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Abstract

We exploit quantifier elimination in the global design of combined decision and
semi-decision procedures for theories over non-disjoint signatures, thus providing in
particular extensions of Nelson-Oppen results.
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1 Introduction and Background

Quantifier elimination has been considered, since the early times of modern
symbolic logic, a powerful technique for decision procedures. Even in actual
approaches to combination problems (see e.g. [9]), specific quantifier elimi-
nation algorithms are often invoked as specialized reasoners to be integrated
within a flexible general setting dealing with multiple theories. This happens,
in particular, whenever numerical constraints problems need to be adequately
addressed: examples of such specialized reasoners are the Fourier-Motzkin
quantifier elimination procedure for linear rational arithmetic or Cooper’s
quantifier elimination procedure for integer Presburger arithmetic.

In contrast to this local call for quantifier elimination algorithms, we shall
address in this paper quantifier elimination as a global design opportunity for
integrated provers: we shall show in particular how it can be used in order
to extend Nelson-Oppen combination procedure [11], [13], [16] to non-disjoint
signatures. Detailed proofs of the results presented here, as well as additional
information, can be found in [6].

A signature X is a set of functions and predicate symbols (each of them
endowed with the corresponding arity). We assume the binary equality pred-
icate symbol = to be always present in >. The signature obtained from > by
the addition of a set of new constants (= 0-ary function symbols) X is denoted
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by Y U X or by ¥*. We have the usual notions of ¥-term, (full first order)
-formula, -atom, -literal, -clause, -positive clause, etc.: e.g. atoms are just
atomic formulas, literals are atoms and their negations, clauses are disjunc-
tions of literals, positive clauses are disjunctions of atoms. Letters ¢,,...
are used for formulas, whereas letters A, B, ... are used for literals and letters
C,D,... are used for clauses. Terms, literals and clauses are called ground
whenever variables do not appear in them. Formulas without free variables
are called sentences. A Y-theory T is a set of sentences (called the axioms of
T) in the signature ¥; however when we write 7' C 7" for theories, we may
mean not just set-theoretic inclusion but the fact that all the axioms for T
are logical consequences of the axioms for 7”.

From the semantic side, we have the standard notion of a X-structure A:
this is nothing but a support set endowed with an arity-matching interpre-
tation of the predicate and function symbols from Y. We shall notationally
confuse, for the sake of simplicity, a structure with its support set. Truth of
a Y-formula in A is defined in any one of the standard ways (so that truth of
a formula is equivalent to truth of its universal closure). A Y-structure A is
a model of a ¥-theory T' (in symbols A |= T') iff all axioms of T are true in
A; for models of a X-theory T' we shall preferably use the letters M, N, ...
to distinguish them from arbitrary ¥-structures. If ¢ is a formula, 7' = ¢ (‘¢
is a logical consequence of T") means that ¢ is true in any model of T'. A
Y-theory T is complete iff for every Y-sentence ¢, either ¢ or —¢ is a logical
consequence of T'; T is consistent iff it has a model (i.e. iff T}~ L1).

An embedding between two X-structures A and B is any map f: A — B
among the corresponding support sets satisfying the condition

(+) A=A if BEA

for all ¥4 atoms A (here A is regarded as a YA-structure by interpreting
each a € A into itself and B is regarded as a Y“-structure by interpreting
each a € A into f(a)). Notice that, as we have identity in the language, an
embedding is an injective function (it also must preserve the interpretation of
the function symbols and, in case it is just an inclusion, the interpretation of
the predicate symbols in the smaller structure must be the restriction of the
corresponding interpretation in the bigger structure). In case (x) holds for all
first order formulas, the embedding is said to be elementary.

The main problems we deal with are word problems, more precisely, given
a X-theory T
- the word problem for T is that of deciding whether T = A holds for a 3-atom
A;
- the conditional word problem for T is that of deciding whether T' = C' holds
for a Horn >-clause C
- the clausal word problem for T is that of deciding whether T = C' holds for
a Y-clause C
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- the elementary word problem for T' is that of deciding whether T' |= ¢ holds
for a first order ¥-formula ¢.

A formula is quantifier-free iff it does not contain quantifiers. A Y-theory T’
is said to eliminate quantifiers iff for every formula ¢(z)? there is a quantifier-
free formula ¢'(x) such that T = ¢(z) < ¢'(z). There are many well-known
theories [4] eliminating quantifiers, we give here some examples which can be
of interest for software verification.

Example 1.1 Linear integer arithmetic (i.e. the theory of the structure of
integer numbers in the signature 4,0, 1, < ,=,,) eliminates quantifiers; so does
rational linear arithmetic (i.e. the theory of rational numbers in the signature
+,0, <). Another well-known classical example from Tarski is real arithmetic
(i.e. the theory of real numbers in the signature +,0, -, 1, <).

Example 1.2 The theory of acyclic binary lists L [13], [14] eliminates quan-
tifiers (see [6]).

The main ingredient of this paper is the well-known notion of a model
completion of a theory. There are good chapters on that in all texbooks from
Model Theory. We shall recall here just the essential definitions for the only
case of universal theories® which is the relevant one for the purposes of this
paper (readers may consult e.g. [4], [10], [18] for further information).

Let T be a universal X-theory and let T* O T a further »-theory; we say
that 7% is a model completion of 7" iff i) every model of 7" has an embedding
into a model of T* and ii) 7% eliminates quantifiers.

It can be shown that a model completion T™ of a theory T is unique, in
case it exists, and moreover that 7™ has a set of V3-axioms, see [4].

Example 1.3 The theory of an infinite set is the model completion of pure
equality theory; the theory of dense total orders without endpoints is the
model completion of the theory of total orders.

Example 1.4 There are many classical examples from algebra: the theory
of algebraically closed fields is the model completion of the theory of inter-
gral domains, the theory of divisible torsion free abelian groups is the model
completion of the theory of torsion free abelian groups, etc.

Example 1.5 The theory of atomless Boolean algebras? is the model com-
pletion of the theory of Boolean algebras (for model completions arising in the
algebra of logic, see the book [8]).

Example 1.6 An old result in [18] says, in particular, that universal Horn
theories T' in finite signatures always have a model completion, provided the

2 By this notation, we mean that ¢ contains free variables only among the finite set .

3 Recall that a universal theory T is a theory having as axioms only universal closures of
quantifier-free formulas.

4 We recall that an atom in a Boolean algebra is a minimal non-zero element; a Boolean
algebra is atomless iff it has no atoms.
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following two conditions are satisfied: a) finitely generated models of T" are all
finite; b) amalgamation property holds for models of T'. This fact can be used
in order to prove the existence of a model completion for theories axiomatizing
many interesting discrete structures (like graphs, posets, etc.).

Example 1.7 It follows from the quantifier elimination result reported in [6]
that the theory L of acyclic binary lists is the model completion of itself.

Example 1.8 If a theory T™ has elimination of quantifiers, then it is the
model completion of the theory T" axiomatized by the set of universal sentences
which are logical consequences of T', see [4].

2 Compatibility

The key ingredient for our combination procedures is the following notion:

Definition 2.1 Let T be a theory in the signature 3 and let 7y be a universal
theory in a subsignature g C ¥. We say that T is Ty-compatible iff

(i) To C T}
(ii) Ty has a model-completion TF;

(iii) every model of T" embeds into a model of T'U T}.

Condition (iii) can be equivalently given in a slightly different form, by
saying that every quantifier-free Y-formula which is false in a model of T is
false also in a model of T"U Tj;.

Example 2.2 According to this remark, it is evident that Ty-compatibility re-
duces to the standard notion of stable infiniteness (used in the disjoint Nelson-
Oppen combination procedure) in case Ty is the pure theory of equality:® re-
call in fact that in this case Tj (i.e. the model completion of the pure equality
theory) is the theory of an infinite set.

Example 2.3 Every theory including the theory L of acyclic binary lists is
compatible with L, because L is universal and L = L*.

Example 2.4 If T, has a model completion 7 and if 7" D 7§, then T is
certainly Tp-compatible: this trivial case is often interesting (we may take e.g.
Ty to be the theory of linear orders and T' to be real aritmetic or rational
linear arithmetic).

Example 2.5 Let 7j be a universal theory having a model completion 7{;
if T is any extension of T with free function symbols only, then T is Tj-
compatible.

More examples will be supplied in section 4. An interesting feature of
To-compatibility is that it is a modular property:

5 By the ‘pure theory of equality’ we mean the empty theory in the signature containing

only the equality predicate.
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Proposition 2.6 Let T be a X1-theory and let Ty be a Yo-theory; suppose
they are both compatible with respect to a Xg-theory Ty (where g := X1 N Y5).
Then Ty U T is Ty-compatible too.

3 Combining compatible theories

Let us progressively fix our main data for the whole paper.

Assumption (I). T is a theory in the signature ¥y and Ty is a theory in the
signature Yo 2o s the signature 3 M .

Our main aim is that of (semi)deciding the clausal word problem for 7} U
T,, given that the corresponding clausal word problems for 77 and T5 are
(semi)decidable. Equivalently, this amounts to (semi)decide the consistency
of

T,UTyUT,

where I' is a finite set of ground literals in the signature ¥; U X5, expanded
with a finite set of new Skolem constants.

I' can be purified: as usual, we can abstract alien subterms and add equa-
tions involving further new free constants, in such a way that our problem is

reduced to the problem of establishing the consistency of a set of sentences
like

(1) (T, UT) U (T uTy),

where I'1,I'; are as explained in the following:

Assumption (II). For finitely many new free constants a, T'y is a finite set
of ground literals in the signature X1 and Ty is a finite set of ground literals
in the signature Y.

For trivial reasons, the consistency of (1) cannot follow from the mere
separate consistency of 77 U T and of T, U T's. We need some information
exchange between a reasoner dealing with 77 UI'; and a reasoner dealing with
T2 U FQ.

Craig’s interpolation theorem for first order logic ensures that the incon-
sistency of (1) can be detected by the information exchange of a single Y-
sentence ¢ such that 73 UT; = ¢ and ToUTsU{¢} = L. However, as pointed
out in [15], this observation is not very useful, as ¢ might be any first-order
formula, whereas we would like - at least - ¢ to be quantifier-free.

Unfortunately, information exchange of quantifier-free ¥g-formulas alone
is not sufficient, even for syntactically simple 77 and T3, to establish the in-
consistency of (1) (see section 5 below for a counterexample). We so need a
further assumption in order to get limited information echange without affect-
ing refutational completeness (this is the relevant assumption we make, the
other two being mere notational conventions):

bt
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Assumption (III). There is a universal ¥o-theory Ty such that both T and
Ty are Ty-compatible.

A finite list C1, ..., C, of positive ground Xg-clauses such that for every
k=1,...,n, there is « = 1,2 such that

T,UT; U{C,...,Ci} = Ch.

is called a positive residue chain. We can now formulate our combination
results (see [6] for proofs):

Theorem 3.1 In the above assumptions, (11 UT'1) U (Ty UTy) is inconsistent
iff there is a positive residue chain C1, ..., C, such that C,, is the empty clause.

Thus inconsistency can be detected by repeated exchanges of positive
ground clauses only; if we allow information exchange consisting on ground
quantifier free formulas, a single exchange step is sufficient:

Theorem 3.2 In the above assumptions, (Ty U ) U (To UTs) is inconsistent
iff there is a ground quantifier-free ¥5-sentence ¢ such that

TIUFl}:gb and TQUFQU{QZS}):_L

Following [15], we say that our T;’s are ¥o-convex iff whenever it happens
that T;UT; = Ay V-~V A, (for n > 1 and for ground Xg-atoms Ay, ..., A,),
then there is k = 1,...,n such that T, UT; = A..% For Yg-convex theories,
Theorem 3.1 refines in the following way:

Corollary 3.3 In addition to the above assumptions, suppose also that Ty, Ty
are both ¥g-conver. Then (Ty UTy) U (Ty U Ty) is inconsistent iff there is
a positive residue chain Cy,...,C, in which Cy,...,C,_1 are all ground -
atoms and C,, is L.

4 The locally finite case

We say that a Yg-universal theory Ty is locally finite iff ¥ is finite and for ev-
ery finite set a of new free constants, there are finitely many 3g-ground terms
t1,...,tg, such that for every further ¥g-ground term u, we have T = u = t;
(for some i = 1,...,k,).” As we are mainly dealing with computational as-
pects, we consider part of the definition the further request that such ¢4,. .., t

a

6 Among Yy-convex theories we have the important class of universal Horn theories, see

[15] again.

7 Local finiteness is a much weaker requirement than the notion of ‘finitary modulo a
renaming’ introduced in [2]. The reason is because the number k, depends on the cardinality
of a; on the contrary a Y-theory T is said to be finitary modulo a renaming iff there is a
finite set of 3y-terms S such that for every 3p-term u there are ¢t € S and a renaming ¢ such
that T = u = to. Consequently, for instance, locally finite theories (like Boolean algebras)
in which the number k, grows more than polynomially in the cardinality of a cannot be
finitary modulo a renaming.
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are effectively computable from a. Examples of locally finite theories are the
theory of graphs, of partial orders (more generally, any theory whose signature
does not contain function symbols), of commutative idempotent monoids, of
Boolean algebras, etc.

In a locally finite theory Ty, there are restricted finite classes which are
representatives, up to Tp-equivalence, of the whole classes of 3g-ground liter-
als, clauses, quantifier-free sentences, etc. (they are just the ground literals,
clauses, quantifier-free sentences, etc. containing only the above mentioned
terms ¢1,...,t;,). As it is evident that we can limit information exchange to
ground positive clauses and quantifier-free sentences in that restricted class,
both Theorems 3.1, 3.2 yield combined decision procedures for the clausal word
problem in Ty UT, in case the above assumptions (I) and (III) are satisfied and
in case Tj is locally finite. In particular, Theorem 3.1 suggest the following
extension of the Nelson-Oppen procedure [13]:

Algorithm 1

Step 1: Negate, skolemize and purify the universal closure of the input clause
C' thus producing a set T'y of ground X{-literals and a set Ty of ground X5-
literals (then T'y U Ty is T1 U Ty-equisatisfiable with =¥z C'). During the next
Steps loop, positive ground Y5-clauses are added to T'y,Ty.

Step 2: Using the decision procedures for T1,T,, check whether Ty U Ty and
Ty UTy are consistent or not (if one of them is not, return Ty UT, = C”).

Step 3: If T;UT; entails some positive ground g-clause (atom in the Yo-convex
case) not entailed by T; UL'; (7 # i) add this positive ground clause (atom) to
I'; and go back to Step 2.

Step 4: If this step is reached, return ‘17 U T, = C.

Example 4.1 Let 77 be rational linear arithmetic and let T, be the theory
of total orders endowed with a strict monotonic function f. We take as Ty
the theory of total orders (recall that its model completion T} is the theory
of dense total orders without endpoints). 77 is known to be decidable and the
clausal word problem for 75 is decidable too. As Ty D Ti, Ti is certainly Tp-
compatible. T is also Ty-compatible (to embed a model M of T5 into a model
M of T UTs, take as M’ the lexicographic product of M with e.g. the poset
of rational numbers). Thus our combination results apply and we obtain the
decidability of the clausal word problem for rational linear arithmetic endowed
with a strict monotonic function.

Example 4.2 A modal algebra is a Boolean algebra B = (B,N,1,U,0,(—=)")
endowed with an operator O preserving binary meets and the top element. Let
now 1 be the signature of Boolean algebras augmented with a unary function
symbol O; and let 35 be the signature of Boolean algebras augmented with
a unary function symbol Oy. T3 is the equational theory of a variety V; of
modal algebras and 75 is the equational theory of another variety V5 of modal
algebras. For i = 1,2, T; is a universal Horn theory, hence it is ;-convex: this

7
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means in particular that the solvability of the conditional word problem for
T; implies the solvability of the clausal word problem for T;. As every model
of T; embeds into a model whose Boolean reduct is atomless, we can conclude
that the solvability of the conditional word problem for T} and 75 implies the
solvability of the conditional word problem for 7} UT5. Also, in case the modal
operators O, Oy are both transitive,® the solvability of the word problem for
T and T5 implies the solvability of the word problem for 77 U T5.

We underline that the last observation, once read in terms of logics, means
exactly fusion decidability for normal extensions of K4. Although this does not
entirely cover Wolter’s fusion decidability results [19], it puts some substantial
part of them into the appropriate general combination context. For new results
(based on a refinement of the combination schema explained in this section)
concerning fusion of modal logics sharing a universal modality and nominals,

see [7].

5 Pure deductions

In this section we give some further suggestions about a possible use of the
ideas explained in section 3 within saturation-based theorem proving. We
show that whenever Ty-compatibility holds it is possible to cut in a deduction
the inferences which are not pure, still retatining refutational completeness.
An inference among (37 U 3y)%clauses

is pure iff there is i = 1,2 such that all the clauses Ci,...,C,,C are %~
clauses. Similarly, a deduction is pure iff all inferences in it are pure. Usually
pure deductions are not able to detect inconsistency of (the skolemization of)
sets of sentences like T7 U T’y U Ty U I'y, however we shall see that this may
happen when the Ty-compatibility conditions are satisfied.

In order to realize this program, we first need to skolemize the theo-
ries Ty, Ts, thus passing to theories T:% T5* in extended signatures 3%, ¥5F:
Skolem functions will not be considered shared symbols, hence we still have
that ¥g = Y58 N 3%, The first problem we meet is the following: if Tj is
Ty-compatible, is T¢* still Ty-compatible? We do not have a general answer
for that, however there is a relevant case in which the answer is affirmative:

Proposition 5.1 Let T' be a X-theory which is compatible with respect to a
Yo-theory Ty (here 3o is a subsignature of ¥). If the azioms of T are all

8 The modal operator U; is said to be transitive iff T} E O0;xN0;0,2 = O,2. For transitive
modal operators it is easily seen that the conditional word problem reduces to the word
problem.
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V3-sentences, then T*F is Ty-compatible too.

The previous Proposition motivates the following extra assumption (in
addition to those from section 3):

Assumption (IV). Ty, Ty are aziomatized by V3-sentences; Ti* T5% are their
skolemizations.

We take into consideration here the Superposition Calculus T (see [3], [12]).
We fix a lezicographic path ordering® induced by a total precedence on the
symbols of ¥5¥ U 5% U {a}; assuming for simplicity that our signatures are
finite, this induces a reduction ordering > which is total on ground terms.
We give to symbols in X5 lower precedence than to symbols in 33\ ¥y and in
5P\ 3g. This is essential: as a consequence, ground Y3-clauses will be smaller
in the twofold multiset extension of > than all ground clauses containing a
proper X; or Xs-symbol.

Theorem 5.2 In the above assumptions (I1)-(IV), the set of sentences T} U
' UTy, ULy is inconsistent iff there is a pure Z-derivation of the empty clause
from TsFUT U TSk UT,.

A possible direction for future reseach should try to take advantage from
Theorem 5.2 in decision procedures based on Superposition Calculus: in fact
for interesting (intrinsecally non locally finite) theories, the Superposition Cal-
culus terminates whenever it has to test satisfiability of finite sets of ground
literals [1].

Before concluding this section, we shall provide an example in which the
assumptions of Theorem 5.2 are satisfied and an example in which such as-
sumptions fail.

Example 5.3 Let 77,75 be both the theory of Boolean algebras; we assume
that symbols of the bounded distributivity lattice language (namely N, U, 0, 1)
are shared but that the two complements n,ny are not. We want to prove
that Ty U Ty = Va(ni(z) = nao(x)). If we take Tj to be the theory of bounded
distributive lattices (i.e. of distributive lattices with 0 and 1), we see that
Ty, Ts are Ty-compatible. Skolemization and purification give for instance the
two sets of literals I'y = {a = ny(c¢),a # b} and Ty = {b = na(c),a # b}.
A pure Z-refutation exists: the prover SPASS produces a pure Z-refutation
consisting on 28 steps. However, the system is not programmed in order to
avoid impure inferences, so that, during saturation, it impurely derives also
(useless) ‘mixed’ clauses containing both n; and ny. One of them, namely the
atom b N ny(na(a)) = b, is also selected as a given clause.

Example 5.4 Let T} be the theory of Boolean algebras and let T be the
theory of pseudocomplemented distributive lattices; these are bounded dis-
tributive lattices endowed with a unary operator (—)* satisfying the condition

9 Tt is not clear whether the results explained in this section hold in case a Knuth-Bendix

ordering is adopted.
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VaVy (x Ny = 0 < y < x*). This condition expresses the properties of in-
tuitionistic negation, hence in the union theory 7} U T5, the operator (—)*
collapses into the classical complement. This means that 77 Uy UT, U Ty is
inconsistent, where I'; is empty and I's is {(a*)* # a}. A SPASS refutation
takes 43 lines and it is highly impure. In fact a pure refutation cannot exist:
the Yo- (and even the X¢)-ground clauses deducible from either 73 U T or
T, UT'y are insufficient to detect inconsistency, because they are all subsumed
by the three negative literals 0 # 1,a # 1,a # 0. Notice that T5 is not
Ty-compatible.

6 Conclusions and related work

In this paper we have extended Nelson-Oppen combination procedure to the
case of theories T7, Ty over non-disjoint signatures, in presence of compatibility
conditions over a common universal subtheory 7y. The extension we proposed
applies to examples of real interest giving, as shown in section 4, combined
decidability in case Ty is locally finite. Whenever Tj is not locally finite, our
method can be used in order to limit residue exchange (see section 3) or in
order to forbid impure inferences in saturation-based theorem proving, thus
yielding restrictions on the search space during refutation derivations (see
section 5).

It should be noticed that quantifier-elimination plays only an indirect role
in the paper: in this sense, the existence of a model completion for a uni-
versal theory Ty guarantees a certain behaviour in combination problems by
itself, independently on how quantifier elimination in the model completion is
established (this can be established also by semantic non constructive argu-
ments, as largely exemplified in the model-theoretic literature). In principle,
the quantifier elimination complexity/decidability has nothing to do with the
complexity /decidability of our combination methods, simply because quanti-
fier elimination algorithms do not enter into them. This is crucial, because
most quantifier elimination algorithms are subject to heavy complexity lower
bounds, which are often structural lower bounds for the decision of the ele-
mentary word problem in the corresponding theories [5].

One may wonder how severe is the crucial condition of Ty-compatibility
used in the paper: let us discuss it for a while. Ty-compatibility involves
two aspects, namely the existence of a model completion 77 for T and the
embeddability of models of 7; into models of T; U Tj. As we have shown
in the examples, the existence of a model completion seems to be frequent
for theories commonly used in software verification. On one side, numeric
constraint theories often enjoy this property, in the sense that they eliminate
quantifiers (thus being model completions of the theories axiomatized by their
respective universal consequences). On the other side, acyclic binary lists
might probably be the paradigm of situations arising in theories axiomatizing
natural datatypes. Finally, notice that quantifier elimination strictly depends

10
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on the choice of the language: every theory trivially has quantifier elimination
in an extended language with infinitely many definitional axioms, hence the
problem of obtaining quantifier elimination seems to be mostly a problem of
choosing a sufficiently rich but still natural and manageable language.

The question concerning embeddability of models of T; into models of T; U
T looks more problematic, in the sense that it can fail in significant situations
and, in addition, it does not look to be mechanizable. Further research is
necessary on this point, however we underline that there is a relevant case in
which the problem disappears. This is the case in which T; is an extension of
15 we have seen an example in section 4 where T} is rational linear arithmetic
and Tj is the theory of linear orders. Another example is the theory of acyclic
lists L (which coincides with L*): any extension of the theory of acyclic lists
with significant extra structures matches our requirements and the advantages
of our method (limited residue exchange, elimination of impure inferences,
etc.) apply to all combinations of theories obtained in this way.

There have been many efforts in the literature trying to extend Nelson-
Oppen combination method to theories sharing function and predicate sym-
bols (different from equality). The starting point of any attempt to generalize
Nelson-Oppen procedure to the non-disjoint case should preliminarly answer
the following question: what is the specific feature of the stable infiniteness
requirement that we want to generalize? In the present paper we answered the
question by saying that infinite models are just ezistentially closed models of
the pure theory of equality and based our further investigations on this obser-
vation. On the contrary, in other approaches (see e.g. [17]), it is emphasized
that infinite models are just free models of the pure theory of equality with
infinitely many generators. This leads to completely different results, because
the notion of infinitely generated free and of existentially closed structure are
quite divergent and their coincidence for the pure theory of equality must be
considered a rather exceptional fact.

Before closing, we would like to remark that the idea (suggested in [15]) of
using interpolation theorems in order to limit residue exchange in partial the-
ory reasoning (whenever the background reasoner has to deal with combined
theories) inspired some of the material presented in section 3 above. Notice
however the following difference with respect to [15]: there the input theories
Ty, T, were assumed to share all functions symbols (alien function symbols be-
longing to one theory being considered as free Skolem functions for the other),
whereas we tried to keep function symbols separated too, as much as possi-
ble. This is essential in our context, because otherwise e.g. local finiteness
of the common subtheory Ty would be lost (and decidability of the combined
problems presented in section 4 would not be achieved as a consequence).

Aknowledgements: I wish to thank Silvio Ranise and Cesare Tinelli for
e-mail discussions on the subject of this paper.
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