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Abstract. We describe mcmt, a fully declarative and deductive sym-
bolic model checker for safety properties of infinite state systems whose
state variables are arrays. Theories specify the properties of the indexes
and the elements of the arrays. Sets of states and transitions of a sys-
tem are described by quantified first-order formulae. The core of the
system is a backward reachability procedure which symbolically com-
putes pre-images of the set of unsafe states and checks for safety and
fix-points by solving Satisfiability Modulo Theories (SMT) problems.
Besides standard SMT techniques, efficient heuristics for quantifier in-
stantiation, specifically tailored to model checking, are at the very heart
of the system. mcmt has been successfully applied to the verification of
imperative programs, parametrised, timed, and distributed systems.

1 Introduction

In [6], we have presented a fully declarative approach to verify safety properties
of infinite state systems—whose variables are arrays—by backward reachability.
Such systems can be used as suitable abstractions of many classes of systems
ranging from parametrised protocols to sequential programs manipulating ar-
rays. The idea is to use classes of quantified first-order formulae to represent an
infinite set of states of the system so that the computation of pre-images boils
down to symbolic manipulations. Using suitable theories over the elements and
the indexes of the arrays, we are able to declaratively specify both the data ma-
nipulated by the system and its topology (in the case of parametrised systems)
or properties of the indexes of arrays (in the case of imperative programs).

In the framework of [6], the key to mechanize backward reachability is to
reduce the checks for fixed-point and safety to Satisfiability Modulo Theories
(SMT) problems of first-order formulae containing (universal) quantifiers. Un-
der suitable hypotheses on the theories over the indexes and the elements of
the arrays, these SMT problems are decidable [6] by integrating a quantifier
instantiation procedure with SMT solving techniques for quantifier-free formu-
lae. In [8,9], we described heuristics to reduce the number of quantified variables
and—most importantly—of instances while preserving the completeness of SMT
solving. Unfortunately, the decidability of safety and fixed-point checks is not
yet enough to ensure the termination of the backward reachability analysis.
Theoretically, termination for this procedure can be ensured for well-structured
systems [1]; in [6], we explained how to recast this notion in our framework so as



to import all the decidability results available in the literature. Pragmatically,
it is well-known that termination of backward reachability can be obtained by
using invariants and we discussed how natural it is to guess and use them in our
framework and also gave a characterization of the completeness of the proposed
method [7].

In this paper, we give the first comprehensive high-level description of mcmt
v. 1.0, a significant extension of the prototype tool used in our previous work [7,8].
mcmt v. 1.0 uses Yices (http://yices.csl.sri.com) as the back-end SMT
solver and is available at http://www.dsi.unimi.it/~ghilardi/mcmt. Besides
various ameliorations and refinements to previously available functionalities as
well as new utilities (like Bounded Model-Checking), mcmt v. 1.0 supports the
following new features, which widen its scope of applicability and greatly im-
prove its performances (in particular, w.r.t. termination) when used with care:
(i) transitions with existentially quantified variables ranging over data values
(and not only indexes), provided that the theory over data admits elimination of
quantifiers; (ii) synthesis of invariants with two universally quantified variables
(previously [7], they were limited to containing just one variable); (iii) a form of
predicate abstraction, called signature abstraction, together with limited support
for the acceleration of transitions [4]. For lack of space, only an excerpt of the
experiments are described here (for full details, consult the mcmt web-page).

2 The MCMT way of life

We present our vision of model checking infinite state systems underlying mcmt.
To this end, we believe it is convenient to recall two distinct and complementary
approaches among the many possible alternatives available in the literature.

The first approach is pioneered in [1] and its main notion is that of well-
structured system. Recently, it was implemented in two systems [2,3], which
were able to automatically verify several protocols for mutual exclusion and
cache coherence. One of the key ingredients to the success of these tools is their
capability to perform accurate fixed-point checks so as to reduce the number of
iterations of the backward search procedure. A fixed-point check is implemented
by ‘embedding’ an old configuration (i.e. a finite representation of a potentially
infinite set of states) into a newly computed pre-image; if this is the case, then
the new pre-image is considered “redundant” (i.e., not contributing new infor-
mation about the set of backward reachable states) and thus can be discarded
without loss of precision. Indeed, the exhaustive enumeration of embeddings has
a high computational cost. Furthermore, constraints are only used to represent
the data manipulated by the system while its topology is encoded by ad hoc data
structures. A change in the topology of the system requires the implementation
from scratch of algorithms for both pre-image and embedding computation. On
the contrary, mcmt uses particular classes of first-order formulae to represent
configurations parametrised with respect to two theories, one for data and one
for the topology so that pre-image computation reduces to a fixed set of logical
manipulations and fixed-point checking to solve SMT problems containing uni-
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versally quantified variables. To mechanize these tests, a quantifier-instantiation
procedure is used, which is the logical counterpart of the enumeration of embed-
dings. Interestingly, this notion of embedding can be recaptured (via classical
model theory) [6] in the logical framework underlying mcmt, a fact that allows
us to import the decidability results of [1] for backward reachability. Another
important advantage of the approach underlying mcmt over that proposed in [1]
is its broader scope of applications with respect to the implementations in [2,3].
The use of theories for specifying the data and the topology allows one to model
disparate classes of systems in a natural way. Furthermore, even if the quantifier
instantiation procedure becomes incomplete with rich theories, it can soundly
be used and may still permit the proof of the safety of a system. In fact, mcmt
has been successfully employed to verify sequential programs (such as sorting
algorithms) that are far beyond the reach of the systems described in [2,3].

The second and complementary approach to model checking infinite state
systems relies on predicate abstraction techniques, initially proposed in [10]. The
idea is to abstract the system to one with finite states, to perform finite-state
model checking, and to refine spurious traces (if any) by using decision proce-
dures or SMT solvers. This technique has been implemented in several tools
and is often combined with interpolation algorithms for the refinement phase.
As pointed out in [5,11], predicate abstraction must be carefully adapted when
(universal) quantification is used to specify the transitions of the system or its
properties, as it is the case for the problems tackled by mcmt. There are two
crucial problems to be solved. The first is to find an appropriate set of pred-
icates to compute the abstraction of the system. In fact, besides system vari-
ables, universally quantified variables may also occur in the system. The second
problem is that the computation of the abstraction as well as its refinement
reduce to solving proof obligations containing universal quantifiers. Hence, we
need to perform suitable quantifier instantiations in order to enable the use of
decision procedures or SMT solving techniques for quantifier-free formulae. The
first problem is solved by Skolemization [5] or fixing the number of variables
in the system [11] so that standard predicate abstraction techniques can still
be used. The second problem is solved by adopting very straightforward (some-
times naive) and incomplete quantifier instantiation procedures. While being
computationally cheap and easy to implement, the heuristics used for quantifier
instantiation are largely imprecise and do not permit the detection of redundan-
cies due to variable permutations, internal symmetries, and so on. Experiments
performed with mcmt, tuned to mimic these simple instantiation strategies,
show much poorer performance. We believe that the reasons of success of the
predicate abstraction techniques in [5,11] lie in the clever heuristics used to find
and refine the set of predicates for the abstraction. The current implementa-
tion of mcmt is orthogonal to the predicate abstraction approach; it features an
extensive quantifier instantiation (which is complete for some theories over the
indexes and is enhanced with completeness preserving heuristics to avoid useless
instances), but it performs only a primitive form of predicate abstraction, called
signature abstraction (see Section 4). Another big difference is how abstraction is
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used in mcmt: the set of backward reachable states is always computed precisely
while abstraction is only exploited for guessing candidate invariants which are
then used to prune the set of backward reachable states. Since we represent sets
of states by formulae, guessing and then using the synthesized invariants turns
out to be extremely easy, thereby helping to solve the tension between model
checking and deductive techniques that has been discussed a lot in the literature
and is still problematic in the tools described in [2,3] where sets of states are
represented by ad hoc data structures. We plan to enhance predicate abstraction
techniques in future releases of mcmt, so as to find the best trade-off between
the advantages of predicate abstraction and extensive quantifier instantiation.

3 The Input language for Safety Problems

The input language of mcmt can be seen as a parametrised extension of the one
used by UCLID (http://www.cs.cmu.edu/~uclid). Formally, it is a sub-set of
multi-sorted first-order logic, extended with the ternary expression constructor
“if-then-else” (which is standard in the SMT-LIB format). For lack of space,
we omit the presentation of the concrete syntax which is fully described in the
on-line User Manual.

Sorts. We use the following distinguished sorts: Ind for indexes, Elem1, ...,
Elemm for elements of arrays, and Arr1, ...,Arrm for array variables (where Arrk
corresponds to arrays of elements of sort Elemk, for k = 1, ...,m).

Theories. We assume that the mono-sorted theories TI and TEk
are given

over the sorts Ind and Elemk, respectively, for k = 1, ...,m. The three-sorted
theories AEk

I are obtained as the combination of the theories TI and TEk
for

each k = 1, ...,m by adding the sort Arrk to Ind and Elemk, by taking the
union of the symbols of TI and TEk

, and by adding the binary symbol [ ]k :
Arrk × Ind → Elemk for reading the content of an array at a given index (the
subscript k is omitted if clear from the context). Finally, we let AEI :=

⋃m
k=1A

Ek

I .
Formats of formulae. We use two classes of formulae to describe sets of

states: ∀i.φ(i, a) and ∃i.φ(i, a), where i is a tuple of variables of sort Ind , a is a
tuple of length m of array variables of sorts Arr1, ...,Arrm, and φ is quantifier-
free formula containing at most the variables in i∪a as free variables. The former
are called ∀I -formulae and the latter ∃I -formulae. An ∃I -formula ∃i.φ is primitive
when φ is a conjunction of literals; it is differentiated when it is primitive and φ
contains as a conjunct the disequation ik 6= il for each 1 ≤ k < l ≤ length(i). By
applying simple logical manipulations, it is always possible to transform any ∃I -
formula into a disjunction of primitive differentiated ones. To specify transitions,
we use a particular class of formulae (called transition formulae) corresponding
to a generalization of the usual notion of guarded assignment system:

∃i1, i2, e.

(
G(i1, i2, e, a) ∧

m∧
k=1

∀j. a′k[j] = Updk(j, i1, i2, e, a)

)
,

where i1, i2 are variables of sort Ind (having at most two existentially quantified
variables is not too restrictive since many disparate systems can be formalized
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in this format as shown by the experiments available on-line), e is a variable of
sort Elemk (for some k = 1...,m), a is a tuple of array state variables, ak (in a)
is the actual value of a state variable and a′k is its value after the execution of the
transition, G is a conjunction of literals (called the guard), and Updk is a function
defined by cases (for k = 1, ...,m), i.e. by suitably nested if-then-else expressions
whose conditionals are again conjunctions of literals. The format for transition
formulae above—because of the presence of the existentially quantified variable
e over data values—is the first significant amelioration of the actual version of
mcmt as it allows one to specify classes of systems which were not previously
accepted by the tool such as real time systems or those with non-deterministic
updates. Notice that the theory TEk

over the sort Elemk of the variable e must
be Linear Arithmetic (over the integers or the reals). This limitation allows us
to maintain the closure of the class of ∃I -formulae under pre-image computation
by exploiting quantifier elimination (implemented only in the latest version of
mcmt).

Safety problem. Let I be a ∀I -formula describing the set of initial states,
Tr a finite set of transition formulae, and U an ∃I -formula for the set of unsafe
states. The safety problem solved by mcmt consists in establishing whether there
exists an n ≥ 0 such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (1)

is AEI -satisfiable, where ah = ah1 , ...., a
h
m for h = 0, ..., n, and τ :=

∨
τi∈Tr τi. If

there is no such n, then the system is safe (w.r.t. U); otherwise, it is said to be
unsafe since the AEI -satisfiability of (1) implies the existence of a run (of length
n) leading the system from a state in I to a state in U .

4 The main loop: deductive backward reachability

mcmt implements backward reachability to solve safety problems. For n ≥ 0,
the n-pre-image of an ∃I -formula K(a) is Pre0(τ,K) := K and Pren+1(τ,K) :=
Pre(τ, Pren(τ,K)), where Pre(τ,K) := ∃a′.(τ(a, a′) ∧ K(a′)). It is easy to
show [6] that the class of ∃I -formulae is closed under pre-image computation un-
der the assumption that TEk

admits elimination of quantifiers (if an existentially
quantified variable of sort Elemk occurs in a transition formula). The formula
BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U) represents the set of states which are backward
reachable from the states in U in at most n ≥ 0 steps. So, backward reacha-
bility consists of computing BRn(τ, U) for increasing values of n and checking
whether BRn(τ, U) ∧ I is AEI -satisfiable or ¬(BRn(τ, U) → BRn−1(τ, U)) is
AEI -unsatisfiable. In the first case (safety test), one concludes the unsafety of
the system while in the second (fixed-point test), it is possible to stop comput-
ing pre-images as no new states can be reached and, if the safety test has been
passed, one can infer the safety of the system.

Figure 1 introduces the Tableaux-like calculus used by mcmt to implement
backward reachability [7]. We initialize the tableau with the ∃I -formula U(a) rep-
resenting the set of unsafe states. The computation of the pre-image is realized
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K [K is primitive differentiated]

Pre(τ1,K) | · · · | Pre(τm,K)
PreImg

K
K1 | · · · | Kn

Beta

K [K is AE
I -unsatisfiable]

× NotAppl
K [I ∧K is AE

I -satisfiable]

UnSafe
Safety

K [K ∧
V
{¬K′|K′ � K} is AE

I -unsatisfiable]

× FixPoint

Fig. 1. The calculus underlying mcmt

by applying rule PreImg (we use square brackets to indicate the applicability
condition of a rule), where Pre(τh,K) computes the ∃I -formula which is logi-
cally equivalent to Pre(τh,K). Since the ∃I -formulae labeling the consequents
of the rule PreImg may not be primitive and differentiated (because of nested
if-then-else expressions and incompleteness of variable distinction), we need to
apply the Beta rule to an ∃I -formula so as to eliminate the conditionals by
case-splitting and derive K1, . . . ,Kn primitive differentiated ∃I -formulae whose
disjunction is AEI -equivalent to K. By repeatedly applying PreImg and Beta, it is
possible to build a tree whose nodes are labelled by ∃I -formulae whose disjunc-
tion is equivalent to BRn(τ, U) for some n ≥ 0. Indeed, there is no need to fully
expand the tree; it is useless to apply the rule PreImg to a node ν labelled by an
AEI -unsatisfiable ∃I -formula (rule NotAppl). One can terminate the whole search
because of the safety test (rule Safety), in which case one can extract from the
branch a bad trace, i.e. a sequence of transitions leading the array-based system
from a state satisfying I to one satisfying U . A branch can be terminated by
the fixed-point test described by rule FixPoint, where K ′ � K means that K ′ is
a primitive differentiated ∃I -formula labeling a node preceding the node labeled
by K (nodes can be ordered according to the strategy for expanding the tree).

For the effectiveness of rules Safety and FixPoint, it is necessary to check
the AEI -satisfiability of ∃I∀I -formulae, i.e. formulae containing an alternation of
quantifiers over variables of sort Ind . In mcmt, we have integrated a quantifier
instantiation procedure with SMT solving techniques for quantifier-free formu-
lae, augmented with heuristics to avoid the generation of useless instances and
incrementality of satisfiability checks [8]. The technique is complete under some
hypotheses on TI and the TEk

’s [6]. Even if such hypotheses are not satisfied,
the instantiation procedure can still be soundly used without loss of precision
for a final safety result of the backward reachability procedure, although its
termination is less guaranteed. This point is particularly delicate and merits
some discussion. Consider the verification of a mutual exclusion protocol (due
to Szymanski) which can be considered as a typical example of problems about
parametrised systems. To show the safety of this problem, mcmt generates 1153
satisfiable and 4043 unsatisfiable SMT problems. While our quantifier instanti-
ation procedure with Yices is capable of solving all SMT problems, Yices alone
with its quantifier handling techniques returns ‘unknown’ on all the 1153 sat-
isfiable instances while it can solve 2223 of the unsatisfiable ones and returns
‘unknown’ on the remaining 1820. We are currently adding the capability of gen-
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erating satisfiability problems in the SMT-LIB format to mcmt so as to evaluate
the quantifier handling procedures available in various SMT solvers.

The main novelty of the latest version of mcmt is the more extensive support
for invariant synthesis, abstraction, and acceleration for computing the repeated
application of a sub-set of the transitions an arbitrary number of times in a single
step. Invariant synthesis has been introduced in [7] but the implementation was
able to generate universally quantified invariants with just one variable. mcmt
v. 1.0 supports the generation of invariants with up to two universal quantifiers.
While performing backward reachability (which is always precise), candidate in-
variants are guessed according to some heuristics [7] and then a resource bounded
(secondary) backward reachability is used to keep or discard the candidates. The
invariants found in this way are used in the main backward reachability proce-
dure when checking for fix-points. The present version of mcmt features also
a new technique for the synthesis of invariants, named signature abstraction: it
consists of projecting away (by quantifier elimination, whenever possible) those
literals containing a sub-set of the array variables; thereby obtaining an over-
approximation of the set of reachable states. This is without loss of precision,
since it is done in the secondary backward reachability procedure for invariant
synthesis while the main procedure continues to compute the set of backward
reachable states precisely. The last novelty of mcmt v. 1.0 is some support for
acceleration along the lines of [4] in the hope of a better convergence of the
backward reachable procedure; this is often the case for systems formalized by
arithmetic constraints such as Petri nets.

5 Experiments

To show the flexibility and the performance of mcmt, we have taken some pain to
build a library of benchmarks in the format accepted by our tool by translating
safety problems from a variety of sources, such as the distributions of the infinite
state model checkers described in [2,3] or imperative programs manipulating
arrays taken from standard books about algorithms. For lack of space, we include
here only an excerpt of the experiments (see the tool web-page for a full report).

We divide the problems in four categories: mutual exclusion (M) and cache
coherence (C) protocols, imperative programs manipulating arrays (I), and het-
erogeneous (H) problems. We tried the tool in two configurations: the “Default
Setting” is when mcmt is invoked without any option and the “Best Setting” is
when the tool is run with some options turned on. In Table 1, the column ‘d’
is the depth of the tableaux obtained by applying the rules in Figure 1, ‘#n’ is
the number of nodes in the tableaux, ‘#del’ is the number of subsumed nodes,
‘#SMT’ is the number of invocations to Yices, ‘#i’ is the number of invariants
found by mcmt (for the “Default Setting,” column ‘#i’ is not shown because
mcmt’s default is to turn off invariant synthesis), and ‘time’ is the total amount
of time (in seconds) taken by the tool to solve the problem on a Pentium Intel
1.73 GHz with 1 Gb Sdram running Linux Gentoo. In the cases when the tool
seemed to diverge, we aborted execution, and put ‘t(ime)o(out)’ in the column
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Table 1. Some experimental results

Default setting Best setting

Problem d #n #del #SMT time d #n #del #SMT #i time

Lamport (M) 23 913 242 47574 120.62 23 248 42 19254 7 32.84

RickAgr (M) 13 458 119 35355 187.04 13 458 119 35355 0 187.04

Szymanski at (M) 23 1745 311 424630 540.19 9 22 10 2987 42 1.25

German07 (C) 26 2442 576 121388 145.68 26 2442 576 121388 0 145.68

GermanBug (C) 16 1631 203 41497 49.70 16 1631 203 41497 0 49.70

GermanPFS (C) 33 11605 2755 858184 1861.0 33 11141 2673 784168 149 1827.0

SelSort (I) - - - - to 5 13 2 1141 11 0.62

Strcat (I) - - - - to 2 2 2 80 2 0.07

Strcmp (I) - - - - to 2 1 1 21 3 0.01

Fischer (H) 10 16 2 336 0.16 10 16 2 336 0 0.16

Ticket (H) - - - - to 3 4 2 201 10 0.06

of timings and leave the others empty (‘-’). All systems—except ‘GermanBug’
(a bugged version of ‘German07’)—are certified to be safe by mcmt while for
‘GermanBug,’ the tool returns an error trace consisting of 16 transitions. Invari-
ant synthesis (especially the signature abstraction technique introduced in this
version of the tool) is helpful to reduce the solving time for problems in (M),
and to obtain termination for those in (I), but has no effect on problems in (C).
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