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Abstract

We introduce an algebraic approach to E-unification, through the notions of finitely presented
and projective object. As applications and examples, we determine the unification type of
varieties generated by a single finite quasi-primal algebra, of distributive lattices and of some
other equational classes of algebras corresponding to fragments of intuitionistic logic.

1 Introduction

In this paper we present an algebraic approach to unification under equational condi-
tions (see [3] for a survey of the subject), mainly in order to have a conceptual method
for the determination of the unification type.

Usual algebraic or categorical approaches in the literature [1], [7], [15], [16] repre-
sent a unification problem as a pair of parallel morphisms between finitely generated
free algebras. We shall follow a different idea here (see the appendix at the end of the
paper for comparison and further motivations) and represent a unification problem as
a finitely presented algebra (fp algebra, for short) A. A solution to A (or a unifier for
A) will be a morphism A — P with a fp projective algebra as a codomain. We shall
formally prove in section 3 that this conceptualization does not alter the unification
type.

The main feature of the above sketched approach is that unification depends only
on the notion of finitely presented and projective object, hence it can be introduced in
any abstract category and unification type is preserved under categorical equivalence.
As an immediate consequence, unitarity of unification type in varieties generated by a
primal algebra (see [14] for this result and the related unification algorithms) follows
from unitarity of Boolean unification [13], given the equivalence of the corresponding
categories. Unitarity of Boolean unification, in its turn, becomes a trivial consequence
of the fact that finite non degenerate Boolean algebras are all projective (so that
identity morphisms are ‘algebraic’ mgu’s).

*The author wishes to thank one of the anonymous referees for information and helpful remarks.



Another advantage of the present approach is that for locally finite varieties (i.e.
for varieties in which finitely generated algebras are finite), we can always replace in
the definitions of section 3 ‘finitely presented’ by ‘finite’, thus making the algebraic
approach concretely operative. If, in addition, we have nice finite duality theorems,
like in the case of distributive lattices and of Brouwverian semilattices, we can can
shift all the relevant definitions (after reversing the direction of arrows) to the dual
‘geometric’ category in order to get the informations we look for.

The choice of the examples in sections 5, 6 below is mainly motivated by the
author’s interests and work projects in the field of algebraic logic; however, as pro-
jective algebras are widely investigated, there is concrete feeling that general results
concerning them could be applied to unification theory.

2 The symbolic approach

We begin by an abstract approach in the style of e.g. [2]. Let (P, <) be a preordered
set (< is supposed to be reflexive and transitive); recall that we can turn it into a
poset (P/ =, <) by introducing the equivalence relation p =~ ¢ iff (p < ¢ & ¢ < p) and
by ordering equivalence classes by [p] < [¢] iff p < g.

A p-set for (P, <) is a subset M C P such that: i) every p € P is less or equal
to some m € M; ii) all elements of M are mutually <-incomparable. There might
be no u-set for (P, <) (in this case we say that (P, <) has type 0) or there might be
many of them, due to the lack of antisymmetry. However all u-sets for (P, <), if any,
must have the same cardinality. This is because the map associating each element
with its own equivalence class restricts to a bijection from each u-set M onto the set
of all maximal elements of (P/~,<).! We say that (P, <) has type 1,w, oo iff it has
a p-set of cardinality 1, of finite (greater than 1) cardinality or of infinite cardinality,
respectively.

We say that two preordered sets (P, <) and (@, <) are equivalent iff they are equiv-
alent as categories. One way of saying this is the following [12]: (P, <) is equivalent
to (@, <) iff there exists a map e : P — @ such that

(E1) for every q € @ there is p € P such that e(p) ~ g;

(E2) for every p1,p2 € P, p1 < p2 iff e(p1) < e(p2).

Notice that, by using choice axiom, it is possible to prove that this relation of equiv-
alence is symmetric. Anyway, we are basically interested only in the following trivial
fact:

Lemma 1 Two equivalent preordered sets have the same type.

Proof First notice that if e : P — (@ satisfies (E1)-(E2), then it maps each u-set
for (P, <) onto a p-set for (@, <). Thus if (P, <) has type 1,w, 00 so does (@, <). In
case (P, <) has type 0, there cannot be any u-set M for (@), <), otherwise one could
get a p-set for (P, <) by choosing for every m € M exactly one p € P such that
e(p) = m.

!Thus if the set of all maximal elements of (P/ =, <) satisfies (i) above (within (P/=, <) itself),
then there are p-sets for (P, <) and each of them is obtained by picking exactly one element from
each maximal equivalence class, otherwise there are no p-sets at all (this is essentially said in [2]).



Let us now introduce the standard background [3] for E-unification. We are given
a signature F = (F,«) in the usual sense (F is a finite set of function symbols and
a an arity function). T'(F) is the set of terms built up from F with the help of a
countable set Var of variables. A substitution is a map o : Var — T'(F) which is
constant on a cofinite subset of Var. Substitutions can be extended to T'(F) in the
domain and do compose in the standard way.

An equation is a pair of terms which is usually written as t; = t2. In this paper,
sets of equations will be used to handle both equational theories and relations among
generators (in the usual algebraic sense). So we introduce the following notation:
given two sets of equations E and S, by

Skgt =ty
we mean that some formula of the kind
Eg — (So — (tl = tz))

is logically provable, where Sy is a finite conjunction of members of S and Ej is a
finite conjunction of universal closures of members of E (this makes clear that only
equations in E are seen as axioms of a theory). If, as it will happen in many cases, S
is empty, we simply write

1 =gt

instead of 0 g t; = to.

Example 2 (to be used later on). Let E be the theory of Boolean algebras and let
S = {—z1 Azy = 0}. Let to, 1,2, t5 be the terms —x1 Aza, 1 Ax2, 1 AZo, 7] ATa,
respectively. For every term #(x;,x2) containing at most the variables z;,zs there
exists exactly one subset J C I, where I = {t1,2,t3}, such that S kgt =\/, _; t:.
In fact equations E can be used in order to reduce ¢ into disjunctive normal form and
assumption S can be used in order to remove ¢y (if needed).

For substitutions, given a theory E and a set of variables X, we say that ¢ and
T are E-equivalent under X, briefly o =% 7 iff o(z) = 7() holds for every variable
z € X. We also say that o is more general than 7 (with respect to £ and X), in
symbols 7 <X o or simply 7 < o, iff there is a substitution § such that 7 =% f oo
(this means that, up to E-equivalence and as far as only variables in X are considered,
7 is an instantiation of o).

An E-unification problem is a finite set of pairs of terms

(a) (s1,t1),- -, (S, tr)
and a solution to it (or a unifier for it) is a substitution o such that
0’(81) =E O'(tl), ey U(Sk) =E O'(tk).

Ug(a) is the set of unifiers for the unification problem (a); it is a preordered set with
respect to the restriction of the preorder relation gfg , where X is the set of variables
occurring in (a).

We are now ready for the main definition: we say that £ has unification type:



- 1, iff for every solvable unification problem (a), Ug(a) has type 1;

- w, iff for every solvable unification problem (a), Ug(a) has type 1 or w - and there
is a solvable unification problem (a) such that Ug(a) has type w;

- 00, iff for every solvable unification problem (a), Ug(a) has type 1 or w or oo - and
there is a solvable unification problem (a) such that Ug(a) has type oo;

- 0, iff there is a solvable unification problem (a) such that Ug(a) has type 0.

Examples of each kind are supplied in [3], see also section 5 below for further examples.

Notice that the above definitions do not allow extra free constants (different from
those explicitly considered in the signature) to occur in a unification problem (a) and
in its solutions; see section 6 for this important extension.

3 The algebraic approach

In this section, we give another definition of unification type and in next section we
shall prove that it is equivalent to the previous one.

Given an equational theory E, Vg is the variety of models of E, i.e. it is the
category of algebras satisfying the equations in £ with related morphisms. Among
algebras in Vg, we are expecially interested in those which are finitely presented: we
recall the related definition below.

A presentation is just a pair (X, S) consisting of a set X and of a set S of equations
with variables among X. The presentation is said to be finite iff both X and S are
finite. Given a presentation (X, S), we can build the algebra F(X,S) € Vg as follows:
take the set of all terms with variables among X and by divide it by the equivalence
relation

t~s iff Skgt=s.

Operations are introduced by using representative elements of each equivalence class,
ie. for f € F with a(f) = n, we have

f(tal, - [En]) = [f (1, - -5 t0)]

Example 3 Let E be the theory of Boolean algebras and let S, tg, t1,%2,t3, be as in
the example from the previous section. F({z1,z=2},S) is (isomorphic to) the Boolean
algebra P(I).

It can be shown that F(X,S) is uniquely determined, up to an isomorphism, by
a suitable universal property; in case S is empty, we write F(X) instead of F(X,0)
and call it the free algebra over X.

We say that A is finitely presented (fp for short) iff A ~ F(X,S) for some finite
presentation (X,S). The notion of finitely presented algebra is important because it
is a purely categorical notion: in fact, it is well-known [8] that A is finitely presented
iff the representable functor Vg[A, —] preserves filtered colimits. So the notion of
finitely presented object makes sense in any abstract category and does not need any
symbolic apparatus in order to introduce it. For this reason, it is clearly preserved
under equivalence of categories.



We need another kind of objects which are categorially characterizable, namely
the projective objects. An object P in a category is said to be projective iff for
every regular epic ¢ : A — B and for every arrow f : P — B, there is an arrow
g : P — A such that the triangle

P

A q B

commutes. We recall that a regular epi is an arrow which is the coequalizer of some
pair of arrows. In categories like Vg, it is easily seen that regular epis are just
surjective morphisms (the same is not true, however, for merely epic arrows). We
shall make use of the following more or less standard Lemma:

Lemma 4 Let P € Vg be finitely presented. The following are equivalent:
(i) P is a projective object in V;

(ii) P is a projective object in Vli:p, i.e. in the full subcategory of Vg determined by
finitely presented algebras;

(iii) P is a retract of a free algebra F(X) for a finite X (i.e. there are morphisms
m: P — F(X) and q : F(X) — P such that gom = 1p).

Proof  (i)=-(ii): this is immediate, because coequalizers in Vli:p are coequalizers in
Vg2

(ii)=(iii): let P be F(X,S) for finite S, X. Consider the canonical quotient
map ¢ : F(X) — F(X,S) and the identity map F(X,S) — F(X,S). As ¢ is
a coequalizer in Vli:p ,3 it is sufficient to apply the definition of projective object.

(iii)=(i): consider a regular epi (i.e. a surjective morphism) h : A — B and
a morphism f : P — B. Let P be a retract of F(X), where X = {z1,...,z,} is
finite, i.e. let m : P — F(X) and ¢ : F(X) — P be such that gom = 1p. For
every z; € X pick a; € A such that h(a;) = f(¢([z;])). The way F(X) is built (or,
better, its universal property) shows that the map g defined as g([t(z1,...,z,)]) =
t4(a1,...,ay) is well defined and is a morphism from F(X) into A (here ¢4 is of
course the interpretation of the term ¢ in A). Then we have hog = f o ¢, because the
[x;] generate F(X). Composing on the right with m, we get ho (gom) = f, i.e. P is
projective.

The above Lemma makes clear that the class of fp projective algebras is an ex-
tension of the class of finitely generated free algebras (the extension is indeed proper

2The coequalizer (both in Vg and in Véfp) of a couple of morphisms among fp algebras fi :
FY,T) — F(X,S) and fo : F(Y,T) — F(X,S) is the obvious quotient map F(X,S) —
F(X,SUS’"), where S’ is any set of pairs (¢/,t5) (varying y in Y), in which terms t¥,¢} are chosen
in such a way that f1([y]) = [tY] and fo([y]) = [t5].

3See the previous footnote (consider the free algebra on a set having the same cardinality as S
and the two morphisms into F(X) defined in the obvious way at the free generators, etc.).



and large, for instance all finite Boolean algebras are projective, whereas only those
of cardinality 22" are free).

We are now ready to introduce the relevant definition for E-unification from an
algebraic point of view. In this context an E-unification problem is simply a finitely
presented algebra A and a solution for it (also called a unifier for A) is a pair given
by a projective fp algebra P and a morphism

u:A— P.

The set of unifiers for A is denoted by Ug(A) (A is said to be unifiable or solvable iff
Ug(A) is not empty). Given two unifiers for A, say u; : A — P; and uy : A — P,
we say that u; is more general than us iff there exists a morphism making the triangle

A

Uy U2

fﬁ Iﬁ

commute. The definition of unification type is the expected one, namely we say that
VE has unification type:

- 1, iff for every solvable unification problem A, Ug(A) has type 1;

- w, iff for every solvable unification problem A, Ug(A) has type 1 or w - and there
is a solvable unification problem A such that Ug(A) has type w;

- o0, iff for every solvable unification problem A, Ug(A) has type 1 or w or oo - and
there is a solvable unification problem A such that Ug(A4) has type oo;

- 0, iff there is a solvable unification problem A such that Ug(A) has type 0.

4 Equivalence of the two approaches

In this section, we shall premit the words ‘symbolic’ and ‘algebraic’, respectively, to
any concept which has been introduced both in section 2 and in section 3. Thus,
we shall provisionally speak of ‘symbolic’ and ‘algebraic’ unification types as distinct
entities. Our aim is the proof of the following:

Theorem 5 For any equational theory E, the symbolic and the algebraic unification
type coincide.

Proof Let a symbolic unification problem

(a) (Sl,tl),...,(sk,tk)

be given; suppose that X = {z1,...,z,} is the set of the variables occurring in
the terms s;,t; (j = 1,...,k). We shall prove that the preordered set Ug(a) is
equivalent to the preordered set Ug(A), where A is the fp algebra F(X,S), for S =
{(s1,%1), .-, (sk,tr)} (then Lemma 1 applies). We define an equivalence map

e:Ug(a) — Ugr(A)



as follows. Let o € Ug(a) and suppose that Y is the set of variables occurring in the
terms o(x1),...,0(xy,). Consider the free algebra F(Y), it is projective as all free
algebras are. Define the algebraic unifier e, : A — F(Y") by

() er([t]) = [o(®)]:

In order to see that the definition is correct, recall the construction of A = F(X,S)
from section 3: if ¢ ~ ¢/, then S Fg t = ¢/, hence kg o(t) = o(t'), given that
o € Ug(a). We now have to prove conditions (E1)-(E2) from section 2.

Proof of (E1): let u : A — P be an algebraic unifier for A. By Lemma 4, P is a
rectract of a finitely generated free algebra, hence there exist some finite Y’ and some
morphisms

P Fy) L P
such that g om = 1p. Let us consider the morphism mowu : A — F(Y”); define the
substitution o by taking o(z;) (for i = 1,...n, the other variables are left unchanged)
to be any term ¢; such that m(u([z;])) = [t;]. Otherwise said, by definition, we have

for all z; € X
m(u([zi])) = [o(z:)]-

By an easy induction, we can get also that

m(u([t])) = [o(2)]

for every term ¢ containing at most the variables X. In particular, for every j =
1,...,k, we have that (m o u)[s;] = [o(s;)] and that (m o w)[t;] = [0(¢;)]. But
[s;] = [t;] (by the construction of A = F(X,S)), hence [0(s;)] = [0(¢;)], which means
o(sj) =g o(t;) (by the construction of free algebras). This shows that o € Ug(a).
Now let Y C Y be the set of variables of Y’ occurring in the terms o(z1),...,o0(z,).
We have to show that u < e, and that e, < u, where e, is defined by (u) above.

Let ¢ : F(Y) — F(Y') be the map associating the equivalence class of any ¢ in
F(Y) with the equivalence class of the same ¢ in F(Y"); as F(Y') cannot be empty,* we
can define r : F(Y') — F(Y) by putting r([t]) = [#(t)], for a substitution # mapping
the variables in Y into themselves and the variables in Y'\Y into some arbitrarily
fixed term. We trivially have that r o is the identity map.

We also have that the square

A—Y% ~p

s m
FY) =~ F(Y)
commutes, as for every term ¢, m(u([t])) and t(e,[t])) are both equal to [o(t)]. Now

we have that
romou = roLoe, = €4,

4This cannot happen, even in the case that the signature does not contain constant symbols, for
the following reason: F(Y') must contain [o(x;)] for all z; € X, so if it is empty, X is empty too. But
then, if also the signature does not contain constants, the unification problem (a) and the algebra A
are both empty, so there is nothing to prove at all.



thus e, < u holds; on the other hand,
gotLoe, = gqomou = u,

thus u < e, holds too.
Proof of left-to-right side of (E2): suppose that for 0,7 € Ug(a), we have that
7 <X o7; this means that there exists a substitution @ such that oo =% 7. Let Y, Z
be the variables occurring in the o(x;), 7(x;), respectively; we can freely suppose that
9(y) (for y € Y) contains at most the variables in Z.> Let g : F(Y) — F(Z) be the
morphism so defined
g([v]) = [6(v)]

for every [v] € F(Y). For every [t] € A, we have that

gles([1])) = g([o()]) = [0 0 o (t)] = [7(1)] = e~ ([1]),

that is e; <e,.
Proof of right-to-left side of (E2): let 0,7 be such that e, < e,; in other words,
we have a commutative triangle

F(Y)

Consider any substitution 6 satisfying the condition ¢([y]) = [f(y)] for all y € Y. By
induction, we get g([t]) = [0(t)], for all [t] € F(Y), hence for z; € X we get

[7(z:)] = e ([zi]) = gleo([x:])) = g([o(wi)]) = [0 0 o (:)].
This means that 7(z;) =g 0 o o(x;), i.e. that 7 <X 0.

In the case of Boolean algebras to be unifiable and to be projective do coincide
for fp algebras: this is because to be unifiable here means to be non degenerate
and because all fp (=finite) non degenerate Boolean algebras are projective [9]. So
any solvable unification problem A does trivially have a most general unifier (in the
algebraic sense) which is the identity map 14 : A — A. We shall see how to extract
from this argument explicit formulas for symbolic mgu’s in the next section. Now we
only give an example showing how the proof of the above Theorem works in concrete
cases.

Example 6 Let E be the theory of Boolean algebras and let ty,t1,t2,%3, be as in
the example from section 2. Let (a) be the unification problem t; = 0. We saw
in section 3 that A is (isomorphic to) P(I), which is projective. This means that
14 : A —> Ais an algebraic unifier. To get a symbolic mgu for (a) from the algebraic
unifier 14, let us follow the argument of the above ‘Proof of (E1)’ and so let us first

5If there are extra variables, they can be instantiated by some term in Z, thus passing to a
substitution ¢’ still satisfying the condition ¢’ o ¢ =% 7. Notice that F(Z) cannot be empty, for the
same reason as above.



look for a free algebra F(Y') and for morphisms m : A — F(Y'), ¢ : F(Y') — A
such that gom = 14. We take Y' = {z1,22} (notice that F(Y') is nothing but
P(IU{to})); q is just intersection with I and a suitable m is defined by m(U) = U (if
t1 €U), m(U) =UU{to} (if t; € U). Now to find an mgu we must look at what the
equivalence class of z; (i = 1,2) is in A and at what its image under m is in F(Y").
Clearly [z1] in A is {t1,t2}, because these are the two clauses containing z;; on the
other hand

m([xl]) = {to,tl,tg} = [(“:El A ;L'z) \Y (2131 A 2132) \Y (.’L‘1 A —|£L'2)]

which can be simplified to [z; V z3]. Analogously, we get [x2] = {t1} and m([z2]) =
[22].® So our mgu is given by

Ty =T VT To > To.

We give also an example showing the inverse passage, i.e. from a symbolic unifier to
an algebraic one (this passage is less important in the applications). Let us consider
the unifier o (which is not maximal) mapping x; into T and x» into x;. Here we must
take the free algebra F({z1}) (which is conveniently represented as P({z1, -z })) and
we must find a morphism v : A — P({z1, ~z1}) mapping the equivalence class of
z1 into the quivalence class of T and the equivalence class of x5 into the equivalence
class of ;. The existence of such a morphism (which must be unique because [z1], [z2]
generate A) is guaranteed precisely by the fact that o is a solution to (a): the required
u is the inverse image along the set-theoretic function {z;, -z} — I mapping z; to
t; and -z to to.

5 Applications and Examples

In this section, we shall exclusively use the algebraic approach of section 3 in order
to determine unification types.

We saw above that in the case of Boolean algebras (and in the equivalent case
of varieties generated by a primal algebra) to be unifiable and to be projective do
coincide for fp algebras. This situation (coincidence of ‘unifiable’ and ‘projective’) is
indeed a larger phenomenon.

A finite algebra A is said to be quasi-primal iff there exists a ternary term ¢(z,y, z)
such that for every a,b,c € A, we have that t(a,b,c) = a if a # b and t(a,b,c) = c if
a = b. Equivalently (see [5]), A is quasi-primal iff all subalgebras of A are simple and
the variety V' (A) generated by A is arithmetical (that is, congruence-permutable and
congruence-distributive). Being A finite, V' (A) is locally finite, so that fp algebras are
just finite algebras. We shall make use of the following characterization Theorem for
finite projective algebras in V(A):

Theorem 7 [17] Let A be a finite quasi-primal algebra; a finite algebra in V(A4) is
projective iff it admits every non-trivial minimal subalgebra of A as a direct factor.

Theorem 8 If A is a finite quasi-primal algebra, then the variety V' (A) has unitary
unification type.

6Notice that we do not use subscripts for square brackets, because the context makes clear where
equivalence classes are taken.



Proof We shall show that each finite unifiable algebra B € V(A) is projective. As
B is unifiable, there is a morphism v : B — P, where P is finite and projective. If
Ay, ..., A, are the non-trivial minimal subalgebras of A, it follows from Theorem 7
that for each 7 = 1,...,n there exists at least one morphism f; : B — A; (compose u
with the appropriate projection). Now consider the algebra B x A; x - - - x A,, (which
is projective again by Theorem 7) and the morphism

<1Baf17'--7fn>:B—)BxA1X"'XAn,

associating (b, f1(b), ..., fn(b)) with b € B. If pp is the projection onto B, we have
that

pBO<]-B;f1;---,fn> = ]-B:

so B is projective being the retract of a projective algebra (see Lemma 4(iii)).
We give a further example in which ‘unifiable’ and ‘projective’ coincide for fp
algebras. A Brouwerian semilattice B is a semilattice with unit (i.e. a commutative

idempotent monoid, or equivalently a poset with finite infs) endowed with a further
binary operation — satisfying the condition:

bl/\bngg iff b1Sb2—>b3

for every by, by,b3 € B. It can be shown that Brouwerian semilattices are a variety,
indeed a locally finite variety (for this and other basic properties see [10]).

We need some easy background about adjoints among posets. Suppose that f :
(P, <) — (@, <) is an order-preserving map between posets; suppose also that (P, <)
is complete and that f preserves meets. Then there exists another order-preserving
map f*:(Q,<) — (P, <) satisfying the condition:

(4) [ (q) <p iff ¢< f(p)

for every p € P,q € Q (f*(g) turns out to be the infimum of the set of all r such that
g < f(r)). If f is surjective, we have that

(5) fof™ = 1gq,

because fo f*o f = f follows from (A4). If (P, <) and (@, <) are Brouwerian semilat-
tices and f preserves implication, we have also that the so-called Frobenius condition

(F) pA @) = fF(flp)Aa)
holds for every p € P,q € Q.
Theorem 9 The variety of Brouwerian semilattices has unitary unification type.

Proof Notice that all finite (=fp)” algebras are unifiable, as the one element algebra
is projective, being the free algebra on zero generators. We show that all finite
algebras are projective: for this, it is sufficient to show that every surjective morphism

7Any finite algebra is finitely presented if the signature contains only finitely many function
symbols (take the multiplication tables as a presentation). The converse is true for locally finite
varieties (i.e. for varieties in which finitely generated free algebras are finite).
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q : A — B between finite Brouwverian semilattices has a section, i.e. that there is
a morphism s : B — A such that g o s = 1p (see Lemma 4(ii) and the definition of
projective). Indeed, we leave the reader to check (by using (A4), (S), (F) above) that
we can put s(b) = ¢*(1) = ¢*(b) in order to get an appropriate 5.3

The case of Brouwerian semilattices is quite instructive for the problem of extract-
ing symbolic unifiers from algebraic proofs. In fact from the mere statement that all
finite algebras are projective and from an effective description of finitely generated
free algebras (see e.g. [10]), it is in principle possible to get a unification algorithm
(the procedure is the same as in the example of section 4 for Boolean algebras). How-
ever, the extremely fast-growing size of free algebras makes this proposal unfeasible
even for very small values of the cardinality of the set of variables involved in the uni-
fication problem.? On the other hand, the proof of Theorem 9 contains a quite simple
formula for most general unifiers. First notice that any unification problem s; = ¢;
(i =1,...,n) can be reduced to the matching problem ¢ = 1, where t = A", (s; ¢ ;);
secondly, the left adjoint ¢* to a canonical quotient map ¢ : F(X) — F(X, {t = 1})
maps [v] onto [tAv]. Consequently, the morphism s described in the proof of Theorem
9, maps [z] into [1 At] — [t A z], which can be simplified to [t — z]. This means that
the unification problem ¢t = 1 has mgu given by z — (¢t — ), for every variable z
occurring in ¢ (keep in mind again the ‘Proof of (E1)’ within Theorem 5).

Similar formulas (coincident with the ‘Léwenheim formulas’ of [13]) can be given
for the Boolean case too. In fact, one can prove that finite unifiable (i.e. non de-
generate) Boolean algebras are projective just by a slight modification of the proof
of Theorem 9. The modification is the following: if (X, {t = 1}) is non degenerate,
then there exists a morphism « : F(X, {t = 1}) — 2, where 2 is the two element
Boolean algebra (« is induced by a two-valued assignment satisfying t). Build a sec-
tion s of the quotient map ¢ : F(X) — F(X, {t = 1}) by putting s([v]) = ¢*([v]) (if
a([v]) = 0) and s([v]) = ¢*([1]) = ¢*([v]) (if a([v]) = 1).!° We consequently get an
mgu for the solvable unification problem ¢ = 1 by fixing an assignment satisfying ¢
and by mapping each variable x into t A = or into ¢ — x depending on the fact that
x is sent to either 0 or 1 by that assignment. So, once again, we obtained explicit
formulas for an mgu, although in the present case a satisfiability problem must be
solved first.

Anther way of applying the results of section 4 is through duality theorems for fp
algebras:'! we give here a couple of examples, both for locally finite varieties.

Theorem 10 The category of finite distributive lattices'? is dual to the category
of finite posets and order-preserving maps. A finite distributive lattice is projective
iff its dual poset is a semilattice with unit.

8 An alternative proof of this Theorem can be easily obtained through Kéhler duality [10] (see
section 6).

9The free Brouwerian semilattice on three generators has more than 10'¢ elements!

10We leave the reader to check that s so defined is a Boolean morphism, by using the fact that ¢*
preserves A, as a consequence of (F') and (S) above (notice however that ¢* does not preserve T, so
it could not be directly used instead of s).

11 According to the standard terminology, we say that a category C is dual to another category D
iff D is equivalent to the opposite category of C.

12We consider part of the definition of being a lattice the presence of zero and one elements.
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Proof The proof of this Theorem can be essentially found in textbooks, such as [4],
[9]. We merely sketch it. The dual of a finite poset is the distributive lattice of its
downward closed subsets and the dual of an order-preserving map is the inverse image
morphism. The dual of a finite distributive lattice is the poset of its join-irreducible
elements (i.e. the non-zero elements which are less or equal to a or to b in case they
are less or equal to a V b); the dual of a morphism is easily found just by observing
that its left adjoint maps join-irreducible elements into join-irreducible elements.

In order to determine injective objects (i.e. dual of projective objects) in the
category of finite posets and order-preserving maps (so that Lemma 4(ii) applies),
first observe that an order-preserving map is regular monic iff it is injective and also
reflects the partial order relation. Given that, it is easy to check that semilattices
with unit are injective; vice versa, if (P, <) is injective, then the embedding into its
downward closed subsets is regular monic, hence it must have a retract and it is not
difficult to see that this retract must map a downward closed subset into its sup.

We are now ready to determine the unification type of distributive lattices. We
shall work in the dual category of finite posets and order-preserving maps, hence
all the definitions of section 3 must be dualized (i.e. direction of arrows must be
reversed): a unification problem now is a finite poset, a unifier for it a map with
domain a semilattice with unit, a unifier u; is more general than a unifier uy iff there
exists an order-preserving map f such that u; o f = us, etc.

Let us introduce the six element poset P = {1,e,0,l,g, T}, whose partial order
relation < is given by the following diagram

Lemma 11 For every natural number n, there is a unifier u, : (P,,<) — (P, <)
such that any unifier for (P, <) which is more general than u, has as a domain a
poset having at least n elements.

Proof Let (P, <) be (P(n),C), where n is the set {1,...,n}. Notice that (P(n), C)
is a semilattice with unit. Define u,(S) to be:

- 1,if S is empty;
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- T,if S has at least 3 elements or if it has two elements which are both odd or even;
- g, if S has two elements, say ¢ and j, such that ¢ is odd, j is even and i > j;

- [, if S has two elements, say ¢ and j, such that 7 is odd, j is even and i < j;

- e, if S contains only one element, which is even;

- o, if S contains only one element, which is odd.

It is not difficult to see that u,, is order-preserving, i.e. a unifier. Now suppose that
v:(Q,<) — (P,<) is more general than u,, i.e. that we have an order-preserving
map h such that the triangle

P(n) h Q

Unp v

P

commutes. We prove that we cannot have h({i}) = h({j}) for i < j. Suppose the
contrary, then 4,7 must be for instance both even (they cannot be one odd and the
other one even, as h cannot collapse elements with different u,-values). Take an
odd k such that i < k < j and let s be the sup of h({i}) and h({k}): it exists, as
(Q, <) is a finite semilattice. We have that s is greater or equal to h({k}) and to
h({i}) = h({j}). Furthermore, h({i,k}) > s, by the fact that {i} and {k} are both
included in {i, k}, by the fact that h is order-preserving and by the definition of sup.
Similarly, h({j,k}) > s. As v preserves the partial order relation and the triangle
commutes, we get

v(s) >e, w(s) >0, [>v(s), g>uv(s),
which is impossible, given the above diagram for (P, <).

Lemma 12 If a finite poset (@), <) has both a minimum and a maximum element,
then the preordered set of its unifiers is filtered.

Proof We have to show that, given two unifiers u; : (@Q1,<) — (@, <) and
uz 1 (@2, <) — (Q, <) for (@, <), there is a unifiers which is more general than both
of them. Let (R, <) be obtained by adding a new top element T and a new bottom
element L to the disjoint union of (Q1,<) and (Q2,<). Clearly (R, <) is again a
semilattice with unit and the canonical injection ¢; of (Q;,<) (i = 1,2) into it is
order-preserving. Now define a new unifier u : (R, <) — (@, <) by mapping r into
u;(r), if r comes from );, and by mapping it into the top or the bottom element of
Q if it is equal to T or L, respectively. As we have that u oty = u; and u oty = us,
u is more general than uy, us.

Theorem 13 The variety of distributive lattices has unification type 0.

13



Proof Take the finite poset (P, <) of Lemma 11; by Lemma 12, the preordered set
of its unifiers is filtered and a filtered preordered set can have only type 0 or 1. The
latter is impossible, by Lemma 11, as we are not allowed to introduce infinite posets
in building unifiers.

A pseudocomplemented distributive lattice is a distributive lattice D endowed with
a further unary operation — satisfying the condition

aANb<O0 iff a<-b,

for every a,b € D. Pseudocomplemented distributive lattices are a locally finite
variety (finitely generated free algebras are described in [18]). The following Theorem
can be proved by complicating the arguments used in the proof of Theorem 10 (see
in any case [19]):

Theorem 14 The category of finite pseudocomplemented distributive lattices is
dual to the category of finite posets and order-preserving maps f : (P, <) — (Q, <)
satisfying the following further requirement (let m(P), m(Q) be the sets of minimal
elements of (P, <) and (@, <), respectively):

(1) Vpem(Q)Vpe P (n<f(p) = vem(P)(w<p& fv)=pn).

A finite pseudocomplemented distributive lattice is projective iff its dual poset P is
not empty, has sups of pairs of elements and satisfies the further requirement:

(2) Vi€ m(P)Vpi,pa € P (n<p1Vpr = p<porp<ps).

Theorem 15 The variety of pseudocomplemented distributive lattices has unifica-
tion type 0.

Proof Notice that Lemma 11 can be proved in the same way as in the case of
distributive lattices (with trivial observations like that P(n) satisfies (2) and u,, sat-
isfies (1)). Lemma 12 also holds, with slight modifications in the proof: (R, <) is now
obtained by adding only a new top element T to the disjoint union of (@1, <) and
(Q2,<). The new unifier u : (R,<) — (@, <) is again defined by mapping r into
u;(r), if 7 comes from @);, and by mapping it into the top element of @ if it is equal
to T. The fact that (@, <) has a bottom element (i.e. a unique minimal element) is
used in order to show that u satisfies (1). The remaining facts to check (namely that
(R, <) satisfies (2) and that ¢1, o satisfy (1)) are trivial. Given that Lemmas 11, 12
hold, Theorem 15 follows by the same argument we used in the proof of Theorem 13.

Theorems 9, 13, 15 shows the behaviour of E-unification in relevant fragments of
intuitionistic logic, for the whole intuitionistic logic (i.e. for Heyting algebras) the
unification type is w, as shown in [6].

6 Unification with extra constants
As remarked in section 2, we have not considered unification problems and related

solutions containing an additional finite set of constants C' not appearing in the sig-
nature. These constants might be subjected to a further finite set of equations Sy
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(if Sp is empty, then they are free).!> This extension of the approach of section 2
corresponds to consider unification problems in the theory E(C,Sy) obtained from E
by adding the constants C' to the signature and the equations Sy to the axioms. So we
may define the stable unification type of E as the ‘worst’ unification type of E(C, Sy),
varying the pair (C,Sp) (i.e. E has unitary stable unification type iff E(C,Sy) has
unitary unification type for all finite pairs (C,Sp), E has w as stable unification type
iff all E(C,Sp) have unification type 1 or w - and there is a finite pair (C,Sy) such
that E(C,Sp) has unification type w, etc.).

In order to deal with stable unification types, the key point, from an algebraic
point of view, is given by the following Proposition:

Proposition 16 Given a finite pair (C,Sp) as above, we have that the category
VE(c,s0) 18 isomorphic to the comma category A/Vp,'* where A is the fp algebra

F(C, Sp); moreover, Véf’c 5o 15 isomorphic to A/(VID).

Proof Suppose that C' = {c1,...,c,}; algebras in V(¢ s,) are the algebras B € Vg
endowed with further specified elements (to be preserved by morphisms in Vg (c,s,))
cB....,cB such that B = tB(cB,....cB) = tB(cB,...,cP) holds for every (t1,t3) €
Sp. The isomorphism functor Vg(c, s,) — A/VE acts ‘identically’ on morphisms and
associates with the algebra (B,cP,... cB) the morphism 3 : A — B defined by
B(lt(cr, ... en)]) = tB(cf,...,cB). The inverse functor A/Ve — Vpg(c,s,) still acts

identically on morphisms and associates with the object 5 : A — B the algebra
(Ba 6([01])7 ... 76([cn]))

For the second part of the Proposition, given the above description of the iso-
morphism functor, it is sufficient to show that (B,cP,...,cB) is finitely presented
in Vgc,s,) iff B is finitely presented in Vg. In fact, if (X,S) is a presentation for
(B,cB,...,c8) in VE(C,S0), then (X U {e,... ¢}, SUSp) is a presentation for B in

Vi. Vice versa, if (X, S) is a presentation for B in Vg, then pick terms ¢y, ...,t, such
that ¢ = [t1],...,cB = [t,]: it turns out that (X,SU{ci = t1,...,c, = t,}) is a
presentation for (B,cf,...,cB) in Vg, s,)-

In order to see a first simple example of the application of the above Proposition,
let us consider the case in which Vg is the category B of Boolean algebras. The
category of finite Boolean algebras B/ is dual to the category of finite sets Set f;,.
Thus, recalling the definitions of comma category under and over a given object,
for every finite Boolean algebra A, the category A/(BYP) is dual to the category
Setf;, /X, where X is the finite set which is dual to A. It is easily seen that in
Setyf;, /X, an object mz : Z — X is injective iff 75 is a surjective map and it is
(co)-unifiable iff there exists a commutative triangle

I VA

T Tz

X

13 Usually Sp is taken to be empty in the literature. The reason why we prefer not to do so is because
we would not like free algebras (which, unlike fp algebras, are not categorially characterizable) to
appear in statements like Proposition 16 below.

14We recall that this category has morphisms with domain A as objects and the obvious commu-
tative triangles as arrows (see [12]).
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where (I, 7r) is an injective object, i.e. where 7y is surjective. But this implies that
Tz is surjective too, hence once again to be unifiable and to be projective do coincide
in A/(B/?), thus showing the unitarity of stable unification type for Boolean algebras.
The same result applies also to varieties generated by a primal algebra because ‘to
have stable unitary unification type’ is a categorical property (it depends only on the
unification types of the comma categories under finitely presented objects). More
generally, it is possible to show that varieties V(A) generated by a single finite quasi-
primal algebra A have unitary stable unification type: in fact, the essential point in
the proof of Theorem 7 depends only on some few categorical properties which are
inherited from V (A)7P by the comma categories we are interested in.'®

Let us concentrate now on the case of Brouwerian semilattices which is more
intersting. The key point for our investigations is the following duality Theorem (see

[10]):

Theorem 17 The category of finite Brouwerian semilattices is dual to the category
K of finite posets and strict open partial maps.

A partial map f : (P, <) — (@, <) between finite posets is said to be strict open
iff the following two conditions are satisfied:

- for all p,q € dom(f), if p < g then f(p) < f(q);

- for all p € dom(f), for all ¢ € @, if ¢ < f(p) then there exists p’ € dom(f) such
that p’ < p and f(p') = q.

In order to deal with the stable unification type of Brouwverian semilattices, we shall
consequently work with (duals of) unification problems in the category K/(P, <),
where (P, <) is an arbitrary fixed finite poset. Objects in K/(P, <) are just triples
(@, <,mg), where (@, <) is a finite poset and 7g : Q — P is a strict open partial
map; an arrow in K/(P, <) of domain (@, <,7g) and codomain (R, <,nR) is a strict
open partial map f : @ — R such that the triangle

@<9—7F  (r<

mQ TR

(P, <)

commutes. Notice that the commutativity of the triangle means that the composition
of f and mr (as relations) is equal to mg: in particular, for every ¢ € @, ¢ is in the
domain of mg iff both (g is in the domain of f and f(g) is in the domain of 7).

15We give some further details for the interested reader. Let us consider only the case in which the
signature contains at least one costant symbol (there is no loss of generality in that for signatures
augmented with extra constants): this implies that (i) projections are regular epi (i.e. they are
surjective). Moreover standard arguments from universal algebra (essentially Corollaries 6.10 and
10.2 of [5]) can be used in order to prove that in V(A)f? (ii) every regular epi is isomorphic to a
projection. Now it is easy to show that in any regular category with an initial object and satisfying
(i) and (ii), projective objects are just those containing the initial object as a direct factor. As (ii)
can be transferred from V(A)fP? to our comma categories by a general argument, at this point it is
possible to repeat word by word the proof of Theorem 8.
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Lemma 18 An arrow f : (Q,<,7g) — (R, <,7g) is regular monic in K/(P, <)
iff it is injective and totally defined.

Proof Given a pair of parallel arrows f; : (S, <,7g) — (T, <,7y) and fo : (S, <
,ms) — (T, <,mr), their equalizer in K/(P, <) is just the subset of S given by
{s € S|Vs' < s either (s' € dom(f1) Ndom(fz) and fi(s") = fa(s")) or (s' & dom(f1)
and s’ & dom(f2))}, endowed with the restriction of < and of mg. Hence regular
monics are injective totally defined functions.

Vice versa, if f: (Q, <,7qg) — (R, <,mg) is injective and totally defined, then it
is an equalizer: to see it, take its cokernel, that is take the object (R', <, mgs) obtained
from (R, <,wr) by duplicating points not in the image of f. We have two injections
(which are both arrows in K/(P, <)) from (R, <,7g) into (R, <,7R), of which f is
an equalizer.

Next step is the characterization of injective objects in K/(P, <). We need some
previous definitions. A sieve of a poset (@, <) is just a downward closed subset. An
element g € @ is said to dominate a sieve S iff S = {¢' | ¢’ < ¢} (notice that nothing
prevents S from being empty). An arrow f : (Q, <) — (R, <) in K always preserves
domination, in the sense that if ¢ dominates S and if ¢ € domn(f), then f(q) dominates
f(S). We say that f reflects domination (is d-reflective for short) iff for every sieve
S of @, for every r € R, if  dominates f(S) then there exists ¢ € @ such that ¢
dominates S, ¢ € dom(f) and f(q) = r.

Lemma 19 An object (I, <,7r) is injective in K/(P, <) iff 7y is d-reflective.

Proof Suppose that (I,<,ny) is injective in K/(P, <), that S is a sieve of (I, <)
and that p dominates 77(S). Build (I', <,7) just by adding a new point * above
S and by mapping it into p (the resulting 7+ is a strict open partial map because p
dominates 77(S)). As the inclusion ¢ of (I, <,nr) into (I', <, 7pv) is regular monic by
the previous Lemma, it must have a retract. This retract r : (I',<,np) — (I, <, 7)
must be a strict open partial map such that 7 ot = 1; (because r is a retract of ¢)
and such that 7y or = 7 (because r is an arrow of K/(P,<)). The first condition
implies that r(x) dominates S (recall that * dominates S and that strict open partial
maps preserve domination), whereas the second condition implies that 7; maps r(x)
onto p (as 7y (%) = p).

Vice versa, suppose that 7; is d-reflective. Consider a regular monic i : (Qo, <
TQo) — (@, <,mq) and a morphism f : (Qo,<,mq,) — (I,<,7r) in K/(P, <).
If we apply Lemma 20 below to fo = f o i, we get f : (Q,<) — (I,<) such
that fo C f, mr o f = mg and dom(f) C dom(fo) U dom(ng). Thus in particular
f:(Q,<,mg) — (I,<,7r) is a morphism of K/(P, <). We need only to prove that
foi=f.As f= foi®oiandas foi°” C f, we trivially have that f C fo4. For the

other inclusion, it is sufficient to prove that dom(f oi) C dom(f) (we are dealing with
partial functions, not with arbitrary relations). If ¢ € dom(f oi), then i(q) € dom(f),
i.e. either i(q) € dom(f 0 i°) or i(q) € dom(mg). In the former case, ¢ € dom(f),
in the latter case ¢ € dom(mg,) (because g o i = mg,) and again g € dom(f), as

dom(mg,) = dom(mr o f) C dom(f).

Lemma 20 Let (Q, <,mg) and (I, <,7r) be objects of K/(P, <) and let fy : (Q, <
) — (I, <) be a strict open partial map; suppose also that the above data satisfy
the following conditions:
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(i) =y is d-reflective;

(ii) 77 o fo C mg;

(iii) for all ¢ € Q, if ¢ € dom(wg) Ndom(fy), then fo(q) € dom(my);

(iv) for all ¢,¢" € Q, if ¢ € dom(fy), ¢' < ¢ and ¢’ € dom(ng), then ¢' € dom(fy).
Then there exists a strict open partial map f : Q — I such that fo C f, mjo f = TQ

and dom(f) C dom(fy) Udom(mg).
Proof We build an increasing sequence of strict open partial maps

fOCflc"‘CfiC"'

satisfying (ii)-(iii)-(iv) and satisfying also the condition dom(f;) C dom(fo) U
dom(mg). We shall stop only when dom(mg) C dom(f;) (for this ¢, we shall get
mr o fi = mg from (ii)-(iii)). The process ends because our posets are finite.
Suppose, by induction, that f; is given and that dom(mg) € dom(f;). Pick ¢ €
dom(mg) such that ¢ & dom(f;) and such that all ¢" < ¢ which are in the domain of
7@ are also in the domain of f;. Now mg(g) dominates the sieve {mq(¢") |¢' <q & ¢’ €
dom(mg)} which is equal to the sieve {m;(fi(q"))|¢d' < ¢ & ¢' € dom(nr o f;)}, by
(ii)-(iii) and the choice of q. As {fi(¢') | ¢’ < ¢ & ¢' € dom(f;)} is a sieve of I and as
w1 is d-reflective, there is ¢ € I dominating it, belonging to the domain of 7; and such
that mr(z) = mg(¢). Now build f;4; by adding to f; the pair (g, ). fiy1 still satisfies
(ii)-(iil)-(iv) and is strict open by (iv) and the fact that ¢ € dom(mg)\dom/(f;).

Lemma 21 Suppose that (I, <,ny) is an injective object in K/(P, <) and suppose
that the morphism of K/(P, <)

h: (I,S,'/T[) — (J7 S;’”J)
is a surjective (though not necessarily total) map. Then (J, <,7w;) is injective as well.

Proof  We apply Lemma 19. Let S be a sieve of J and let p dominate m;(S);
consider the sieve of I given by S" ={z € I'|Jy > = (y € dom(h) & h(y) € S)}. We
first check that 7;(S") = 77(S). In fact g € m(S') iff

3y € dom(my) (q=m1(y') & Iy >y’ (y € dom(h) & h(y) € 5))
iff (by the fact that dom(nr) C dom(h), which is a consequence of 7y = 7y o h)
Jy € dom(mr) (mr(y) = q & h(y) € 5)
iff (by surjectivity of h and the fact that 7; = 7y o h)
Az € dom(my) (z € S & 75(2) =q)

iff ¢ € 7;(5), as claimed. As (I, <,ny) is injective, there exists z € dom(n;) such
that m7(2) = p and z dominates S'. It follows that z € dom(h) and that h(z)
dominates h(S’) because morphisms in K preserve domination. It remains to check
that h(S") = S. In fact, x € h(S") iff

Jy' € dom(h) (h(y') =z & Jy > y' (y € dom(h) & h(y) € S))
iff # € S, by surjectivity of h.
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Theorem 22 The variety of Brouwerian semilattices has stable unification type
equal to w.

Proof Every arrow in K factors through a partial surjection followed by the (total)
inclusion of a sieve, so every unifier of a unification problem (@, <,7q) is less general,
by Lemma 21, than the inclusion into @) of an injective sieve of @ (we say that a sieve
of @ is injective iff it is an injective object in K/(P, <), with respect to the restrictions
of < and mg). As @ is finite, it clearly follows that the preordered set of its unifiers
admits a finite p-set. It remains to show that the stable unification type cannot be
1; for this, it is sufficient to produce (@), <,mg) having at least one injective sieve
(this guarantees that it is unifiable), but no maximum injective sieve (notice that
unifiers which are inclusions are comparable by inclusion only). An example of such
a (@, <,mg) is given in the following diagram (we take as (P, <) the singleton poset
and use a white instead of a black point in order to mark elements which are in the
domain of 7¢):

o
e

cCe— o9
LYy S—C -

Here there are two maximal injective sieves given by the elements {a, ¢, e} and {b,d, e},
respectively; their union is the total sieve which is not injective, because {c,d} is not
dominated by any element in the domain of 7¢, although its image (which is empty)
is dominated by the unique element of P.

Notice that, as the singleton poset is the dual of the free Brouwerian semilattice
on one generator, the proof of Theorem 22 shows that it is sufficient to add one free
constant for the unification type to change from 1 to w.

7 Appendix: related work

In this appendix we make some comparison with other standard algebraic approaches
to unification theory and give further motivations for the origin of the ideas explained
in section 3.

In current literature [1], [7], [15], [16] in order to deal with unification theory, the
full subcategory Véf of Vg consisting of finitely generated free algebras is first taken
in‘)cco consideration. A unification problem is seen as a pair of parallel morphisms in
Vi

(%) fi: FY) — F(X), fo: FY) — F(X).

A solution (i.e. a unifier) for (x) is any morphism u in Véf with domain F(X) such that
go fi1 = go fa. Different unifiers are compared through commutativity of the obvious
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triangles. In this context, mgus becomes weak coequalizers (defined like equalizers,
but without the uniqueness condition in the formulation of the universal property).

One of the main aims of a conceptual approach to symbolic problems is to get
invariance with respect to different presentations (see [11]). From this point of view
the above mentioned algebraic approach to unification represents in the same way e.g.
the unification problems ¢ = v and t' = v’ in case we have t =g t' and v =g «’. Still,
however, unification problems like

and
t=v, u=vw

which look quite the same have different representations (less trivial examples could
be obtained e.g. by adding linearly dependent equations to a linear system). In fact,
a pair of parallel arrows like (x) simply plays the role of being a presentation for their
coequalizer. This coequalizer in general does not belong to Véf because it may not be a
free algebra anymore, but it is a finitely presented algebra. This suggests to consider
as a unification problem directly a fp algebra A. Next step is to identify unifiers;
as a first attempt, one could consider as a unifier any morphism v : A — F(Z)
with a finitely generated free algebra as a codomain. In fact, if A is presented as the
coequalizer of (x), then any solution to () must factor through A (by the definition
of coequalizer) and conversely. There is still an objection to this: free algebras are
characterizable through reference to the forgetful functor, whereas for fp algebras there
is a neat internal categorical characterization (preservation of filtered colimits by the
representable functor). Avoiding reference to free algebras would make unification
type a categorical invariant and would eliminate any indirect hidden reference to
some kind of presentations. The idea is that of replacing morphisms taking values
into free algebras by morphisms taking values into fp projective algebras. This choice
(which was suggested to the author by the prominent role played in intuitionistic
unification by fp projective Heyting algebras [6]) does not alter the unification type
because projective algebras are retract of free algebras (full details have been given in
section 4). Moreover, practical experience shows that it is convenient: for instance,
the examples of section 5 show that in many particular cases it is much easier to
build unifiers and operate on them if we are allowed to work on projective algebras
instead of on free algebras only. For instance, proof of Lemma 12 would not work if
we could use free algebras only, proof of Lemma 11 would not work either in the case
of pseudocomplemented distributive lattices. Even in the case of Theorems 8 and 9
some additional work would be required. In fact, this additional work is always the
same in all the cases, it is simply the work needed in order to build a free algebra
of which some given projective algebra is a retract. Given that, it is of course much
better and clearer to directly enlarge the set of unifiers, as proposed in section 3.
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