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Abstract. We are interested in automatically proving safety properties
of infinite state systems. We present a technique for invariant synthe-
sis which can be incorporated in backward reachability analysis. The
main theoretical result ensures that (under suitable hypotheses) our
method is guaranteed to find an invariant if one exists. We also discuss
heuristics that allow us to derive an implementation of the technique
showing remarkable speed-ups on a significant set of safety problems in
parametrised systems. c©Springer-

Verlag 2009

1 Introduction

Backward reachability analysis has been widely adopted in model checking safety
properties of infinite state systems (see, e.g., [1]). This verification procedure re-
peatedly computes pre-images of a set of unsafe states, usually obtained by
complementing a safety property that a system should satisfy. Potentially in-
finite sets of states are represented by constraints so that pre-image computa-
tion can be done symbolically. A key advantage of backward reachability is to
be goal-directed ; the goal being the set of unsafe states from which pre-images
are computed. Furthermore, safety properties for some classes of systems (e.g.,
broadcast protocols [8, 6]) can be decided by backward reachability.

Despite these advantages, backward reachability can unnecessarily explore
(large) portions of the symbolic state space of a system which are actually not
required to verify the safety property under consideration. Even worse, in some
cases the analysis may not detect a fix-point, thereby causing non-termination.
In order to avoid visiting irrelevant parts of the symbolic state space during back-
ward reachability, techniques for analyzing pre-images and guessing invariants
have been devised (see, e.g., [5, 15, 9, 4, 13] to name a few). The success of these
techniques depend crucially on the heuristics used to guess the invariants. Our
framework is similar in spirit to [5], but employs techniques which are specific
for our different intended application domains.

Along this line of research, we present a technique for interleaving pre-image
computation and invariant synthesis which tries to eagerly prune irrelevant parts
of the search space. Formally, we work in the framework of the model checking
(based on Satisfiability) Modulo Theories approach of [10, 12], where array-based
systems have been introduced as an abstraction of several classes of infinite



state systems (such as parametrized systems, lossy channels, and algorithms
manipulating arrays). The main result (cf. Theorems 4.9 and 4.11) of the
paper ensures that the technique will find an invariant—provided one exists—
under suitable hypotheses, which are satisfied for important classes of array-
based systems (e.g., mutual exclusion algorithms or cache coherence protocols).
The key ingredient in the proof of the result is the model-theoretic notion of
configuration and configuration ordering (introduced in [1] at an abstract level)
which allows us to finitely characterize the search space of candidate invariants.
Although the technique is developed for array-based systems, we believe that the
underlying idea can be adapted to other symbolic approaches to model checking
(e.g., [2, 3]).
Plan of the paper. We briefly introduce the notion of array-based system (Sec. 2).
We revisit the backward reachability procedure as a Tableaux-like calculus (Sec. 3)
so as to give a firm basis for implementation. We show how invariants can help
backward reachability (Sec. 4), recall the duality between this and the synthesis
of invariants (Sec. 4.1), and describe how to interleave backward analysis and
invariant synthesis (Sec. 4.2) together with some heuristics (Sec. 4.3). Finally
(Sec. 5), we discuss how a prototype implementation of our techniques shows re-
markable speed-ups. Full proofs and more examples can be found in the technical
report [11].

2 Formal Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, and
formula) and semantic (e.g., structure, sub-structure, truth, satisfiability, and
validity) notions of first-order logic (see, e.g., [7]). The equality symbol = is
included in all signatures considered below. A signature is relational if it does
not contain function symbols and it is quasi-relational if its function symbols are
all constants. An expression is a term, an atom, a literal, or a formula. Let x be
a finite tuple of variables and Σ a signature; a Σ(x)-expression is an expression
built out of the symbols in Σ where at most the variables in x may occur free
(we will write E(x) to emphasize that E is a Σ(x)-expression). Let e be a finite
sequence of expressions and σ a substitution; eσ is the result of applying the
substitution σ to each element of the sequence e.

According to the current practice in the SMT literature [16], a theory T
is a pair (Σ, C), where Σ is a signature and C is a class of Σ-structures; the
structures in C are the models of T . Below, we let T = (Σ, C). A Σ-formula φ is
T -satisfiable if there exists a Σ-structureM in C such that φ is true inM under
a suitable assignment to the free variables of φ (in symbols,M |= φ); it is T -valid
(in symbols, T |= ϕ) if its negation is T -unsatisfiable. Two formulae ϕ1 and ϕ2

are T -equivalent if ϕ1 ↔ ϕ2 is T -valid. The satisfiability modulo the theory T
(SMT (T )) problem amounts to establishing the T -satisfiability of quantifier-free
Σ-formulae.

T admits quantifier elimination iff for every formula ϕ(x) one can compute
a quantifier-free formula ϕ′(x) such that T |= ∀x(ϕ(x) ↔ ϕ′(x)). A theory



T = (Σ, C) is said to be locally finite iff Σ is finite and, for every finite set of
variables x, there are finitely many Σ(x)-terms t1, . . . , tkx

such that for every
further Σ(x)-term u, we have that T |= u = ti (for some i ∈ {1, . . . , kx}).
The terms t1, . . . , tkx are called Σ(x)-representative terms; if they are effectively
computable from x (and ti is computable from u), then T is said to be effectively
locally finite (in the following, when we say ‘locally finite’, we in fact always
mean ‘effectively locally finite’). If Σ is relational or quasi-relational, then any
Σ-theory T is locally finite. An enumerated data-type theory T is a theory in
a quasi-relational signature whose class of models contains only a single finite
Σ-structure M = (M, I) such that for every m ∈ M there exists a constant
c ∈ Σ such that cI = m.

A T -partition is a finite set C1(x), . . . , Cn(x) of quantifier-free formulae such
that T |= ∀x

∨n
i=1 Ci(x) and T |=

∧
i6=j ∀x¬(Ci(x) ∧ Cj(x)). A case-definable

extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained from T by ap-
plying (finitely many times) the following procedure: (i) take a T -partition
C1(x), . . . , Cn(x) together with Σ-terms t1(x), . . . , tn(x); (ii) let Σ′ be Σ ∪{F},
where F is a “fresh” function symbol (i.e. F 6∈ Σ) whose arity is equal to the
length of x; (iii) take as C′ the class of Σ′-structures M whose Σ-reduct is
a model of T and such that M |=

∧n
i=1 ∀x (Ci(x) → F (x) = ti(x)). Thus

a case-definable extension T ′ of a theory T contains finitely many additional
function symbols, called case-defined functions. It is not hard to translate any
SMT (T ′) problem into an equivalent SMT (T )-problem, by repeatedly applying
the following transformation: given the quantifier free formula φ to be tested
for T ′-satisfiability, replace it by

∨
i(Ciσ ∧ φi), where φi is a formula obtained

from φ by replacing each term of the kind Fσ by tiσ (the Ci’s are the partition
formulae for the case definition of F and the ti’s are the related ‘value’ terms).

From now on, we use many-sorted first-order logic. All notions introduced
above can be easily adapted to a many-sorted framework. In the rest of the
paper, we fix (i) a theory TI = (ΣI , CI) for indexes whose only sort symbol is
INDEX; (ii) a theory TE = (ΣE , CE) for data whose only sort symbol is ELEM (the
class CE of models of this theory is usually a singleton). The theory AEI = (Σ, C)
of arrays with indexes I and elements E is obtained as the combination of
TI and TE as follows: INDEX, ELEM, and ARRAY are the only sort symbols of AEI ,
the signature is Σ := ΣI ∪ΣE ∪{ [ ]} where [ ] : ARRAY, INDEX −→ ELEM (intu-
itively, a[i] denotes the element stored in the array a at index i); a three-sorted
structure M = (INDEXM, ELEMM, ARRAYM, I) is in C iff ARRAYM is the set of
(total) functions from INDEXM to ELEMM, the function symbol [ ] is interpreted
as function application, and MI = (INDEXM, I|ΣI

), ME = (ELEMM, I|ΣE
) are

models of TI and TE , respectively (where I|ΣX
is the restriction of the interpre-

tation I to the symbols in ΣX for X ∈ {I, E}).

Notational conventions. For the sake of brevity, we introduce the following nota-
tional conventions: d, e range over variables of sort ELEM, a over variables of sort
ARRAY, i, j, k, and z over variables of sort INDEX. An underlined variable name
abbreviates a tuple of variables of unspecified (but finite) length and, if i :=
i1, . . . , in, the notation a[i] abbreviates the tuple of terms a[i1], . . . , a[in]. Possi-



bly sub/super-scripted expressions of the form φ(i, e), ψ(i, e) denote quantifier-
free (ΣI ∪ΣE)-formulae in which at most the variables i∪e occur. Also, φ(i, t/e)
(or simply φ(i, t)) abbreviates the substitution of the Σ-terms t for the variables
e. Thus, for instance, φ(i, a[i]) denotes the formula obtained by replacing e with
a[i] in the quantifier-free formula φ(i, e).

3 Backward Reachability and Tableaux

Following [12], we focus on a particular yet large class of array-based systems cor-
responding to guarded assignments. A (guarded assignment) array-based (tran-
sition) system (for (TI , TE)) is a triple S = (a, I, τ) where (i) a is the state
variable of sort ARRAY;3 (ii) I(a) is the initial Σ(a)-formula; and (iii) τ(a, a′) is
the transition (Σ ∪ΣD)(a, a′)-formula, where a′ is a renamed copy of a and ΣD
is a finite set of case-defined function symbols not in ΣI ∪ ΣE . Below, we also
assume I(a) to be a ∀I-formula , i.e. a formula of the form ∀i.φ(i, a[i]), and
τ(a, a′) to be in functional form , i.e. a disjunction of formulae of the form

∃i (φL(i, a[i]) ∧ ∀j a′[j] = FG(i, a[i], j, a[j])) (1)

where φL is the guard (also called the local component in [10]), and FG is a case-
defined function (called the global component). To understand why formulae (1)
are in functional form, consider λ-abstraction; then, the sub-formula ∀j a′[j] =
FG(i, a[i], j, a[j])) can be re-written as a′ = λj.FG(i, a[i], j, a[j]). (By abuse of
notation, any case-definable extension of AEI will be denoted by AEI ).

Given an array-based system S = (a, I, τ) and a formula U(a), (an instance
of) the safety problem is to establish whether there exists a natural number n
such that the formula

I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ U(an) (2)

is AEI -satisfiable. If there is no such n, then S is safe (w.r.t. U); otherwise, it is
unsafe since the AEI -satisfiability of (2) implies the existence of a run (of length
n) leading the system from a state in I to a state in U . From now on, we assume
U(a) to be a ∃I-formula , i.e. a formula of the form ∃i.φ(i, a[i]).

A general approach to solve instances of the safety problem is based on
computing the set of backward reachable states. For n ≥ 0, the n-pre-image of
a formula K(a) is Pre0(τ,K) := K and Pren+1(τ,K) := Pre(τ, Pren(τ,K)),
where

Pre(τ,K) := ∃a′.(τ(a, a′) ∧K(a′)). (3)

Given S = (a, I, τ) and U(a), the formula Pren(τ, U) describes the set of back-
ward reachable states in n steps (for n ≥ 0). At the n-th iteration of the loop, the

3 For simplicity (and without loss of generality), we limit ourselves to array-based
systems having just one variable a of sort ARRAY. This limitation is however dropped
in the examples, where in addition TE may be many-sorted.



function BReach(U : ∃I -formula)
1 P ←− U ; B ←− ⊥;
2 while (P ∧ ¬B is AE

I -sat.) do
3 if (I ∧ P is AE

I -sat.)
then return unsafe;

4 B ←− P ∨B;
5 P ←− Pre(τ, P );
6 end
7 return (safe, B);

function SInv(U : ∃I -formula)
1 P ←− ChooseCover(U); B ←− ⊥;
2 while (P ∧ ¬B is AE

I -sat.) do
3 if (I ∧ P is AE

I -sat.)
then return failure;

4 B ←− P ∨B;
5 P ←− ChooseCover(Pre(τ, P ));
6 end
7 return (success,¬B);

(a) (b)

Fig. 1. The basic backward reachability (a) and the invariant synthesis (b) algorithms

basic backward reachability algorithm, depicted in Figure 1 (a), stores in the vari-
able B the formula BRn(τ, U) :=

∨n
i=0 Pre

i(τ, U) representing the set of states
which are backward reachable from the states in U in at most n steps (whereas
the variable P stores the formula Pren(τ, U)). While computing BRn(τ, U),
BReach also checks whether the system is unsafe (cf. line 3, which can be read as
I∧Pren(τ, U) is AEI -satisfiable) or a fix-point has been reached (cf. line 2, which
can be read as ¬(BRn(τ, U) → BRn−1(τ, U)) is AEI -unsatisfiable or, equiva-
lently, that (BRn(τ, U) → BRn−1(τ, U)) is AEI -valid). When BReach returns
the safety of the system (cf. line 7), the variable B stores the formula describing
the set of states which are backward reachable from U which is also a fix-point.
Indeed, for BReach (Figure 1 (a)) to be a true (possibly non-terminating) pro-
cedure, it is mandatory that (i) ∃I -formulae are closed under pre-image com-
putation and (ii) both the AEI -satisfiability test for safety (line 3) and that for
fix-point (line 2) are effective.

Concerning (i), it is sufficient to recall the following result from [12].

Proposition 3.1. Let K(a) := ∃k φ(k, a[k]) and τ(a, a′) :=
∨m
h=1 ∃i (φhL(i, a[i])∧

a′ = λj.FhG(i, a[i], j, a[j])). Then, Pre(τ,K) is AEI -equivalent to an (effectively
computable) ∃I-formula.

The proof of Proposition 3.1 (see [12]) consists of applying simple logical manip-
ulations to show that Pre(τh,K) is AEI -equivalent to the following ∃I -formula,
where τh is one of the m disjuncts of τ (cf. Proposition 3.1 above):

∃i∃k.(φhL(i, a[i]) ∧ φ(k, FhG(i, a[i], k, a[k]))) (4)

where φ(k, FhG(i, a[i], k, a[k])) is the formula obtained from φ(k, a′[k]) by replac-
ing a′[km] with FhG(i, a[i], km, a[km]) for m = 1, ..., l and k is the tuple k1, . . . , kl
(the FhG can then be eliminated as shown in Section 2). Notice that the exis-
tentially quantified prefix ∃ k is augmented with ∃ i in (4) with respect to K.
Concerning (ii), observe that the formulae involved in the satisfiability checks
are I ∧BRn(τ,K) and BRn+1(τ,K)∧¬BRn(τ,K). Since we have closure under
pre-image computation, both formulae are of the form ∃a ∃i ∀j ψ(i, j, a[i], a[j])
and are called ∃A,I∀I-sentences [10].



Theorem 3.2 ([10]). The AEI -satisfiability of ∃A,I∀I-sentences is decidable if
(i) TI is locally finite and is closed under substructures; (ii) the SMT (TI) and
SMT (TE) problems are decidable.

Hypothesis (i) concerns the topology of the system (not the data manipulated
by the components of the system) and it is satisfied in many practical cases,
e.g., when the models of TI are all finite sets, linear orders, graphs, forests,
etc. For example, the topology of virtually any cache coherence protocol can be
formalized by finite sets while that of mutual exclusion protocols by linear orders.
Under assumption (i), it is possible to show (see [10]) that an ∃A,I∀I -sentence is
AEI -satisfiable iff it is satisfiable in a finite index model of AEI (a finite index model
is a model M in which the set INDEXM has finite cardinality). This suggests
the following quantifier instantiation algorithm, which is indeed complete [10].
Let ∃a ∃i ∀j ψ(i, j, a[i], a[j]) be an ∃A,I∀I -sentence: first, consider the i’s as
Skolem constants and replace the j’s with the representative i-terms (by using
the local finiteness of TI); then, invoke the available SMT solver for checking the
AEI -satisfiability of the resulting quantifier-free formula. The decidability of the
SMT (AEI ) problem can be shown by using generic combination techniques from
the decidability of those for SMT (TI) and SMT (TE) (see [10] for details).

We summarize our working hypotheses.

Assumption 3.3 We fix an array-based system S = (a, I, τ) such that the ini-
tial formula I is a ∀I-formula, τ(a, a′) :=

∨m
h=1 τh(a, a′) where τh is a formula

in functional form for h = 1, ...,m. We also assume that hypotheses (i)-(ii) of
Theorem 3.2 are satisfied.

3.1 Tableaux-like Implementation of Backward Reachability

A naive implementation of the algorithm in Figure 1 (a) does not scale up. The
main problem is the size of the formula BRn(τ, U) which contains many redun-
dant or unsatisfiable sub-formulae. We now discuss how Tableaux-like techniques
can be used to circumvent these difficulties. We need one more definition: an ∃I -
formula ∃i1 · · · ∃inφ is said to be primitive iff φ is a conjunction of literals and is
said to be differentiated iff φ contains as a conjunct the negative literal ik 6= il
for all 1 ≤ k < l ≤ n. By applying various distributive laws together with the
rewriting rules

∃j(i = j ∧ θ) θ(i/j) and θ  (θ ∧ i = j) ∨ (θ ∧ i 6= j) (5)

it is possible to transform every ∃I -formula into a disjunction of primitive dif-
ferentiated ones.

We initialize our tableau with the ∃I -formula U(a) representing the set of
unsafe states. The key observation is to revisit the computation of the pre-
image as the following inference rule (we use square brackets to indicate the
applicability condition of the rule):

K [K is primitive differentiated]
Pre(τ1,K) | · · · | Pre(τm,K)

PreImg



where Pre(τh,K) computes the ∃I -formula which is logically equivalent to the
pre-image of K w.r.t. τh (this is possible according to Proposition 3.1).

Since the ∃I -formulae labeling the consequents of the rule PreImg may not
be primitive and differentiated, we need the following Beta rule

K
K1 | · · · | Kn

Beta

where K is first transformed by eliminating the case-defined functions as ex-
plained in Section 2, and then by applying rewriting rules like (5) together with
standard distributive laws, in order to get K1, . . . ,Kn which are primitive, dif-
ferentiated and whose disjunction is AEI -equivalent to K.

By repeatedly applying the above rules, it is possible to build a tree whose
nodes are labelled by ∃I -formulae describing the set of backward reachable states.
Indeed, it is not difficult to see that the disjunction of the ∃I -formulae labelling
all the nodes in the (potentially infinite) tree is AEI -equivalent to the (infinite)
disjunction of the formulae BRn(τ, U), where τ :=

∨m
h=1 τh. Indeed, there is

no need to fully expand our tree. For example, it is useless to apply the rule
PreImg to a node ν labelled by an ∃I -formula which is AEI -unsatisfiable as all the
formulae labelling nodes in the sub-tree rooted at ν will also be AEI -unsatisfiable.
This observation can be formalized by the following rule closing a branch in the
tree (we mark the terminal node of a closed branch by ×):

K [K is AEI -unsatisfiable]
× NotAppl

This rule is effective since ∃I -formulae are a subset of ∃A,I∀I -sentences and the
AEI -satisfiability of these formulae is decidable by Theorem 3.2.

According to procedure BReach, there are two more situations in which we
can stop expanding a branch in the tree. One terminates the branch because of
the safety test (cf. line 3 of Figure 1 (a)):

K [I ∧K is AEI -satisfiable]
UnSafe

Safety

Interestingly, if we label with τh the edge connecting a node labeled with K with
that labeled with Pre(τh,K) when applying rule PreImg, then the transitions
τh1 , ..., τhe labelling the edges in the branch terminated by UnSafe (from the leaf
node to the root node) give a bad trace, i.e. a sequence of transitions leading
the array-based system from a state satisfying I to one satisfying U . Again, rule
UnSafe is effective since I ∧K is equivalent to an ∃A,I∀I -sentence and its AEI -
satisfiability is decidable by Theorem 3.2. The other situation in which one can
close a branch corresponds to the fix-point test (cf. line 2 of Figure 1 (a))

K [K ∧
∧
{¬K ′|K ′ � K} is AEI -unsatisfiable]

× FixPoint

where K ′ � K means that K ′ is a primitive differentiated ∃I -formula labeling
a node preceding the node labeling K (nodes can be ordered according to the



strategy for expanding the tree). Once more, this rule is effective since K ∧∧
{¬K ′|K ′ � K} can be straightforwardly transformed into an ∃A,I∀I -sentence

whose AEI -satisfiability is decidable by Theorem 3.2.
From the implementation viewpoint, further heuristics are needed, in order

to reduce the instances needed for the satisfiability test of Theorem 3.2 and to
trivialize the recognition of the unsatisfiable premise of the rule NotAppl.

4 Invariants and Backward Reachability

Termination of our tableaux calculus (and of the algorithm of Figure 1 (a)) is not
guaranteed in general, but follows under certain restrictions covering important
applications (see below). In the general case, nothing can be said because safety
problems are undecidable.

Theorem 4.1. The problem: “given an ∃I-formula U , decide whether the array-
based system S is safe w.r.t. U” is undecidable (even if TE is locally finite).

It is well-known that invariants are useful for pruning the search space of back-
ward reachability procedures and may help either to obtain or to speed up ter-
mination.

Definition 4.2 (Safety invariants). The ∀I-formula J(a) is a safety invariant
for the safety problem consisting of the array-based system S = (a, I, τ) and
unsafe ∃I-formula U(a) iff the following conditions hold:

(i) AEI |= ∀a(I(a)→ J(a)),
(ii) AEI |= ∀a∀a′(J(a) ∧ τ(a, a′)→ J(a′)), and

(iii) ∃a.(U(a) ∧ J(a)) is AEI -unsatisfiable.

If we are not given the ∃I-formula U(a) and conditions (i)–(ii) hold, then J(a)
is an invariant for S.

Checking whether conditions (i), (ii), and (iii) above hold can be reduced, by
trivial logical manipulations, to the AEI -satisfiability of ∃A,I∀I -formulae, which
is decidable by Theorem 3.2. So, establishing whether a given ∀I -formula J(a)
is a safety invariant can be completely automated.

Property 4.3. Let U be an ∃I -formula. If there exists a safety invariant for U ,
then the array-based system S = (a, I, τ) is safe with respect to U .

So, if we are given a suitable safety invariant, Property 4.3 can be used as the
basis of the safety invariant method, which turns out to be more powerful than
the basic Backward Reachability algorithm of Figure 1 (a):

Property 4.4. Let the procedure BReach in Figure 1(a) terminate on the safety
problem consisting of the array-based system S = (a, I, τ) and unsafe formula
U(a). If BReach returns (safe, B), then ¬B is a safety invariant for U .

The converse of Proposition 4.4 do not hold: there might be a safety invariant
even when BReach diverges, as illustrated by the following example.



Example 4.5. Let us consider a simple algorithm for inserting an element b[0]
into a sorted array b[1], . . . , b[n]. Let ΣI consist of one binary relation symbol S
and one constant symbol 0 and TI be the theory whose class of models consists
of the substructures of the structure having the naturals as domain, with 0
interpreted in the obvious way, and S interpreted as the graph of the successor
function. To simplify the matter, we shall use a two-sorted theory and two array
variables. TE is the two-sorted theory whose class of models consists of the single
two-sorted structure given by the Booleans (with the constants >,⊥ interpreted
in the obvious way) and the rationals (with the standard ordering <). The array
variable a is a Boolean flag, whereas the array variable b is the sorted numerical
array where b[0] is to be inserted. The initial ∀I -formula is

∀i (a[i] = ⊥ ↔ i 6= 0) ∧ ∀i1, i2 (S(i1, i2)→ i1 = 0 ∨ b[i1] ≤ b[i2])

saying that the elements in the array b, whose corresponding Boolean flag, is set
to false are arranged in increasing order (namely, all except that at position 0).
The transition has the following guard and global component:

φL(i1, i2, a[i1], a[i2]) := S(i1, i2) ∧ a[i1] = > ∧ a[i2] = ⊥ ∧ b[i1] > b[i2]
FG(i1, i2, a[i1], a[i2], b[i1], b[i2], j) := case of { j = i1 : 〈>, b[i2]〉,

j = i2 : 〈>, b[i1]〉,
j 6= i1 ∧ j 6= i2 : 〈a[j], b[j]〉 },

which swaps two elements in the array b if their order is decreasing and sets the
Boolean fields appropriately. The obvious correctness property is that there are
no two values in decreasing order in the array b whose corresponding Boolean
flags do not allow the transition to fire:

∃i1, i2 (S(i1, i2) ∧ ¬(a[i1] = > ∧ a[i2] = ⊥) ∧ b[i1] > b[i2]). (6)

Unfortunately, BReach in Figure 1 (a) applied to (6) diverges. However, it is not
difficult to see that a safety invariant for (6) exists and is given by the following
formula:

∀i, j.(S(i, j)→ ¬(a[i] = ⊥ ∧ a[j] = >)) (7)

saying that two adjacent indexes cannot have their Boolean flags set to ⊥ and
>, respectively.

4.1 Synthesis of Invariants as the Dual of Backward Reachability

The main difficulty to exploit Property 4.3 is to find suitable ∀I -formulae satis-
fying conditions (i)—(iii) of Definition 4.2. Unfortunately, the set of ∀I -formulae
which are candidates to become safety invariants is infinite. Such a search space
can be dramatically restricted when TE is locally finite, although it is still infi-
nite because there is no bound on the length of the universally quantified prefix.
To formalize this, we need to summarize some notions about pre-orders and
configurations.



A pre-order (P,≤) is a set endowed with a reflexive and transitive relation;
an upset of such a pre-order is a subset U ⊆ P such that (p ∈ U and p ≤ q imply
q ∈ U). An upset U is finitely generated iff it is a finite union of cones, where a
cone is an upset of the form ↑p = {q ∈ P | p ≤ q} for some p ∈ P . Two elements
p, q ∈ P are incomparable (equivalent) if neither (both) p ≤ q nor (and) q ≤ p.
A pre-order (P,≤) is a well-quasi-ordering (wqo) iff every upset of P is finitely
generated (this is equivalent to the standard definition, see [10] for a proof).

An AEI -configuration (or, briefly, a configuration) is a pair (s,M) such that
s is an array of a finite index modelM of AEI (M is omitted whenever it is clear
from the context). We associate a ΣI -structure sI and a ΣE-structure sE with
an AEI -configuration (s,M) as follows: the ΣI -structure sI is simply the finite
structureMI , whereas sE is the smallest ΣE-substructure ofME containing the
image of s (in other words, if INDEXM = {c1, . . . , ck}, then sE is the smallest ΣE-
substructure containing {s(c1), . . . , s(ck)}). Let s, s′ be configurations: we say
that s′ ≤ s holds iff there are a ΣI -embedding µ : s′I −→ sI and a ΣE-embedding
ν : s′E −→ sE such that the set-theoretical compositions of µ with s and of s′

with ν are equal. In [10], termination of BReach is proved under the hypotheses
that TE is locally finite and the configuration order is a wqo. This implies the
decidability of the safety problem for, among others, broadcast protocols and
lossy channel systems and can be seen as the declarative counterpart of general
results formulated within an algebraic framework (see, e.g., [1]). In the following,
we show that using the notions of configuration and configuration order, it is
possible to design a method for invariant synthesis.

Finitely generated upsets of configurations and ∃I -formulae can be used in-
terchangeably under a suitable assumption. Let K(a) be an ∃I -formula; we let
[[K]] := {(s,M) | M |= K(s)}.

Proposition 4.6 (Extended version of [10]). Let TE be locally finite. Finitely
generated upsets of AEI -configurations coincide with sets of AEI -configurations of
the kind [[K]], for some ∃I-formula K. In particular, for each AEI -configuration
s, there exists an ∃I-formula Ks such that [[Ks]] =↑s.

The notion of a basis for a configuration upset will be useful in the following.

Definition 4.7. A basis for a finitely generated upset S (resp., for an ∃I-
formula K) is a minimal finite set {s1, . . . , sn} such that S (resp., [[K]]) is equal
to ↑s1 ∪ · · · ∪ ↑sn.

It is easy to see that two bases for the same upset are essentially the same, in the
sense that they are formed by pairwise equivalent configurations. Our goal is to
integrate the safety invariant method into the basic Backward Reachability algo-
rithm of Figure 1(a). To this end, we introduce the notion of ‘sub-reachability’.

Definition 4.8 (Subreachable configurations). Suppose TE is locally finite
and let s be a configuration. A predecessor of s is any s′ that belongs to a basis
for Pre(τ,Ks). Let s, s′ be configurations: s is sub-reachable from s′ iff there
exist configurations s0, . . . , sn such that (i) s0 = s, (ii) sn = s′, and (iii) either



si−1 ≤ si or si−1 is a predecessor of si, for each i = 1, . . . , n. If K is an ∃I-
formula, s is sub-reachable from K iff s is sub-reachable from some s′ taken from
a basis of K.

The following theorem is our main technical result.

Theorem 4.9. Let TE be locally finite. If there exists a safety invariant for U ,
then there are finitely many AEI -configurations s1, . . . , sk which are sub-reachable
from U and such that ¬(Ks1 ∨ · · · ∨Ksk

) is also a safety invariant for U .

The intuition underlying the theorem is as follows. Let us call ‘finitely repre-
sentable’ an upset which is of the kind [[K]] for some ∃I -formula K and let B
be the set of backward reachable states. Usually B is infinite and it is finitely
representable only in special cases (e.g., when the configuration ordering is a wqo
like in the case of broad-cast protocols). Despite this, it may sometimes exist a
set B′ ⊇ B which is finitely representable and whose complement is an invariant
of the system. Theorem 4.9 ensures us to find such a B′, if any. This is the case
of Example 4.5 where not all configurations satisfying the negation of (7) are in
B.

In practice, Theorem 4.9 suggests the following procedure to find the super-
set B′. At each iteration of BReach, the algorithm represents symbolically in the
variable B the configurations which are backward reachable in n steps; before
computing the next pre-image of B, non deterministically replace some of the
configurations in a basis of B with some sub-configurations and update B by
a symbolic representation of the obtained upset. In this way, if an invariant
exists, we are guaranteed to find it; otherwise, the process may diverge. This
is so because the search space of the configurations which are sub-reachable
in n steps is finite, although this number is infinite if no bound on n is fixed.
To illustrate, the negation of (7) in Example 4.5 identifies sub-reachable only
configurations. This shows that sub-reachability is crucial for Theorem 4.9 to
hold.

The algorithm sketched above can be furtherly refined so as to obtain a
completely symbolic method working with formulae without resorting to con-
figurations. The key idea towards this result is to identify an ∃I -formula which
is the symbolic counterpart of the (sub-reachable) configurations s1, . . . , sk of
the theorem above which can be directly computed from the available safety
invariant for U . Formally, we introduce the following definition:

Min(φ, a, i) := φ(i, a[i]) ∧
∧
σ

(φ(iσ, a[iσ])→
∧
i∈i

∨
t

(tσ = i))

where φ(i, a[i]) is a quantifier-free formula, t ranges over representative ΣI(i)-
terms, and σ ranges over the substitutions with domain i and co-domain in-
cluded in the set of representative ΣI(i)-terms. The formula ∃i.Min(φ, a, i) is
AEI -equisatisfiable to the ∃I -formula ∃i.φ(i, a[i]); moreover if (as it often hap-
pens in applications) the signature ΣI is relational and the formula φ(i, a[i]) is
differentiated, Min(φ, a, i) is AEI -equivalent to φ(i, a[i]).



Proposition 4.10. Let TE be locally finite, K := ∃i.φ(i, a[i]) be an ∃I-formula,
and L be a further ∃I-formula. The following two conditions are equivalent:

(i) for every s in a basis for K, there exists a configuration s′ in a basis for L
such that s ≤ s′;

(ii) L is (up to AEI -equivalence) of the form ∃i, j.ψ(i, j, a[i], a[j]) for a quantifier-
free formula ψ and

if AEI |= Min(ψ, a, i j)→ θ(t, a[t]) then AEI |= Min(φ, a, i)→ θ(t, a[t]),

for all quantifier free (ΣE ∪ ΣI)-formula θ and for all tuple of terms t(i)
taken from the set of the representative ΣI(i)-terms.

In the following, we will write K ≤ L whenever one of the (equivalent) conditions
in Proposition 4.10 holds. Under the assumption that TE is locally finite, it is
possible to compute all the finitely many (up to AEI -equivalence) ∃I -formulae
K such that K ≤ L. Furthermore, we say that K covers L iff both K ≤ L
and AEI |= L→ K. Let ChooseCover(L) be a procedure that returns (according
to some criteria) one of the ∃I -formulae K such that K covers L. We are now
ready to give the procedure SInv in Figure 1 (b) for the computation of safety
invariants and prove its correctness.

Theorem 4.11. Let TE be locally finite. Then, there exists a safety invariant
for U iff the procedure SInv in Figure 1 (b) returns a safety invariant for U , for
a suitable ChooseCover function.

When ChooseCover(L) = L, i.e. ChooseCover is the identity (indeed, L covers
L), the procedure SInv is the (exact) dual of BReach in Figure 1 (a) and, hence
it can only return (the negation of) a symbolic representation of all backward
reachable states as a safety invariant.

4.2 Integrating Invariant Synthesis within Backward Reachability

The main drawback of procedure SInv is the difficulty of defining an appropriate
function ChooseCover. Although finite, the number of formulae covering a cer-
tain ∃I -formula is so large that makes any implementation of SInv impractical.
Instead, we prefer to study how to integrate the synthesis of invariants in the
backward reachability algorithm in Figure 1 (a). The idea is to use invariants
for the unsafe configuration U so as to prune the search space of the backward
reachability algorithm. In our symbolic framework, at the n-th iteration of the
loop of the procedure BReach, the set of backward reachable states is represented
by the formula stored in the variable B (which is equivalent to BRn(τ, U)). So,
‘pruning the search space of the backward reachability algorithm’ amounts to
disjoining the negation of the available invariants to B. In this way, the ex-
tra information encoded in the invariants makes the satisfiability test at line 2
(for fix-point checking) more likely to be successful and possibly decreasing the
number of iterations of the loop.



Indeed, the problem is to synthesize such invariants. A way to do this is to
consider the set B of reachable states, to extract an ∃I -formula representing a set
of sub-reachable configurations, and then checking whether this is an invariant.
We assume the existence of a function ChooseSub that takes an ∃I -formula P
and returns a (possibly empty) finite set S of ∃I -formulae such that K ≤ P
if K ∈ S. The formulae in S represent sub-reachable configurations that may
contribute to an invariant in the sense of Theorem 4.9.

To summarize, it is possible to integrate the synthesis of invariants within the
backward reachability algorithm by inserting between lines 4 and 5 in Figure 1
(a) the following instructions:

4′ foreach CINV ∈ ChooseSub(P ) do
if BReach(CINV ) = (safe, BCINV ) then B ←− B ∨ ¬BCINV ;

where CINV stands for ‘candidate invariant.’ The resulting procedure will be
indicated with BReach+Inv (notice that BReach is used here as a sub-procedure).

Proposition 4.12. Let TE be locally finite. If the procedure BReach+Inv termi-
nates and returns safe (unsafe), then S is safe (unsafe) with respect to U .

The procedure BReach+Inv is incomplete (in the sense that it is not guaranteed
to terminate even in case a safety invariant exists), deterministic (no backtrack-
ing is required), and highly parallelizable (it is possible to run in parallel as
many instances of BReach as formulae in the set returned by ChooseSub), and
it performs well, as witnessed by the experimental evidence supplied in the next
Section. In this way, invariant synthesis has become a powerful heuristics within
a sophisticated version of the basic backward reachability algorithm. Further-
more, its integration in the Tableaux calculus of Sec. 3.1 is particularly easy:
just use the calculus itself with some bounds on the resources, such as a limit
on the depth of the tree to check if a candidate invariant is a true invariant.

4.3 Heuristics

There is a delicate trade-off between the number of candidate invariants pro-
duced by the function ChooseSub and their effects in pruning the search space
of the basic backward reachability algorithm. More candidate invariants implies
a higher probability of finding an invariant and, ultimately, to prune the search
space. However, looking at line 4′, it is evident that more candidate invariants
implies many more calls to the basic backward reachability algorithms to estab-
lish if they are invariant or not. Indeed, on “simpler” candidate invariants, the
procedure BReach is likely to perform well, i.e. to terminate in few iterations.
The following two remarks are helpful in finding the right trade-off.

First, it is possible to limit the resources of the basic backward reachability
algorithm BReach when invoking it at line 4′; e.g., it is possible to bound the
number of iterations of the loop or its run time. This allows us to avoid slowing
down too much each iteration of the main loop in BReach+Inv.

The second remark concerns the implementation of the function ChooseSub
when the theories TI and TE satisfy some additional requirements, which are



often satisfied when modelling classes of parametrised systems such as mutual
exclusion algorithms or cache coherence protocols. The goal of this discussion
is to design a function ChooseSub returning few “simple” candidate invariants
which are likely to become true invariants.

Claim. Let ΣI be relational and let TE be locally finite and admit elimination
of quantifiers. (When TI is the theory of all finite sets—this is appropriate for
cache coherence protocols—or the theory of linear orders—this is appropriate for
mutual exclusion algorithms—and TE is the theory of an enumerated datatype,
these assumptions are satisfied.) Let

L := ∃i j.(ψE(a[i], a[j]) ∧ ψI(i, j) ∧ δI(i)) (8)

be a primitive differentiated AEI -satisfiable ∃I -formula such that (i) i ∩ j = ∅,
(ii) ψE(e, d) is a conjunction of ΣE-literals; (iii) ψI(i, j) is a conjunction of
ΣI -literals; (iv) δI(i) is a maximal conjunction of ΣI(i)-literals (i.e. for every
Σ(i)-atom A(i), δI contains either A(i) or its negation). If

K := ∃i (δI(i) ∧ φE(a[i])), (9)

where φE(e) is TE-equivalent to ∃dψE(e, d) (which is guaranteed to exist as TE
admits elimination of quantifiers), then K covers L and in particular K ≤ L.

When ChooseSub is applied to a disjunction of primitive differentiated ∃I -
formulae, we need to transform each disjunct P := ∃k.θ(k, a[k]) to the form
of (8) so as to obtain a candidate invariant. To do this, we can decompose k
into two disjoint sub-sequences i and j such that k = i ∪ j according to some
criteria: if the conjunction of ΣI(i) literals occurring in θ is maximal, we get a
candidate invariant by returning the corresponding ∃I -formula (9). This is quite
feasible in many concrete cases. For instance, quantifier elimination reduces to a
trivial substitution if TE is an enumerated datatype theory and the ΣE-literals
in θ are all positive. Maximality of θ is guaranteed (by differentiatedness) if TI
is the theory of finite sets; maximality of θ is also guaranteed if TI is the theory
of linear orders and i = i1 or (i = i1, i2 and θ contains the atom i1 < i2).

5 Experiments and Discussion

To test the practical viability of our approach, we have implemented mcmt, a
prototype tool which uses Yices (http://yices.csl.sri.com) as the backhand
SMT solver. mcmt is the successor of the system in [12] which is not capable
of solving almost any of the problems considered here. The starting point of
our implementation is the Tableaux-like calculus of Section 3.1. As Yices is
guaranteed to behave as a decision procedure on quantifier-free formulae only,
universally quantified variables in ∃A,I∀I -sentences are instantiated according to
the procedure sketched after Theorem 3.2: this is required for the application
of rules NotAppl,Safety,FixPoint. Invariants have been integrated in the basic
backward reachability algorithm along the lines of Section 4.2.



depth #nodes #calls time depth #nodes #calls #inv time

Bakery 9 29 221 0.104 7 8 129 5 0.052

Burns 14 57 497 0.216 2 2 59 3 0.016

Java M-lock 9 23 353 0.156 9 22 2390 1 0.772

Dijkstra 13 40 392 0.148 2 1 41 2 0.012

Dijkstra (rv) 14 138 6905 5.756 2 1 57 2 0.016

Szymanski 17 143 3266 2.208 11 22 1185 8 0.288

Szymanski (a) 23 2358 902017 24m19s 16 90 8547 16 5.188
Table 1. Mutual exclusion algorithms

depth #nodes #calls time depth #nodes #calls #inv time

Berkeley 2 1 102 0.020 2 1 190 0 0.032

Mesi 3 2 175 0.032 3 2 231 0 0.036

Moesi 3 2 304 0.048 3 2 384 0 0.052

Dec Firefly 4 4 163 0.052 4 4 222 0 0.068

Xerox P.D. 7 13 607 0.288 7 13 1059 0 0.432

Illinois 4 8 998 0.196 4 8 1114 0 0.216

Futurebus 4 19 1318 0.460 4 19 3824 0 1.096

German 26 2985 322335 8m39s 26 2856 544429 10 10m37s

German (pfs) 42 26004 3062165 176m51s 42 22808 2656282 40 173m42s
Table 2. Cache coherence protocols

As benchmarks, we have derived safety problems in our format from two sets
of benchmarks in [2]: one is of mutual exclusion protocols (with 7 problems,
cf. Table 1) and the other is of cache coherence protocols (with 9 problems, cf.
Table 2).4 We used the theory of finite linear orders as TI for mutual exclusion
algorithms and the theory of finite sets as TI for cache coherence protocols.
The theory TE for the various systems is the combination of an enumerated
datatype theory for the control locations with theories for the data manipulated
by the processes. A difficulty in the translation was the presence of global (i.e.
universally quantified) guards which are not directly supported by our formalism.
It is possible to eliminate universal quantifiers in guards (see [12] for details) by
adopting the well-known stopping failure model (see, e.g., [14]) which is quite
close to the approximate model in [2, 3]. This is without loss of generality since
establishing a safety property for the stopping failures model of a system trivially
implies that the same property is enjoyed by the original system. The elimination
of global guards can be easily mechanized as it is purely syntactic.

Columns 2-5 of both Tables report the statistics of our implementation of
the procedure BReach while columns 6-10 show the results for BReach+Inv. (All
timings are in seconds and obtained on a Pentium Dual-Core 3.4 GHz with 2
Gb Sdram). Table 1 clearly shows the usefulness of invariant search as the size

4 The files containing such specifications and an executable of the tool are available
at http://homes.dsi.unimi.it/~ghilardi/mcmt.



of the problem grows. Table 2 seems to suggest that invariant search is useless
or even detrimental to performances on cache coherence protocols. However, we
remark that all these problems, except the German, are quite small and a brute
force search of the tiny search space (see the column ‘#nodes’) is likely to be
more successful. Furthermore, the overhead of searching for invariants can be
eliminated by implementing a parallel version of the tool. Interestingly, there is
some gain in using invariant synthesis on the last problem in this set (a difficult
version of the German protocol [15], which is well-known to be a significant
benchmark for verification tools). Although a comparative analysis is somewhat
difficult in lack of a standard for the specifications of safety problems, we report
that mcmt performs comparably with the model checker PFS [2] on small to
medium sized problems and outperforms the latter on larger instances.
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