
Light-Weight SMT-based Model Checking

Silvio Ghilardi1

Dip. di Scienze dell’Informazione, Univ. di Milano (Italia)

Silvio Ranise2

Dip. di Informatica, Univ. di Verona (Italia)

Thomas Valsecchi3

Dip. di Scienze dell’Informazione, Univ. di Milano (Italia)

Abstract

Recently, the notion of an array-based system has been introduced as an abstraction of infinite state sys-
tems (such as mutual exclusion protocols or sorting programs) which allows for model checking of invariant
(safety) and recurrence (liveness) properties by Satisfiability Modulo Theories (SMT) techniques. Unfortu-
nately, the use of quantified first-order formulae to describe sets of states makes fix-point checking extremely
expensive. In this paper, we show how invariant properties for a sub-class of array-based systems can be
model-checked by a backward reachability algorithm where the length of quantifier prefixes is efficiently
controlled by suitable heuristics. We also present various refinements of the reachability algorithm that
allows it to be easily implemented in a client-server architecture, where a “light-weight” algorithm is the
client generating proof obligations for safety and fix-point checks and an SMT solver plays the role of the
server discharging the proof obligations. We also report on some encouraging preliminary experiments with
a prototype implementation of our approach.

Keywords: Model Checking of Infinite State Systems, Satisfiability Modulo Theories, Safety

1 Introduction

An integration of Satisfiability Modulo Theories (SMT) solving in a backward reach-
ability algorithm has been proposed in [22] for the model checking of invariant
(safety) properties of a large class of infinite state systems—called, array-based sys-
tems. Roughly, an array-based system is a transition system which updates one
(or more) array variable a. Being parametric in the structures associated to the
indexes and the elements in a, the notion of array-based system is quite flexible and
allows one to specify a large of class of infinite state systems. For example, consider

1 Email: ghilardi@dsi.unimi.it
2 Email: silvio.ranise@univr.it
3 Email: thomas.valsecchi@gmail.com

mailto:ghilardi@dsi.unimi.it
mailto:silvio.ranise@univr.it
mailto:thomas.valsecchi@gmail.com

parametrised systems and the task of specifying their topology: by using no struc-
ture at all, indexes are simply identifiers of processes that can only be compared
for equality; by using a linear order, indexes are identifiers of processes so that it is
possible to distinguish between those on the left or on the right of a process with a
particular identifier; by using richer and richer structures (such as trees and graphs),
it is possible to specify more and more complex topologies. Similar observations
hold also for elements, where it is well-known how to use algebraic structures to
specify data structures. Formally, the structure on both indexes and elements is
declaratively and uniformly specified by theories, i.e. pairs formed by a (first-order)
language and a class of (first-order) structures.

In this framework, invariant properties of array-based systems can be verified by
using a symbolic version of a backward search algorithm which repeatedly computes
the pre-image of the set of states from which it is possible to reach the set of
unsafe states, i.e. the states violating the desired invariant property. The algorithm
halts in two cases, either when the current set of (backward) reachable states has
a non-empty intersection with the set of initial states and the system is unsafe, or
when such a set has reached a fix-point (i.e. further application of the transition
does not enlarge the set of reachable states) and the system is safe. To mechanize
this approach, the following three requirements are mandatory: (i) the class F
of (possibly quantified) first-order formulae is expressive enough to represent sets
of states and invariants, (ii) F is closed under pre-image computation, and (iii)
the checks for safety and fix-point can be reduced to decidable logical problems
(e.g., satisfiability) of formulae in F . Once requirements (i)—(iii) are satisfied,
this technique can be seen as a symbolic version of the model checking techniques
of [8] revisited in the declarative framework of first-order logic augmented with
theories [22]. Using this declarative framework has several potential advantages;
two of the most important ones are the following. First, the computation of the
pre-image (cf. requirement (ii) above) becomes computationally cheap: we only need
to build the formula φ representing the (iterated) pre-images of the set of unsafe
states and then put the burden of using suitable data structures to represent φ on the
available (efficient) solver for logical problems encoding safety and fix-point checks.
This is in sharp contrast to what is usually done in almost all other approaches
to symbolic model checking of infinite state systems, where the computation of the
pre-image is computationally very expensive as it requires a substantial process of
normalization on the data structure representing the (infinite) sets of states so as
to simplify safety and fix-point checks.

The second advantage is the possibility to use state-of-the-art SMT solvers, a
technology that is showing very good success in scaling up various verification tech-
niques, to support both safety and fix-point checks (cf. requirement (iii) above).
Unfortunately, the kind of satisfiability problems obtained in the context of the
backward search algorithm requires to cope with (universal) quantifiers and this
makes the off-the-shelf use of SMT solvers problematic. In fact, even when using
classes of formulae with decidable satisfiability problem, currently available SMT
solvers are not yet mature enough to efficiently discharge formulae containing (uni-
versal) quantifiers, despite the fact that this problem has recently attracted a lot of
efforts (see, e.g., [17,21,15]). To alleviate this problem, we have designed a general

decision procedure for a class of formulae satisfying requirement (i) above, based on
quantifier instantiation (see [22] and Theorem 3.4 below); this allows for an easier
way to integrate currently available SMT-solvers in the backward search algorithm.
Unfortunately, the number of instances required by the instantiation algorithm is
still very large and preliminary experiments have shown unacceptable performances.
This fact together with the observation that the size of the formulae generated by
the backward search algorithm grows very quickly demand a principled approach
to the pragmatics of efficiently integrating SMT solvers in the backward search
algorithm. In this respect, the paper makes two important contributions.

We focus on a sub-class of the (quantified) formulae in [22] (Section 3) to model
a smaller but still significant class of systems analogous to the well-known guarded
assignment systems (see, e.g., [29]). Our first contribution (Section 4.1) is to find
sufficient conditions under which, it is correct to reduce (and sometimes also to
eliminate) the quantifiers in the formulae representing (iterated) pre-images. The
second contribution (Section 4.2) is a discussion about how to adapt implementation
techniques, known in the field of symbolic model checking, to the backward search
algorithm so that a client-server architecture can be used, where a “light-weight”
client (i.e. a program with few lines of code) generates proofs obligation for fix-point
and safety checks for an SMT solver, the server. Preliminary experiments seem to
confirm the viability and scalability of the approach. (For lack of space, technical
details are in the extended version [23].)

2 Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, and
formula) and semantic (e.g., structure, sub-structure, truth, satisfiability, and va-
lidity) notions of first-order logic (see, e.g., [20]). The equality symbol = is included
in all signatures considered below. A signature is relational if it does not contain
function symbols and it is quasi-relational if its function symbols are all (individual)
constants. An expression is a term, an atom, a literal, or a formula. Let x be a
finite tuple of variables and Σ a signature, a Σ(x)-expression is an expression built
out of the symbols in Σ where at most the variables in x may occur free (we will
write E(x) to emphasize that E is a Σ(x)-expression).
Satisfiability Modulo Theory. According to the current practice in the SMT
literature [25], a theory T is a pair (Σ, C), where Σ is a signature and C is a class of
Σ-structures; the structures in C are the models of T . Below, we let T = (Σ, C). 4 A
Σ-formula φ is T -satisfiable if there exists a Σ-structureM in C such that φ is true
inM under a suitable assignment to the free variables of φ (in symbols,M |= φ); it
is T -valid (in symbols, T |= ϕ) if its negation is T -unsatisfiable. Two formulae ϕ1

and ϕ2 are T -equivalent if ϕ1 ↔ ϕ2 is T -valid. The satisfiability modulo the theory
T (SMT (T)) problem amounts to establishing the T -satisfiability of quantifier-free
(i.e. not containing quantifiers) Σ-formulae. A theory solver for T (T -solver) is any

4 An important class of theories, ubiquitously used in verification, formalizes enumerated data types. An
enumerated data-type theory T is a theory in a quasi-relational signature whose class of models contains
only a single finite Σ-structure M = (M, I) such that for every m ∈ M there exists a constant c ∈ Σ
such that cI = m. Below, we use enumerated data-type theories to model control locations of processes in
parametrized systems.

procedure capable of establishing whether any given finite conjunction of Σ-literals
is T -satisfiable or not. The lazy approach to solve SMT (T) problems consists of
integrating a DPLL Boolean enumerator with a T -solver (see, e.g., [30] for details).
Definitional extension of a theory. Below, for technical reasons, it will be
useful to extend theories with functions in a constrained way. A (quantifier-free)
T -definable function is a quantifier-free formula φ(x, y) such that

T |= ∀x∃y φ(x, y) and T |= ∀x∀y1∀y2 (φ(x, y1) ∧ φ(x, y2)→ y1 = y2).

A definable extension T ′ = (Σ′, C′) of a theory T = (Σ, C) is obtained from T by
applying—finitely many times—the following procedure: (i) consider a T -definable
function φ(x, y); (ii) let Σ′ := Σ ∪ {F}, where F is a “fresh” function symbol
(i.e. F 6∈ Σ) whose arity is equal to the length of x; (iii) take as C′ the class of
Σ′-structures M whose Σ-reduct is a model of T and such that

M|= ∀x∀y (F (x) = y ↔ φ(x, y)).

Indeed, the SMT (T ′) problem for such a T ′ can be solved by replacing the new
function symbols with fresh constants, adding their definitions as conjuncts to the
formula to be tested for satisfiability, and invoking a solver for SMT (T).

In the following, we adopt a many-sorted version of first-order logic. All notions
introduced above can be easily adapted to this setting (see again [20]).

3 Model-Checking of Array-based Systems

We consider the formalism of guarded assignment array-based systems, a restricted
version of that defined in [22]. We focus on parametrised systems, i.e. systems con-
sisting of an arbitrary (but finite) number of identical processes, since a large number
of such systems can be expressed in this formalism. There exist two kinds of guards,
expressing existential or universal global conditions, on the state of a parametrized
system. As we will see, while existential conditions can be directly expressed in our
formalism, universal conditions require us to model parametrized systems following
the so-called stopping failures model for distributed algorithms [24], which is quite
close to the approximate model of [9,10]. The key property of a parametrized system
modelled according to the stopping failures model is that processes may fail without
warning at any time. To formalize this, assume that a process in a parametrised
system has a finite set Q = {q1, ..., qn} of control locations plus other local data
variables. Then, consider an extended set Q′ = Q ∪ {qcrash}, where qcrash 6∈ Q, and
augment the set of transitions of each process as follows: it is always possible to go
from state qi to qcrash , for each i = 1, ..., n. An example of universal global condi-
tion is a guard saying that a process i can execute a transition if a certain condition
C is satisfied by all processes j 6= i. In the stopping failures model, this can be
expressed without the universal quantification as follows: the process i takes the
transition without checking the global condition C and, concurrently, all processes
j 6= i not satisfying the condition C move to the state qcrash ; moreover, all processes
j 6= i satisfying C behave as originally prescribed. The stopping failures model of
the system satisfies a sub-set of the class of safety (or even recurrence) properties
satisfied by the original system (since the latter has fewer runs), hence establishing

a safety property for the stopping failures model implies that the same property is
enjoyed by the original system.

Example 3.1 Consider the simplified variant of the Bakery algorithm of [10], where a finite (but
unknown) number of processes should be granted mutual exclusion to a critical section by using tickets.
Processes are arranged in an array whose indexes are linearly ordered and each process can be in one of three
control locations: idle, wait, critical. At the beginning, all processes are idle. There are three possible
transitions involving a single process with index z (in all transitions, the processes with index different from
z remain in the same location): (τo

1) z is in idle, all the processes to its left are idle, and z moves to
wait; (τo

2) z is in wait, all the processes to its right are idle, and z moves to crit; and (τo
3) z is in crit

and moves to idle. The system should satisfy the following mutual exclusion property: there are no two
distinct processes in crit at the same time.

Since we adopt the stopping failures model, we introduce an additional location crash and three ad-
ditional transitions: (τc

x) if a process with index z is in state x, then it moves to crash and all the other
processes remain in the same state (for x ∈ { idle, wait, crit }). The transitions τo

1 , τo
2 , and τo

3 are
transformed as follows: (τ1) if a process with index z is idle, then it moves to wait; furthermore, any
process on its left remains in the same state and for any process on its left if the process is not idle, then it
moves to crash, otherwise it remains idle; (τ2) if a process with index z is in wait, then it moves to crit;
furthermore, any process on its left remains in the same state and for any process on its right which is not
idle, then it moves to crash, otherwise it remains idle; and (τ3) if a process with index z is in crit, then
it becomes idle and all other processes remains in the same state. The new system is supposed to satisfy
the same mutual exclusion property of the original system above.

In the following, we use the term “running example” to indicate the stopping failures model of this
system. When discussing the application of our verification techniques to the running example, we forget
the transitions (τc

x), for x ∈ { idle, wait, crit }, since their structure is similar to (τ3) and all observations
for the latter apply trivially to the former. 2

Theories for indexes and elements. The state of an array-based system consists
of a single array (however, it is straightforward to generalize all definitions below
to the case of several arrays) indexed by a data structure I (e.g., by a finite and
linearly ordered set of identifiers), storing elements of a data structure E (e.g., an
enumerated data type for the control locations). To formalize this in our declarative
formalism, we use two theories: TI for indexes (intuitively, the role of TI is to specify
the “topology” of the system) and TE for data (the role of TE is to specify the set
of values over which local data variables values range). In the rest of the paper,
we fix (i) a theory TI = (ΣI , CI) whose only sort symbol is INDEX; (ii) a theory
TE = (ΣE , CE) whose only sort symbol is ELEM (the class of models CE of this theory
is usually reduced to a single structure).

The theory AE
I = (Σ, C) of arrays with indexes I and elements E is

obtained as the combination of TI and TE as follows: INDEX, ELEM, and ARRAY
are the only sort symbols of AE

I , the signature is Σ := ΣI ∪ ΣE ∪ { []} where
[] : ARRAY, INDEX −→ ELEM (intuitively, a[i] denotes the element stored in the

array a at index i); a three-sorted structureM = (INDEXM, ELEMM, ARRAYM, I) is
in C iff ARRAYM is the set of (total) functions from INDEXM to ELEMM, the function
symbol [] is interpreted as function application, andMI = (INDEXM, I|ΣI

),ME =
(ELEMM, I|ΣE

) are models of TI and TE , respectively (where I|ΣX
is the restriction

of the interpretation I to the symbols in ΣX for X ∈ {I, E}).

Example 3.2 To begin the formalization of the running example, we take TI to be the theory of
finite and linearly ordered sets: the signature ΣI is relational and contains only the binary predicate <.
Furthermore, let TE be the enumerated data type theory whose signature contains a constant for each of
the four possible control locations: idle, wait, crit, and crash (hence ΣE is quasi-relational). 2

Array-based systems. A (guarded assignment) array-based (transition) system
(for (TI , TE)) is a triple S = (a, I, τ) where (i) a is the state variable of sort
ARRAY; (ii) I(a) is the initial (Σ ∪ ΣD)(a)-formula; and (iii) τ(a, a′) is the tran-
sition (Σ ∪ ΣD)(a, a′)-formula, where a′ is a renamed copy of a and ΣD is the set
of defined function symbols not in ΣI ∪ ΣE . Below, for the sake of simplicity, any
definable extension of AE

I will still be denoted with AE
I . In making such a defini-

tional extension, we always assume to use defining formulae φ(x, y) such that φ is

a quantifier-free (ΣI ∪ ΣE)-formula and the variable y is of sort ELEM.

Example 3.3 Let TI and TE be as in Example 3.2 and ΣD := {F 1, F 2, F 3}. The array-based transition
system for the Bakery algorithm can be specified as follows (for simplicity, we omit sorts):

I(a) := ∀i.a[i] = idle and τ(a, a′) :=
W3

i=1 ∃z.φi
L(z, a[z]) ∧ ∀j.a′[j] = F i(z, a[z], j, a[j]),

where φi
L(z, a[z]) := (a[z] = xi) for i = 1, 2, 3, x1 is idle, x2 is wait, x3 is crit, and

F 1(z, a[z], j, a[j]) :=

8>>><>>>:
wait if j = z

a[j] if j < z

a[j] if j > z ∧ a[j] = idle

crash otherwise

F 3(z, a[z], j, a[j]) :=

(
idle if j = z

a[j] otherwise

F 2(z, a[z], j, a[j]) :=

8>>><>>>:
crit if j = z

a[j] if j > z

a[j] if j < z ∧ a[j] = idle

crash otherwise

For the sake of clarity, the functions F i’s are defined by cases; it is a trivial exercise to formalize them
in extensions of first-order logic supporting an ‘if then else’ term constructor as it is customary in SMT
solving [25]. Notice that the negation of the mutual exclusion property can be formalized as K(a) :=
∃z1, z2.(z1 6= z2 ∧ a[z1] = crit ∧ a[z2] = crit). 2

Backward Reachability. Given an array-based transition system S = (a, I, τ),
many symbolic model-checking algorithms are based on computing the set
BRn(τ,K) of backward reachable states, starting from a formula K(a) describing a
set of unsafe states. The set BRn(τ,K) can be found by iteratively computing the
set of backward reachable state in one step, i.e.

Pre(τ,K) := ∃a′.(τ(a, a′) ∧K(a′)).(1)

Then, BRn(τ,K) :=
∨n

s=0 Pre
s(τ,K), where

Pre0(τ,K) := K and Pren+1(τ,K) := Pre(τ, Pren(τ,K)).

This iteration reaches a fix-point at n + 1 iff BRn+1(τ,K) → BRn(τ,K) is AE
I -

valid. Furthermore, if BRn+1(τ,K) ∧ I is AE
I -unsatisfiable, then S is safe (w.r.t.

K); otherwise, it is unsafe.
In order to be able to exploit the backward reachability algorithm sketched

above to check invariant properties, it is mandatory to identify a class of first-order
formulae such that it should be possible to: (R1) express I, τ , and K for a large
number of (abstractions of) systems; (R2) check both AE

I -satisfiability and AE
I -

validity for the safety and fix-point tests described above, respectively; and (R3)
compute a formula which is logically equivalent to Pre(τ,K) and which is of the
same shape as K (this will make the fulfillment of (R2) easier).
Formulae for states and transitions. Intuitively, the class of formulae satisfy-
ing (R1) contains those used in Example 3.3. To make this observation precise, we
introduce some notational conventions: d, e range over variables of sort ELEM, a over
variables of sort ARRAY, i, j, k, z, . . . over variables of sort INDEX. An underlined vari-
able name abbreviates a tuple of variables of unspecified (but finite) length and, if
i := i1, . . . , in, the notation a[i] abbreviates the tuple of terms a[i1], . . . , a[in]. Possi-
bly sub/super-scripted expressions of the form φ(i, e), ψ(i, e) denote quantifier-free
(ΣI ∪ΣE ∪ΣD)-formulae in which at most the variables i ∪ e occur (notice in par-
ticular that no array variable and no constructor [] can occur here). Also, φ(i, t/e)
(or simply φ(i, t)) abbreviates the substitution of the terms t for the variables e

(here, the constructor [] may appear in t). Thus, for instance, φ(i, a[i]) denotes
the formula obtained by replacing e with a[i] in the quantifier-free formula φ(i, e).
An ∃I-formula is a formula of the form ∃i.φ(i, a[i]) (see, e.g., the formula K(a) in
Example 3.3). A ∀I-formula is a formula of the form ∀i.φ(i, a[i]) (see, e.g., the
formula I(a) in Example 3.3).

According to [22], a transition can be split into a local and a global component.
In the restricted format adopted in this paper, the local component is a guard
expressing a condition to be satisfied by a finite number of indexes and the global
component is a deterministic update of the whole system which is represented by a
definable function. Formally, let φL(i, e) be a quantifier-free formula and F (i, e, j, d)
be a defined function symbol. A T-formula with guard φL and global update F is
a formula of the form

∃i (φL(i, a[i]) ∧ ∀j a′[j] = F (i, a[i], j, a[j])).(2)

In the rest of the paper, we fix an array-based system S = (a, I, τ), in which
the initial formula I is a ∀I-formula and the transition formula τ is a
disjunction of T-formulae. An example of such a system is in Example 3.3: the
φi

L’s are local components, the F i ’s are global updates, and the transition τ is a
disjunction of three T-formulae.
Satisfiability checking. Concerning (R2), recall the formulae that we are
supposed to use for the safety and fix-points checks: I ∧ BRn(τ,K) and
¬(BRn+1(τ,K) → BRn(τ,K)), where the latter is negated since we reason by
refutation as we use only SMT solvers. Under the hypothesis (verified below) of clo-
sure under pre-image computation—cf. (R3)—both formulae above are of the form
∃a ∃i ∀j ψ(i, j, a[i], a[j]). Following [22], such formulae are called ∃A,I∀I-sentences.

Theorem 3.4 ([22]) The AE
I -satisfiability of ∃A,I∀I-sentences is decidable if (i)

TI has a quasi-relational signature and it is closed under substructures; (ii) the
SMT (TI) and SMT (TE) problems are decidable. 5

The peculiarity of the above result (when compared with similar ones available in
literature, e.g., [12]) is the model-theoretic nature of the conditions on the paramet-
ric input theory TI that ensure decidability. The (proof of this) Theorem (see [22])
suggests the following quantifier instantiation algorithm: first, eliminate the uni-
versal quantifiers of ∃A,I∀I -sentences by instantiating the j’s with the constants in
ΣI and the i’s, considered as (Skolem) constants, in all possible ways; then, invoke
the available SMT solver for AE

I . The decidability of the SMT (AE
I) problem can

be shown by using generic combination techniques from the decidability of those
for SMT (TI) and SMT (TE) (see [22] for details). From now on, we assume that
the theories TI and TE always satisfy the hypotheses of Theorem 3.4.
Closure under pre-image. Condition (R3) is ensured by the following result.

Proposition 3.5 Let K(a) be an ∃I-formula; then Pre(τ,K) is AE
I -equivalent to

an (effectively computable) ∃I-formula.

5 The first part of (i) can be weakened to local finiteness as in [22]; while the second part is satisfied in
all practical cases (when, e.g., the models of TI are all (finite) sets, linear orders, graphs, forests, etc.).
Quantifier elimination for TE is assumed in [22] to show closure under pre-image computation: here we do
not need it, as we adopt a more restricted notion for T-formulae.

function BReach(K)
i←− 0; BR0(τ,K)←− K; K0 ←− K
if BR0(τ,K) ∧ I is AE

I -sat. then return unsafe
repeat

Ki+1 ←− Pre(τ,Ki)
BRi+1(τ,K)←− BRi(τ,K) ∨Ki+1

if BRi+1(τ,K) ∧ I) is AE
I -sat. then return unsafe

else i←− i+ 1
until ¬(BRi+1(τ,K)→ BRi(τ,K)) is AE

I -unsat.
return safe

end

Fig. 1. Backward Reachability Algorithm

Proof. Let K(a) := ∃k φ(k, a[k]) and τ(a, a′) :=
∨s

h=1 ∃i (φh
L(i, a[i]) ∧ ∀j a′[j] =

F h(i, a[i], j, a[j])). Now, ∀j a′[j] = F h(i, a[i], j, a[j]) can be equivalently rewritten
as a′ = λj.F h(i, a[i], j, a[j]) using λ-abstraction. Thus, if we eliminate the quantifier
∃a′ and then apply β-conversion, we get that Pre(τ,K) is equivalent to

∃i∃k
∨s

h=1 (φh
L(i, a[i]) ∧ φ(k, F h(i, a[i], k, a[k]))(3)

where φ(k, F h(i, a[i], k, a[k])] is the formula obtained from φ(k, a′[k]) by replacing
a′[km] with F h(i, a[i], km, a[km]) for m = 1, ..., l (here k is the tuple k1, . . . , kl). 2

As suggested by the proof of Proposition 3.5, the implementation of Pre simply
amounts to build up formula (3): the task of simplifying it by eliminating redun-
dancies is entirely left to the SMT solver. Even better, if the available SMT solver
(e.g., Yices [7]) offers some support for λ-abstractions, the β-reduction needed to
obtain (3) can be delegated to the SMT solver. To the best of our knowledge,
this simplicity in the computation of the pre-image is in sharp contrast to current
approaches to symbolic model checking of infinite state systems available in the
literature where computationally expensive operations are required to obtain some
normal form that can then be exploited by safety and fix-point computations. We
avoid this by directly using first-order formulae and then exploiting the flexibility
and scalability of the SMT solver to internalize formulae in appropriate data struc-
tures that support efficient satisfiability checks to which both safety and fix-point
tests can be reduced. This is similar in spirit to what is current practice in finite
state model checking, where the BDD package abstracts away the details of the
efficient handling of finite sets and related operations on them.

4 Light-weight reachability

Having found suitable hypotheses under which conditions (R1), (R2), and (R3) are
satisfied, it is now possible to introduce the algorithm in Figure 1 to compute
BRn(τ,K) for the class of array-based systems considered in this paper. The func-
tion Pre computes the pre-image of an ∃I -formula (according to (1)) and then applies
the syntactic manipulations explained in the proof of Proposition 3.5 to find a logi-
cally equivalent ∃I -formula. The algorithm in Figure 1 semi-decides the (invariant)
model-checking problem for K(a) whenever K(a) is an ∃I -formula. Termination of

BReach for some important classes of systems may be obtained as shown in [22].

4.1 Reducing quantifier instantiation

As observed after Theorem 3.4, checking the AE
I -satisfiability of ∃A,I∀I -formulae is

possible by integrating quantifier instantiation and SMT solving. Unfortunately, the
instantiation is too expensive. One of the main reasons for this is the growing num-
ber (at each iteration of the loop in Figure 1) of existentially quantified variables in
the prefix of the ∃I -formulae resulting from the computation of the Pre-image: the
existentially quantified prefix ∃ k is augmented with ∃ i in (3) (cf. proof of Propo-
sition 3.5). Hence, it would be desirable to find ways to greatly limit the growing
number of existentially quantified variables in the prefix of the Pre-image or, even
better, to ensure it remains constant. In the rest of this Section, we develop our
ideas to achieve this goal so as to obtain a light-weight (but still complete) version
of the algorithm in Figure 1. To this end, for simplicity, we make a stronger
assumption on the theory TI of indexes, namely that ΣI is relational.

Let τ(a, a′) be the disjunction of the T-formulae

∃i (φh
L(i, a[i]) ∧ a′ = λj.F h(i, a[i], j, a[j])),(4)

where h ranges over a certain finite set S, say S = {1, . . . , s}. For the sake of
simplicity, we assume that the tuple i is independent of h: the length of such a
tuple is denoted by c(τ) and it is called the complexity of τ .

A formula K(a) has degree less than n (in symbols, d(K) ≤ n) iff K is AE
I -

equivalent to a formula of the form ∃k φ(k, a[k]) in which the length of the tuple k
is less than or equal to n. When writing d(K) = n, we mean that n is the smallest
natural number such that d(K) ≤ n holds. Now, the proof of Proposition 3.5 shows
that the degree of Pre(τ,K) can be bounded by the sum of the complexity of τ and
of the degree of K, in symbols d(Pre(τ,K)) ≤ c(τ)+d(K). By induction, we derive
d(BRn(τ,K)) ≤ d(K) + n · c(τ). Below, we show that, under suitable hypotheses,
this estimate can be slightly improved.

An activity condition is a quantifier-free Σ-formula γ(s, a[s]) such that

AE
I |= φh

L(i, a[i])→ γ(t, a[t]) holds for each h ∈ S and each variable t ∈ i.
Discharging this obligation implies that only active processes can fire transition h.
An ∃I -formula ∃k ψ(k, a[k]) is γ-active (for the activity condition γ) iff

AE
I |=ψ(k, a[k])→ γ(t, a[t]) holds for each variable t in k.

At this point, it is interesting to consider our formalization of parametrised systems
in the stopping failures model. Recall, from Section 2, that no transition is enabled
when control reaches the additional state qcrash . This suggests a[s] 6= qcrash as an
obvious candidate for expressing an activity condition in such systems.

Example 4.1 To show that a[s] 6= crash is an activity condition for our running example, it

is necessary to prove the AE
I -unsatisfiability of the three formulae a[z] = x ∧ a[z] = crash where

x ∈ {idle, wait, crit}. This is immediate since crash 6= x for x ∈ {idle, wait, crit} by the theory TI

of enumerated data types. The ∃I -formula K(a) in Example 3.3 is γ-active. To see this, it is sufficient to
prove that z1 6= z2 ∧ a[z1] = crit ∧ a[z2] = crit ∧ a[zi] = crash are AE

I -unsatisfiable (for i = 1, 2), which
is trivial. 2

Recall that τ is a disjunction of T-formulae of the form (4), for h ∈ S. We say

that τ is γ-local iff the formula

φh
L(i, a[i]) ∧ γ(s, F h(i, a[i], s, a[s]))→ s ∈ i ∨ a[s] = F h(i, a[i], s, a[s]).(5)

is AE
I -valid for each h ∈ S, where s ∈ i abbreviates

∨
u∈i s = u. To understand (5),

observe that, once the transition fires, the state of the system is updated according
to the assignment a′[s] := F h(i, a[i], s, a[s]); hence, (5) means that the value stored
at an index s of the array a not causing the transition to fire remains the same,
unless s becomes ‘inactive’ after the transition, i.e. unless γ(s, a′[s]) becomes false
(just read (5) by contraposition).

Example 4.2 It is not difficult to see that the transition of the running example is γ-local, where γ
is a[s] 6= crash (as in Example 4.1). For the sake of conciseness, we illustrate this only for τ3 (τ1 and τ2
are similar, only more cases must be considered). It is sufficient to check for AE

I -unsatisfiability the two
formulae obtained by case-splitting on (5), namely a[z] = crit∧ s = z ∧ crash 6= idle∧ s 6= z ∧ a[s] 6= idle
and a[z] = crit ∧ s 6= z ∧ crash 6= a[s] ∧ s 6= z ∧ a[s] 6= a[s]. Both checks are trivial. 2

In practice, it is possible to find activity conditions making transitions local for
several protocols ensuring mutual exclusion as well as for algorithms manipulating
arrays (e.g., sorting) by guessing appropriate γ’s. Typical examples of non local
transitions are those of broadcast protocols.

We are now ready to show the usefulness of local transitions to limit the growing
prefix of ∃I -formulae computed by the algorithm in Figure 1.

Theorem 4.3 Suppose c(τ) ≥ 1. Let K be an ∃I-formula and let γ be an activity
condition such that K is γ-active and τ is γ-local. Then, d(BRn(τ,K)) ≤ d(K) +
n · c(τ)− n. Hence, if c(τ) = 1 then d(BRn(τ,K)) ≤ d(K), for all n ≥ 0.

Before applying Theorem 4.3, let us consider the task of finding a suitable ac-
tivity condition γ. For parametrised systems formalized in the stopping failures
model, we have seen before Example 4.1 that the obvious candidate for an activity
condition is a[s] 6= qcrash , because no transition is enabled in the additional crash
state. In general, the search space for such γ(s, a[s]) is infinite, but it becomes finite
for instance when TE has a quasi-relational signature: in that case, the hypotheses
of Theorem 4.3 can be effectively checked, as the following example shows.

Example 4.4 The signature ΣE of Example 3.2 is quasi-relational, hence we can compute all possible
choices for γ(s, a[s]): the latter can only be a Boolean combinations of atoms of the form a[z] = x for
x ∈ {idle, wait, crit, crash}. By enumerating such formulae (e.g., in disjunctive normal form) and check-
ing for the conditions of γ-activity and γ-locality, we quickly find that a[s] 6= crash satisfies the desired
requirements. 2

Case c(τ) = 1. In this case, Theorem 4.3 implies that the number of existen-
tially quantified variables of the pre-image remains constant at each iteration of
the loop of the backward reachability algorithm in Figure 1. So, if the input
formula K of the reachability algorithm has k existentially quantified variables,
BRi(τ,K) is AE

I -equivalent to an ∃I -formula of the form ∃kφi(k, a[k]) and the AE
I -

validity of BRi+1(τ,K) → BRi(τ,K), to detect a fix-point, is equivalent to the
AE

I -unsatisfiability of the quantifier-free formula

φi+1(k, a[k])∧
∧
σ

¬φi(kσ, a[kσ]),

where σ ranges over all possible substitutions with domain k and co-domain k,
according to the instantiation procedure sketched after Theorem 3.4. Although

the number of instances (or, equivalently, of substitutions σ’s) to be considered at
each iteration of the loop does not change, it is tempting to furtherly simplify the
formula above by considering only one instance, obtained by the identical substi-
tution: φi+1(k, a[k]) ∧ ¬φi(k, a[k]). This algorithm is computationally much less
expensive than that suggested by Theorem 3.4; unfortunately, it is incomplete
in general. However, when, e.g., TE is an enumerated datatype theory, checking
the AE

I -unsatisfiability of φi+1(k, a[k]) ∧ ¬φi(k, a[k]) is precise enough, since there
are only finitely many quantifier-free formulae of the form ψ(k, a[k]), up to AE

I -
equivalence, and a fix-point can always be reached (maybe with more iterations
than those needed by the loop in Figure 1). Operationally, this observation can be
implemented by preliminarily ‘grounding the whole system,’ as exemplified below.

Example 4.5 For the formulae in Example 3.3, we have c(τ) = 1 and d(BRn(τ, K)) = d(K) = 2 by
Theorem 4.3 with the activity condition in Example 4.1. Because TE is an enumerated datatype theory
(cf. Example 3.2) and the last observation above, to prove the safety of the running example, it is sufficient
to consider a parametrized system consisting of only d(K) = 2 processes, i.e. it is sufficient to consider the

following ground version of the system: bI(a) := (a[z1] = idle ∧ a[z2] = idle),

bτ(a, a′) :=
2_

l=1

(
3_

i=1

(φi
L(zl, a[zl]) ∧

2̂

m=1

a′[zm] = F i(zl, a[zl], zm, a[zm]))),

and bK(a) := z1 6= z2 ∧ a[z1] = crit ∧ a[z2] = crit, where z1, z2 are INDEX constants. It is a routine

exercise to verify that the formulae for checking fix-point and safety computed with bI, bτ , and bK are the
same (modulo trivial logical manipulations) as those obtained by using I, τ , K and then performing the
above instantiation. 2

Case c(τ) = 11
2 . In practice (see, e.g., the Szymanski protocol [10]), it turns out that

parametrised systems with transitions of complexity 2 are formalized by disjunctions
of T-formulae of the form

∃i1, i2 (φh
L(i1, i2, a[i1], a[i2]) ∧ a′ = λk.F h(i1, a[i1], k, a[k])),(6)

i.e. whereas both existentially quantified variables occur in the local component, just
one of them occurs in the update. The degree-reducing algorithm of Theorem 4.3
prescribes that, when computing Pre(τ,∃k φ), one can insert the extra information
that one of the i1, i2 is equal to one of the k’s. However, when τ is a disjunction
of T-formulae of the form (6), one can improve again the procedure by imposing
the condition that precisely i1 must be identified with one of the k’s. Since this
reduces by one half the length of the optimized Pre(τ,∃kφ), we (informally) say
that formulae (6) have complexity 11

2 . For the formal details, see the Appendix.

4.2 Refinements of backward reachability and experiments

Theorem 4.3 and its applications suggest to implement the algorithm in Figure 1
on top of a client-server architecture, where the client is a “light-weight” program
to generate formulae representing (iterated) pre-images, whose AE

I -unsatisfiability
is checked by an off-the-shelf SMT solver, the server. Below, we discuss how to
make this efficient. We assume the available SMT solver to offer the following in-
terface functionalities: (I1) parsing of strings for processing symbolic expressions,
(I2) supporting definable function symbols (as an alternative, one may require to
support λ-abstraction), and (I3) incremental handling of a logical context, i.e. ad-
dition/removal of logical facts and (incremental) satisfiability checks.
Lazy generation of proof obligations. Although (I1) seems sufficient to mech-
anize our approach as SMT solvers have a standard input format [25], prelimi-

nary experiments have shown that formulae for both safety and fix-point checks
quickly become quite large and parsing may become a bottleneck. To see this, con-
sider the sequence of formulae generated by the loop of the algorithm in Figure 1:
BRi+1(τ,K) := BRi(τ,K) ∨ Pre(τ,Ki), for i ≥ 0. The formulae for safety and
fix-point checks involving BRi+1(τ,K) contains a copy of the previously generated
(and already parsed by the SMT solver) formula BRi(τ,K). After some itera-
tion, parsing becomes prohibitively expensive. To avoid this, we introduce a new
Boolean variable BRi to be used as an “abbreviation” for the arbitrarily complex
formula BRi(τ,K) in the computation of BRi+1(τ,K) as follows: BRi ↔ BRi(τ,K),
which is is added to the logical context of the SMT solver by invoking (I3), so that
BRi+1(τ,K) := BRi ∨ Pre(τ,Ki), for i ≥ 0. In this way, the size of BRi+1(τ,K) as
well as of all the formulae containing it remains constant over the iterations and
parsing is no more problematic.
Interleaving. By definition, our transition formula τ is the disjunction of the T-
formulae τh and Pre(τ,K) is the disjunction of the Pre(τh,K)’s. In practice, it is
rarely the case that each Pre(τh,K) is AE

I -satisfiable as not all transitions may be
taken from a given state. This suggests to check first for the AE

I -satisfiability of the
formula Pre(τh,Ki): if the result is unsatisfiable, then we proceed to consider τh+1

(if h + 1 ≤ s). In other words, we replace the check for safety with the following
sequence of (simpler) checks: (C1.h) Pre(τh,Ki) ∧ I is AE

I -satisfiable and the fix-
point check with (C2.h) ¬(Pre(τh,Ki) → BRi) is AE

I -satisfiable, for h = 1, ..., s at
the i-iteration of the loop in the algorithm of Figure 1. If one of the checks (C1.h)
is satisfiable, we stop and report the unsafety of the system. Instead, if all the
checks (C2.h) are unsatisfiable, we conclude that Pre(τ,Ki)→ BRi is AE

I -valid and,
hence, a fix-point has been reached. Otherwise, if some of the checks (C2.h) are
satisfiable and the others are unsatisfiable, we discard the latter ones and take the
disjunction of the former ones to compute BRi+1(τ,K). By interleaving in this way
the generation of the proof obligations and the satisfiability checks, the hope is to
generate a more compact symbolic representation of the set of reachable state.
Breadth vs. depth. The algorithm in Figure 1 implements a breadth-first visit
of the set of backward reachable states. However, thanks to the flexibility of our
declarative approach, it is easy to implement a recursive algorithm implementing a
depth-first visit of the state space. Consider the s-ary tree built by labelling its root
with K and its s-sons with K∨Pre(τh,K) for h = 1, ..., s, and recursively repeating
this construction. A standard depth-first visit of this tree yields a depth-first visit of
the state space. Indeed, the tree is constructed on-the-fly while it is visited by using
“local” checks for fix-point and safety, similar to those of the algorithm in Figure 1.
The main advantage of the depth-first algorithm is that more compact formulae are
generated for the SMT solver. Its main drawback is that it may take much longer
to terminate (or even diverge). Fortunately, it is possible to alleviate this problem
by storing the set of “already-visited” states, i.e. those states describing a “local”
fix-point, in a global variable AV , which is then used in subsequent fix-point checks,
as follows: prove the AE

I -validity of BRi+1
df → (BRi

df ∨AV) for h ≥ 0, where BRi+1
df

and BRi
df are the sets of states reachable in depth-first at iteration i + 1 and i,

respectively, and AV is the set of “already-visited” states (at the beginning, AV is
false, i.e. the empty set of states). When h = s, this enhanced depth-first algorithm

The number of variables nv and the number nt
of T-formulae for problems in NUM are such that
3 ≤ nv ≤ 44 and 3 ≤ nt ≤ 37.
Experiments were conducted on a Pentium Dual-
Core 1.66 GHz with 1 Gb Sdram running Linux.
All the timings are in seconds and the time-out
is 3 hours.
A dot below the diagonal means a better per-
formance of depth-AV.Interleave over depth-AV;
viceversa for a dot above.

Fig. 2. Results of smtmc on NUM

performs a “global” fix-point check similar to that of the algorithm in Figure 1.
Our flexible framework allows us to experiment with “hybrid” strategies combining
depth- and breadth-first searches.
The tool. To test the practical viability of the client-server architecture designed
above and to evaluate the impact of the various heuristics, we implemented smtmc,
a prototype tool which uses Yices 1.0.11 as the SMT solver (in particular, its API
lite that supports (I1)–(I3) above) and writing around 1390 source lines of C code.

Our benchmark set consists of problems taken from the distribution of various
model-checking tools for infinite state systems, such as Babylon [3], Brain [4], Action
Language Verifier [1], ARMC [2], and PFS [5]. We have considered two classes of
problems: NUM (with 34 problems), where TI is an enumerated data type theory
and TE is the theory of Linear Real/Integer Arithmetic; and AIE (with 19 problems),
where TI is the theory of finite and linearly ordered sets and TE is the theory
of an enumerated data type sometimes combined with Linear Integer Arithmetic.
Array-based systems in NUM model situations where a fixed and known number
of integer variables is updated by the transition systems; e.g., those obtained by
counting abstraction [18]. For problems in this class, we have c(τ) = 0, i.e. problems
are quantifier-free. The class AIE features (truly parametric) systems with a fixed
(either known or unknown) number of elements; e.g., those in [10]. Although smtmc

has been designed for very expressive extensions (covering all problems that can be
modeled by generic array-based systems), it is still under major development and
its current version, due to insufficient quantifier instantiation, can only handle,
in an incomplete way, most of the problems in AIE. On the other hand, actual
performances are encouraging and seem comparable with dedicated state-of-the-art
tools for problems in the class NUM. Incomplete runs seem to predict the possibility
to obtain good results also for problems in AIE. An executable of our tool and the
benchmark problems can be reached from [6].
Heuristics. Our experiments have clearly shown that straightforward implementa-
tions of breadth- and depth-first search (even in combination with the interleaving
of the generation of proof obligations and satisfiability checking) scale up poorly.
The more promising results have been obtained with two extensions of depth-first
search: depth-AV, where the fix-point check is enhanced by the checks with the
“already-visited” set of states, and depth-AV.Interleave, which is similar to depth-
AV except for the fact that the generation of proof obligations is interleaved with
satisfiability checking according to (C1.h) and (C2.h). Figure 2 shows that the two
heuristics are equivalent on NUM: both are capable of solving 87% of the problems

while for the remaining 13%, the search space is too large and the tool times out.

5 Discussion and related work
We have presented a refinement of the SMT-based model-checking of array-based
systems of [22] that allows us to directly leverage existing SMT solvers by a light-
weight implementation effort. The idea of using arrays to represent system states
is not new in model-checking (see in particular [27,26]); what seems to be new in
our approach is the fully declarative characterization of both the topology and the
(local) data structures of systems by using theories. This has two advantages. First,
implementations of our approach can handle a wide range of topologies without
modifying the underlying data structures representing sets of states. This is in
contrast with recently available techniques [10,9] for the uniform verification of
parametrized systems, which consist of exploring the state space of a system by
using a finitary representation of (infinite) sets of states and require substantial
modifications in the computation of the pre-image to adapt to different topologies.
Second, since SMT solvers are capable of handling several theories in combinations,
we can avoid encoding everything in one theory, which has already been proved
detrimental to performances in [14,13,1]. SMT techniques were already employed
in model-checking [16,11], but only in the bounded case (whose aim is mostly limited
at finding bugs, not at full verification).

Babylon [3] is a tool for the verification of counting abstractions of parametrized
systems (e.g., multithreaded Java programs [19]). It uses a graph-based data struc-
ture to encode disjunctive normal forms of integer arithmetic constraints. Com-
puting pre-images requires computationally expensive normalization, which is not
needed for us as SMT solvers efficiently handle arbitrary integer constraints.

Brain [4] is a model-checker for transition systems with finitely many integer
variables which uses an incremental version of Hilbert’s bases to efficiently perform
entailment/satisfiability checking of integer constraints (the results reported in [28]
shows that it scales very well). Taking TI to be an enumerated datatype theory,
the array-based systems considered in this paper reduce to those used by Brain.

A recent interesting proposal to uniform verification of parametrized systems
is [12], where a decidability result for Σ0

2-formulae is derived (these are ∃∀-formulae
roughly corresponding to those covered by Theorem 3.4 above, for the special case
in which the models of the theory TI are all the finite linear orders). While the rep-
resentation of states in [12] is (fully) declarative, transitions are not, as a rewriting
semantics (with constraints) is employed. Since transitions are not declaratively
handled, the task of proving pre-image closure becomes non trivial; e.g., in [12],
pre-image closure of Σ0

2-formulae under transitions encoded by Σ0
2-formulae ensures

the effectiveness of the tests for inductive invariant and bounded reachability anal-
ysis, but not for fix-point checks. In our approach, an easy (but orthogonal) pre-
image closure result for existential state descriptions (under certain Σ0

2-formulae
representing transitions) gives the effectiveness of fix-point checks, thus allowing
implementation of backward search.
Acknowledgements. The 2nd author was supported by FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR:

Automated Validation of Trust and Security of Service-oriented Architectures” (www.avantssar.eu). We

thank an anonymous reviewer for his careful criticisms that helped improving the quality of the paper.

www.avantssar.eu

References

[1] Action Language Verifier. http://www.cs.ucsb.edu/∼bultan/composite.

[2] ARMC. http://www.mpi-sws.mpg.de/∼rybal/armc.

[3] Babylon. http://www.ulb.ac.be/di/ssd/lvbegin/CST.

[4] Brain. http://www.cs.man.ac.uk/∼voronkov/BRAIN.

[5] PFS. http://www.it.uu.se/research/docs/fm/apv/tools/pfs.

[6] smtmc. http://www.dsi.unimi.it/∼ghilardi/mcmt.

[7] Yices. http://yices.csl.sri.com.

[8] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite state
systems. In Proc. of LICS ’96, pages 313–321, 1996.

[9] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-state processes with
global conditions. In CAV, number 4590 in LNCS, 2007.

[10] P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Regular model checking without transducers.
In TACAS, number 4424 in LNCS, 2007.

[11] A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of Software using SMT Solvers
instead of SAT Solvers. In Proc. of SPIN’06, number 3925 in LNCS, pages 146–162, 2006.

[12] A. Bouajjani, P. Habermehl, Y. Yurski, and M. Sighireanu. Rewriting systems with data. In Proc. of
Symp. on Fund. of Comp. Th. (FCT 07), pages 1–22, 2007.

[13] T. Bultan, R. Gerber, and C. League. Composite model-checking: verification with type-specific
symbolic representations. ACM Trans. on Soft. Eng. an Meth., 9(1):3–50, 2000.

[14] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer
variables: symbolic representations, approximations, and experimental results. ACM Trans. on Progr.
Lang. and Sys., 21(4):747–789, 1999.

[15] L. de Moura and N. Bjørner. Efficient e-matching for smt solvers. In Proc. of CADE, LNCS, 2007.

[16] L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model checking over infinite
domains. In Proc. CADE, volume 2392 of LNCS, 2002.

[17] D. Déharbe and S. Ranise. Satisfiability solving for software verification. Int. Journal on STTT, 2008.
To appear.

[18] G. Delzanno. Automatic verification of parameterized cache coherence protocols. In Proc. of CAV,
number 1855 in LNCS, 2000.

[19] G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the automated verification of multi-threaded
java programs. In 8th Int. Conf. on TACAS, number 2280 in LNCS, 2002.

[20] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York-London, 1972.

[21] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfiability modulo
theories. In Proc. of CADE-21, LNCS, 2007.

[22] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model-Checking of Array-based
Systems. In Proc. of IJCAR, LNCS, 2008. Extended version available at http://homes.dsi.unimi.
it/∼ghilardi/allegati/GhiNiRaZu-RI318-08.pdf.

[23] S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight SMT-based Model Checking (Extended version).
Available at http://homes.dsi.unimi.it/∼ghilardi/allegati/GhRaVa avocs.pdf, 2008.

[24] Nancy A. Lynch. Distributed Algorithms. Morgan Kauffman Publishers, Inc., 2000.

[25] S. Ranise and C. Tinelli. The SMT-LIB Standard: Version 1.2. Technical report, Dep. of Comp. Science,
Iowa, 2006. Available at http://www.SMT-LIB.org/papers.

[26] A. W. Roscoe, R. S. Lazic, and T. C. Newcomb. On model checking data-independent systems with
arrays without reset. Theory and Practice of Logic Programming, pages 659–693, 2004.

[27] A. W. Roscoe, R. S. Lazic, and Tom Newcomb. On model checking data-independent systems with
arrays with whole-array operations. In Communicating Sequential Processes. Springer LNCS, 2005.

[28] T. Rybina and A. Voronkov. Using canonical representations of solutions to speed up infinite-state
model checking. In Proc. of CAV, number 2404 in LNCS, 2002.

[29] T. Rybina and A. Voronkov. A logical reconstruction of reachability. In Proc. of PSI, pages 222–237.
LNCS 2890, 2003.

[30] R. Sebastiani. Lazy satisfiability modulo theories. Jour. on Sat., Boolean Modeling and Comp., 3:141–
224, 2007.

http://www.cs.ucsb.edu/~bultan/composite
http://www.mpi-sws.mpg.de/~rybal/armc
http://www.ulb.ac.be/di/ssd/lvbegin/CST
http://www.cs.man.ac.uk/~voronkov/BRAIN
http://www.it.uu.se/research/docs/fm/apv/tools/pfs
http://www.dsi.unimi.it/~ghilardi/mcmt
http://yices.csl.sri.com
http://homes.dsi.unimi.it/~ghilardi/allegati/GhiNiRaZu-RI318-08.pdf
http://homes.dsi.unimi.it/~ghilardi/allegati/GhiNiRaZu-RI318-08.pdf
http://homes.dsi.unimi.it/~ghilardi/allegati/GhRaVa_avocs.pdf
http://www.SMT-LIB.org/papers

	Introduction
	Preliminaries
	Model-Checking of Array-based Systems
	Light-weight reachability
	Reducing quantifier instantiation
	Refinements of backward reachability and experiments

	Discussion and related work
	References

