0 < q & q0 2dom(�Q)g which is equal to the sieve f�I(fi(q0)) j q0 < q & q0 2 dom(�I � fi)g, by(ii)-(iii) and the choice of q. As ffi(q0) j q0 < q & q0 2 dom(fi)g is a sieve of I and as�I is d-re
ective, there is x 2 I dominating it, belonging to the domain of �I and suchthat �I (x) = �Q(q). Now build fi+1 by adding to fi the pair (q; x). fi+1 still satis�es(ii)-(iii)-(iv) and is strict open by (iv) and the fact that q 2 dom(�Q)ndom(fi).Lemma 21 Suppose that (I;�; �I) is an injective object in K=(P;�) and supposethat the morphism of K=(P;�)h : (I;�; �I) �! (J;�; �J)is a surjective (though not necessarily total) map. Then (J;�; �J) is injective as well.Proof We apply Lemma 19. Let S be a sieve of J and let p dominate �J (S);consider the sieve of I given by S0 = fx 2 I j 9y � x (y 2 dom(h) & h(y) 2 S)g. We�rst check that �I(S0) = �J(S). In fact q 2 �I(S0) i�9y0 2 dom(�I ) (q = �I (y0) & 9y � y0 (y 2 dom(h) & h(y) 2 S))i� (by the fact that dom(�I ) � dom(h), which is a consequence of �I = �J � h)9y 2 dom(�I ) (�I (y) = q & h(y) 2 S)i� (by surjectivity of h and the fact that �I = �J � h)9z 2 dom(�J ) (z 2 S & �J(z) = q)i� q 2 �J(S), as claimed. As (I;�; �I) is injective, there exists z 2 dom(�I ) suchthat �I (z) = p and z dominates S0. It follows that z 2 dom(h) and that h(z)dominates h(S0) because morphisms in K preserve domination. It remains to checkthat h(S0) = S. In fact, x 2 h(S0) i�9y0 2 dom(h) (h(y0) = x & 9y � y0 (y 2 dom(h) & h(y) 2 S))i� x 2 S, by surjectivity of h. 18



Theorem 22 The variety of Brouwerian semilattices has stable uni�cation typeequal to !.Proof Every arrow in K factors through a partial surjection followed by the (total)inclusion of a sieve, so every uni�er of a uni�cation problem (Q;�; �Q) is less general,by Lemma 21, than the inclusion into Q of an injective sieve of Q (we say that a sieveof Q is injective i� it is an injective object inK=(P;�), with respect to the restrictionsof � and �Q). As Q is �nite, it clearly follows that the preordered set of its uni�ersadmits a �nite �-set. It remains to show that the stable uni�cation type cannot be1; for this, it is su�cient to produce (Q;�; �Q) having at least one injective sieve(this guarantees that it is uni�able), but no maximum injective sieve (notice thatuni�ers which are inclusions are comparable by inclusion only). An example of sucha (Q;�; �Q) is given in the following diagram (we take as (P;�) the singleton posetand use a white instead of a black point in order to mark elements which are in thedomain of �Q):
� �� ��ec d
a b

Here there are two maximal injective sieves given by the elements fa; c; eg and fb; d; eg,respectively; their union is the total sieve which is not injective, because fc; dg is notdominated by any element in the domain of �Q, although its image (which is empty)is dominated by the unique element of P .Notice that, as the singleton poset is the dual of the free Brouwerian semilatticeon one generator, the proof of Theorem 22 shows that it is su�cient to add one freeconstant for the uni�cation type to change from 1 to !.7 Appendix: related workIn this appendix we make some comparison with other standard algebraic approachesto uni�cation theory and give further motivations for the origin of the ideas explainedin section 3.In current literature [1], [7], [15], [16] in order to deal with uni�cation theory, thefull subcategory V fE of VE consisting of �nitely generated free algebras is �rst takeninto consideration. A uni�cation problem is seen as a pair of parallel morphisms inV fE :(�) f1 : F(Y ) �! F(X); f2 : F(Y ) �! F(X):A solution (i.e. a uni�er) for (�) is any morphism u in V fE with domain F(X) such thatg � f1 = g � f2. Di�erent uni�ers are compared through commutativity of the obvious19



triangles. In this context, mgus becomes weak coequalizers (de�ned like equalizers,but without the uniqueness condition in the formulation of the universal property).One of the main aims of a conceptual approach to symbolic problems is to getinvariance with respect to di�erent presentations (see [11]). From this point of viewthe above mentioned algebraic approach to uni�cation represents in the same way e.g.the uni�cation problems t = u and t0 = u0 in case we have t =E t0 and u =E u0. Still,however, uni�cation problems like t = u; u = vand t = v; u = vwhich look quite the same have di�erent representations (less trivial examples couldbe obtained e.g. by adding linearly dependent equations to a linear system). In fact,a pair of parallel arrows like (�) simply plays the role of being a presentation for theircoequalizer. This coequalizer in general does not belong to V fE because it may not be afree algebra anymore, but it is a �nitely presented algebra. This suggests to consideras a uni�cation problem directly a fp algebra A. Next step is to identify uni�ers;as a �rst attempt, one could consider as a uni�er any morphism u : A �! F(Z)with a �nitely generated free algebra as a codomain. In fact, if A is presented as thecoequalizer of (�), then any solution to (�) must factor through A (by the de�nitionof coequalizer) and conversely. There is still an objection to this: free algebras arecharacterizable through reference to the forgetful functor, whereas for fp algebras thereis a neat internal categorical characterization (preservation of �ltered colimits by therepresentable functor). Avoiding reference to free algebras would make uni�cationtype a categorical invariant and would eliminate any indirect hidden reference tosome kind of presentations. The idea is that of replacing morphisms taking valuesinto free algebras by morphisms taking values into fp projective algebras. This choice(which was suggested to the author by the prominent role played in intuitionisticuni�cation by fp projective Heyting algebras [6]) does not alter the uni�cation typebecause projective algebras are retract of free algebras (full details have been given insection 4). Moreover, practical experience shows that it is convenient: for instance,the examples of section 5 show that in many particular cases it is much easier tobuild uni�ers and operate on them if we are allowed to work on projective algebrasinstead of on free algebras only. For instance, proof of Lemma 12 would not work ifwe could use free algebras only, proof of Lemma 11 would not work either in the caseof pseudocomplemented distributive lattices. Even in the case of Theorems 8 and 9some additional work would be required. In fact, this additional work is always thesame in all the cases, it is simply the work needed in order to build a free algebraof which some given projective algebra is a retract. Given that, it is of course muchbetter and clearer to directly enlarge the set of uni�ers, as proposed in section 3.References[1] Baader, F. Uni�cation in Commutative Theories, J. Symbolic Computation 8,pp. 479-497 (1989); 20
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