

Overview on 802.15.4/Zigbee

Laura Vanzago Advanced System Technology – R&D <u>laura.vanzago@st.com</u>

DICO - May 2006

STMicroelectronics

Outline

IEEE 802.15.4 Overview

Zigbee Overview

Many slides from Zigbee official presentations (www.zigbee.org)

Wireless Networks Evolution

IEEE Wireless PAN

Wireless Technologies

IEEE 802.15.4 ...

- What it is:
 - A WPAN standard optimized for low data throughput applications with simple or no QoS requirements
 - Lower power and lower cost than other WPANs (e.g. Bluetooth)
 - Using Zigbee Alliance for marketing and compliance (like Wi-Fi/802.11b)
 - PHY and MAC layers only (upper layers defined by ZigBee)

 MCU requirements: 8 bit, 4 MHz, 32 kB ROM, 8 kB RAM

Wireless Standard Comparisons

	802.15.4	Bluetooth 802.15.1	Wi-Fi 802.11b	GPRS/GSM 1XRTT/CDMA	
Application Focus	Many	Cable Replacement	Web, Video, Email	WAN, Voice/Data	
System Resource (Protocol Stack Size)	4KB – 32KB (64KB)	250KB+	1MB+	16MB+	
Battery Life (days)	100-1000+	1-7	1-5	1-7	
Nodes per Networks	255-65K+	7	30	1	
Bandwidth(kbps)	20-250	720	11,000+	64-128+	
Range (meters)	1-75+	1-10+	1-100	1,000+	
Key Market Attributes	Low Data Rate Low Power Low Cost	Cost, Convenience High QoS Low and Guaranteed latency	Speed, Flexibility	Reach, Quality	

IEEE 802.15.4/ZigBee Market Features

- 1. Low power consumption
- 2. Low cost
- 3. Low offered message throughput
- 4. Reliable Communication
- 5. Supports large network orders (<= 65 k nodes)
- 6. Low to no QoS guarantees
- 7. Selectable levels of security (using AES-128)
 - 1. Privacy (encryption)
 - 2. Sender authentication
 - 3. Message integrity
- 8. Flexible protocol design suitable for many applications

Market News ...

New analysis from Frost & Sullivan World UWB & ZigBee Chipset Market, reveals that the market for UWB chipsets that had nil shipments in 2005 shall generate revenues of \$950 million in 2009, while the Zigbee chipsets market generated revenues of \$11.3 million in 2005 and is likely to reach **\$800.0 million in 2009**

802.15.4 PHY

Operating Frequency Bands

802.15.4 PHY

Common Parameters

Transmit Power

• Capable of at least 0.5 mW (-3 dBm)

Receiver Sensitivity (Packet Error Rate <1%)

- -85 dBm @ 2.4 GHz band
- -92 dBm @ 868/915 MHz band

Support to Low Duty Cycle

- Minimum beacon packet length 544 us
- Superframes periods [15,36ms, >4minutes]
- Beacon duty cycle [2.3%, 2.16 ppm]
- Adjustable Duty Cycle 1%

Timing

- New Slave Enumeration = 30 ms typically
- Sleeping slave changing to active = 15 ms typically
- Active slave channel access time = 15 ms typically

802.15.4 PHY

PHY Primitives

□ Transmitting/ receiving packets across physical medium

- □ Activation/deactivation of the radio transceiver
 - Duty Cycle
- □ Clear channel assessment (CCA)
 - CSMA MAC
- □ Energy detection (ED)
 - Channel selection
- Link Quality Indication (LQI) byte attached to each received frame
 Dynamic channel selection, location algorithm, routing based on link quality

Primitive	Description	Request	Confirm	Response	Indication
PD-DATA	Transmitting/ receiving packets	Х	Х		Х
PLME-GET	Getting PHY PAN information base				
PLME-SET	Setting PHY PAN information base				
PLME-SET-TRX- STATE	Activation/deactivation of the radio transceiver	х	х		
PLME-CCA	Clear channel assessment	Х	Х		
PLME-ED	Energy detection (ED)	Х	Х		

802.15.4 Device Types

- PAN coordinator
 - PAN Initiator and PAN Controller
 - Able to transmit beacon and to talk to any other device
- Coordinator
 - Able to transmit beacon and to talk to any other device
- Device
 - Unable to transmit beacon and is able to talk only with coordinators
- ✓ Full function device (FFD)
 - PAN coordinator, coordinator, device
 - Memory capabilities sufficient to store routing tables
 - Full MAC implementation
- Reduced function device (RFD)
 - Device
 - Very Low cost device with minimal memory requirements
 - Partial MAC implementation

Addressing

- ✓ All devices have IEEE (64 bits) addresses
- Addressing modes:
 - Default Extended (64bit)
 - Used for direct communication in peer-to-peer
 - Optional Short (PanID & 16bit):
 - Allocated by PAN coordinator when the device associates (64k nodes addressable with reduced overhead)

General Frame Structure

4 Types of MAC Frames:

- Beacon Frame (only implemented in FFD)
 - •Superframe boundary marker
 - •Frame sync signal
 - •Association supervision
- Data Frame
- Acknowledgment Frame (does not contain a MAC payload)
- MAC Command Frame ((Dis)-Association, Orphan notification,
- Beacon request,)

Optional Superframe Structure

BeaconLess

- An asymmetrical channel access mode for asymmetrically powered devices
- Textbook case is wireless light switch operating a lamp
 - Lamp has mains power and therefore can be in nearconstant receive mode
 - Switch is battery powered, stays in standby until pressed by user, when it transmits
- Unslotted CSMA-CA

802.15.4 MAC Traffic Types

- Periodic data
 - Application defined rate (e.g. sensors)
 - Can be handled using beaconing
- Intermittent data
 - Application/external stimulus defined rate (e.g. light switch)
 - Can be handled in beaconless mode or disconnected fashion
- Repetitive low latency data
 - Allocation of time slots (e.g. mouse)
 - Guaranteed Time Slot (GTS) can be allocated by PAN Coordinator only in a Star Topology

MAC Primitives

MAC Data Service

• MCPS-DATA – exchange data packets between MAC and PHY

MAC Management Service

- MLME-ASSOCIATE/DISASSOCIATE network association
- MLME-SYNC / SYNC-LOSS device synchronization
- MLME-SCAN scan radio channels
- MLME-GET / -SET- retrieve/set MAC PIB parameters
- MLME-START / BEACON-NOTIFY beacon management
- MLME-POLL beaconless synchronization
- MLME-GTS GTS management
- MLME-ORPHAN orphan device management
- MLME-RX-ENABLE enabling/disabling of radio system

Channel Scan

- Energy Detection Scan
 - ED in each of the logical channels specified
- Active Channel Scan
 - Sends a Beacon Request Command in each of the logical channels specified and memorizes the (possible) received PAN descriptors
- Passive Channel Scan
 - Search for beacons in each of the logical channels
- Orphan Channel Scan
 - Sends a "Orphan Notification Command" and waits for a "coordinator realignment command"

Summary of 802.15.4

 \hdots Data rates of 250 kb/s (2.4 GHz) , 40 kb/s (915 MHz) and 20 kb/s (868 MHz)

✓16 channels in the 2.4GHz ISM band, 10 channels in the 915MHz ISM band
 1 channel in the European 868MHz band

✓Star or Peer-to-Peer network topologies supported

☐ Designed for controllers, sensors, remote monitoring and portable electronics with selectable latency

Support for low latency devices (Guaranteed Time Slots in Star Networks)

✓Multi-level security

-Access control

-Data Encryption

-Frame integrity

-Sequential Freshness

CSMA-CA channel access slotted (beacon) and unslotted (beaconless)

- Beaconless operation available
- □ Dynamic device addressing.

□ Fully handshaked protocol for transfer reliability.

Low power consumption via extremely duty cycle capability

ZigBee name origin

ZigBee Principle

- Hive's members hierarchically structured
 - a queen, few male drones, and thousands of worker bees
- The technique used by honey bees to communicate new-found food sources to other members of the colony
 - The bee dances in a zig-zag pattern, sharing information such as the location, distance, and direction of a newly discovered food source

Zigbee Organization

- It's NOT a IEEE standard but a consortium of industries promoting low data rate communication markets
- 8 promoter companies
 - Philips (that holds the brand), Ember, Freescale, Honeywell, Invensys, Mitsubishi, Motorola, Samsung
- Participant list
 - Rapid growling (188 members till now)
 - Industry leaders worldwide committed to provide ZigBee compliant products and solutions
 - include semiconductor manufacturers (STMicroelectronic too), wireless IP providers, OEMs and end users
- Version 1.0 of the specification has been ratified in december 2004
- Primary Drivers
 - Low data rate; Simplicity and Low cost; Long battery life; Security and reliability; Networking capabilities (Star, cluster tree and mesh topologies) Interoperable application profiles

Zigbee Member Geographical Distribution

Region (based on primary contact address)	Dec. 2003	Dec. 2004	Dec. 2005	Mar 2006	
Asia / Pacific	12 (19%)	21 (19%)	49 (27%)	53 (29%)	
Europe / Middle East / Africa	14 (22%)	35 (31%)	52 (28%)	48 (26%)	
North/South America	37 (59%)	57 (50%)	84 (45%)	87 (45%)	
Total Member Companies	63	113	185	188 With 9 pending	

Zigbee Applications

The ZigBee Stack Architecture

Source: Zigbee

Network Layer Fundamentals

- Uses three different kind of logical devices
- Contains functionalities for
 - Starting a network
 - Joining or leaving a network
 - Addressing
 - Ability of the Zigbee coordinator to assign short (16 bit) address to nodes
 - Data Routing to destination
 - Cluster tree routing
 - After route discovery and maintenance (cost metric based on link quality and hop counts)
 - Security

Application Layer Fundamentals

Consists of

- Application Framework (AF)
 - Hosting the manufacturer-defined application objects
 - Providing two data services (Key Value Pair or Messages)
 - Management via ZDO public interface
- Application Support Sub-layer (APS)
 - Maintaining table for binding (the ability to match two devices together based on their services and their needs) (APSME management services)
 - Forwarding messages between endpoints of bound devices (remote for coordinator) (APSDA data services)
 - Its services are used by the ZDO and by the application framework objects
- Zigbee Device Object (ZDO)
 - Defining the role of the devices (coordinator, router, end devices)
 - Initiating and or responding to binding requests
 - Establishing a secure relationship between devices
 - Discovering devices and determining which application services they provide
 - Its services are used by the application objects

Zigbee Devices Type Model

Zigbee Logical Device: Coordinator (ZC)

- One and only one required for each ZigBee network
 - First one on the scene
- Initiates network formation
 - Selects the time and place (Channel, PANId, Stack Profile)
- ✓ Acts as IEEE 802.15.4 PAN coordinator (FFD)
- Also performs as router once network is formed
- Not necessarily a dedicated device can perform an application too
- One extra function: Acts as Bind Request Controller

Zigbee Logical Device: Router (ZR)

- Optional network component
- Discovers and associates with ZC or ZR
 - Extends the network coverage
- Acts as IEEE 802.15.4 coordinator or device (FFD)
- Manages local address allocation / de-allocation
- Participates in multi-hop / mesh routing of messages.
- Maintains Neighbor Table to allow Neighbor Routing

Zigbee Logical device: End Device (ZED)

- Optional network component
- Discovers and associates with ZC or ZR
- Acts as IEEE 802.15.4 device (RFD)
- Can be optimized for very low power operation
- Relies on its parent to let it sleep
- Shall not allow association
- Shall not participate in routing

Zigbee Network Communication Model (Cluster Tree)

Zigbee Network Communication Model (Mesh)

Mesh Behavior

Mesh Behavior

Mesh Behavior

Architecture: Stack Profile

- A Stack Profiles Defines
 - Network Topology
 - Application Services
 - Device Compatibles
 - Security Services
 - And many more
 - Table sizes
 - Timeouts
 - Route Cost Calculation Algorithm

Current stack profiles:

- Home Controls (mesh)
 - Supports Home Controls Lighting and Home Automation application profiles
- Commercial, Industrial and Institutional (mesh)
 - Supports Commercial Building Automation, HVAC and Industrial Plant Monitoring application profiles
- Stack profile identifier supplied in beacon payload. Devices join appropriate networks supporting desired stack profile.

Network Initiation: ZC

NLME_NETWORK_FORMATION.request

Performs an Energy Detect Scan

- Looks for other wireless devices on the channel
- Performs an Active Scan
 - Looks for other 802.15.4 networks on the channel
- ✓ Selects the "nicest" channel
 - Weights up channels based on noise level and PANs
- Selects an unused PANId
- Starts a network

Network Discovery: ZR and ZED

- NLME_NETWORK_DISCOVERY.request
- Performs an Active Scan
 - Looks for other ZigBee networks on the channel
- Selects a compatible network
 - Based on Stack Profile ID matching

Network Association: ZR & ZED

NLME_JOIN.request

- Selects the highest acceptable router
 - Link Quality, with addressing capacity
- Associates with the router
- Allocated an address on the network
- Device authenticates with network

Network Association: ZR (cont)

NLME_START_ROUTER.request

Updates Beacon Payload

- Depth, Address Capacity
- Starts a router
- Updates Association Permit Status

Distributed Address Assignment

Depth = 0

Doubh - 8.1

nwhMaxRouters (Rm)

nwkidaxGhildten (C

3

1

MaxDepth (Lm)

Target

- Addresses Distributed assignment (by ZBC and ZBR)
- Unique address within a particular network
- Tree topology support

Features

- Every device has an associated depth
 - the minimum number of hops a transmitted frame must travel, using only parent-child links, to reach the ZBC
- ZBC tuning knobs (application-driven defined by the Stack Profile)
 - nwkMaxDepth: maximum depth Lm
 - nwkMAxChildren: maximum number of children for each parent Cm
 - nwkMAxRouters: maximum number of routers for each parent Rm

Addressing: Tree structured Address Assignment

- CSkip based address assignment
- Address determined from tree location
- For each ZBR is assigned an address sub-block
 - Its size, Cskip, depends on the ZBR's depth

$$Cskip(d) = \begin{cases} \frac{1 + Cm - Rm - Cm \cdot Rm^{Lm - d - 1}}{1 - Rm} & \text{if } Rm \neq 1\\ 1 + Cm \cdot (Lm - d - 1) & \text{if } Rm = 1 \end{cases}$$

- Only ZBR with Cskip(d) > 0 shall accept child devices
- Different address's assignment mechanisms for the children if they are router-capable device or not.

Address Assignment

ZBC's network address is 0

Given a ZBR K with the assigned address Aparent at depth d

- For rth router-capable child device of K
 - Achild = Aparent + $r \times Cskip(d) + 1$ with $0 \le r \le (Rm-1)$
- For nth end child device of K
 - Achild = Aparent + Cskip(d)× Rm + n with 1<=n <=(Cm-Rm)

Address Assignment Example

Address Assignment Example

Network Topologies (Examples)

Tree Routing

- The address tells you where the destination is
- Simple equation gives 'route up' or 'route down'
- If LocalAddr< DestAddr< LocalAddr+ CSkip(d-1) Route Down
- Else Route Up

Neighbour Routing

- A ZC or ZR maintains a table of devices in its neighbourhood
- If the target device is physically in range it can send the message directly.

Mesh Routing

- ZC or ZR maintains a routing table of next hop addresses
- If the target device has a routing table entry then the message can be sent using this route.

That's great, but where do the routing table entries come from?

Routing: Route Discovery

- Route discovery uses AODV routing algorithm
 - Route Request broadcast message
 - Route Reply unicast message
- Potential routes are evaluated with respect to a routing cost metric in both directions (source to destination and viceversa).
 - Link Cost (probability to deliver a packet along a link) & Path Cost (sum of Link Costs along a multihop way)

To Summarize the Network Layer

- Performs network discovery and formation
- Performs address allocation
- Performs message routing
- Configured by the stack profile
- Provides network wide security
- Allows low power devices to maximize their battery life

ZigBee turns 802.15.4 into a low power multi-hop mesh network.

Application Overview: Addressing and Binding

Application Profiles

- Application Profiles
 - are an agreement on a series of messages defining an application space (for example, "Home Controls-Lighting")
 - Define compatible sets of devices for specific market areas
 - It's identified by a Profile identifier that is uniquely assigned by the Alliance
 - Defines
 - Device and Cluster descriptions
 - Service types (KVP or MSG)
- Public (Standard)
 - Fully Defined and ratified by the Zigbee Alliance through the Application Framework Working Group (AFG) and a Profile Task Groups (PTG)
 - ZigBee certified products
- Non-Public (Private)
 - Profile ID issued by the ZigBee Alliance, However the details of The profile are not necessarily made public by the vendor

Current and Future Profiles

Current Profiles

- Commercial building automation
 - Complete building control, monitoring and energy management
- Heating, ventilation, air conditioning
 - HVAC systems for improved efficiency and lower installation cost
- Home automation
 - Low to high end residential systems for control of devices around the home
- Home control, lighting (example, included in ZigBee specification)
 - Residential lighting control allowing basic control and dimming
- Industrial plant monitoring
 - Monitoring time varying attributes related to operating environment and machinery conditions
- Wireless sensor applications
 - Environmental monitoring, asset tracking and structural monitoring

Future Standard Profiles

- Telecom applications
 - File/data transfer
 - Applications controllers
- Automatic Meter Reading
 - Residential & commercial utility systems
- Medical & personal health care
 - Body area networks
 - Fitness monitoring: home, gym, on-themove
 - Patient monitoring
- Automotive
 - In vehicle control: vehicular & entertainment
 - Status monitoring
- Others identified by ZigBee members

Clusters/Attributes

- ✓ For each Profile Identifier there are:
 - A pool of device descriptions described by a 16-bit value
 - A pool of cluster Identifiers described by an 8-bit value
 - Each Cluster Identifier supports a pool of attributes described by 16bit value
- Cluster
 - is a container for one or more attributes
 - is identified by Cluster Identifier, unique within the scope of each profile (Application Domain segment)
 - for each device description there is one or more ClusterID.

Attribute

 Is a data entity, which represents a physical quantity or state. The data is communicated to other devices using commands.

AF Frame Format

Endpoints

- Endpoints are a logical extension added to a single ZigBee radio which permits support for multiple applications, addressed by the Endpoint number (1-240)
- To each subunit is assigned its own specified endpoint in the range [1-240]
- The Endpoint 0x00 is reserved for device management (ZDO) and is used to address the descriptors in the node
- The Endpoint 0xFF is used to address all active endpoints (broadcast endpoint) on a given node
- For each endpoint there is a **Device Description**
 - Es. "the light sensor monochromatic"

Zigbee Scenario Example

Binding

- Logical links between complementary application devices and endpoints
 - Es. "Thermostat" binds with "furnace controller".
- The binding table stores the information of clusters bounded among nodes.

- 1. Direct Binding (source binding)
 - Binding info in the source
- 2. Indirect Binding (Binding Cashing)

(Binding info in ZR o ZC)

Advanced System Technology

Device and Service Discovery

Device discovery (other ZigBee device by query)

Service discovery

- Discovery of the services available on endpoints
 - By query for each endpoint on a given device
 - By using a match service feature (broadcast or unicast)
 - By having devices announce themselves

Utilizes the complex, user, node, or power descriptors

ZigBee Descriptors

- Used to describe the ZigBee device
 - Mandatory
 - Node
 - Contains infos about the capabilities of the ZigBee node (one per device)
 - (Logical type, APS flag, frequency band, MAC flag, Manufacturer code, max buffer and transfer sizes)
 - Node power
 - Gives Node dynamic indication of the power status of the node (one per device)
 - (Current power, available power sources, current power sources, current power source levels)
 - Simple
 - Contains information specific to each endpoint contained in the node (one per active endpoint)
 - (Endpoint, ProfileID, Device ID and version, input cluster count and list, output cluster count and list)
 - Optionals
 - Complex
 - Extended infos for each device descriptors contained in the node (one per active endpoint)
 - (manufacturer name, model name, serial number, Device URL, Icon URL..)
 - User
 - User-definable information
 - (contains information that allows the user to identify the device by using user-friendly character string

ZigBee Device Profile

ZDP

- Scope
 - To describe how general ZigBee device features such Binding, Device Discovery and Service Discovery are implemented within ZDOs.
 - The Device Descriptions and Clusters defined here, define capabilities that shall be supported in all ZigBee devices
- Services
 - Device and Service Discovery (Mandatory)
 - End Device Bind, Bind and Unbind
 - Network Management (Mandatory)
 - Node management
 - Security management

Summary of ZigBee Application Model

- Devices are modeled through Application Objects that are associated to the Endpoints
- Application Objects communicate through the exchange of Clusters and Attributes
- Each Profile Object can contain single or multiple Clusters and Attributes
- Binding mechanism between endpoints ensures interoperable exchange of Clusters/Attributes
- Messaging is
 - Direct addressing
 - Knowledge of the address, endpoint of the target device is required.
 - Binding is not a prerequisite
 - Indirect addressing
 - Binding management is required.
 - Indirect addressing is specified via APSDE-SAP
 - Broadcast addressing
 - Broadcast to all endpoints on a given destination address (application broadcast)
 - Broadcast flag is set in APS frame control field
- Generic ZigBee device functions are provided through ZigBee Device Objects

Left Behind

- Many features on PHY, MAC, Network and Application Layers
- Security Features (@ MAC, Network and Application Layers)
- Support Tools
 - Application Profile Editors
 - Commissioning Tools
- New Features for next version

