

Design Challenges

Luca Mazzoni ACCENT – DICO Apr 04

Introduction

Accent Design Technology Services

www.accent.it mar-04

Change Factors

Time to Volume

Convergence of terminals

15

20

Shrinking life time

Consumerization of business

- Continuous upgrade/modification of products
- Brand recognition
- Distribution channels
- Increased margin pressure
- Unpredictable market cycles

Accent **Design Technology Services**

5

The Driver for New Opportunities

Technology Directions

I'm smiling

because I was right

In 1965, Gordon Moore predicted that transistors would continue to shrink, allowing:

O Doubled transistor density every 18-24 months

O Doubled performance every 18-24 months

History has proven Moore right

o for the past 30 years Moore's Law has been a consistent indicator of semiconductor product trends

□ But, is the end in sight?

Physical limitationsEconomic limitations

Gordon Moore Intel Co-Founder and Chairmain Emeritus Image source: Intel Corporation www.intel.com

The Algorithmic Driving Force

Shannon asks for more than Moore can deliver...

Ideas made

rea

Technology Directions: SIA Roadmap

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ²)	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

Industry Association (SIA) annually publishes and maintains its International Technology Roadmap for Semiconductors (ITRS).

The Power Challenge

Motivation - Power and Reliability

Hard Failures

- O $T_j = Ta + (P * Q_{ja})$ O MTPE - f(T)
- MTBF = $f(T_j)$
- **Given Soft Failures**
 - Power Bus IR drop
 - Power Bus di/dit

The increment of Junction temperature by 10°C implies the 50% MTBF decrement

source: Intel Components Quality and Reliability Handbook

Motivation – Save Power, Save Money

The Cooligy system

- □ At 90 and 65 nanometers, the hot spots get too small for passive cooling technologies
- The fastest chips can go as high as 75 degrees C to 95 degrees C
- □ It can handle 1,000 watts per square centimeter; today's best passive cooling systems are specified for 250 W/cm2,
- Uses an electrokinetic pump to circulate water from the chip to the radiator. A silent and reliable solution

source: www.cooligy.com

Comparison of gravimetric and volumetric energy density of lithium secondary cells with aqueous electrolyte-based systems

250

Battery technology has improved very slowly, and only a 20% improvement in capacity is expected over the next 10 years.

12

- Deep sub-micron technology
 - smaller geometries ⇒ higher device densities, clock frequencies
 - high density chips: greater power consumption in spite of lower voltage supply
 - reliability issues (IR drop, heat dissipation, electromigration ..)
 - electromagnetic compatibility (RF shielding and de-coupling components)
- High-power consumption
 - rack-mounted computing systems, commercial servers (3kW)
- Portable applications
 - Mobile User paradigm, "Optimally Connected Anywhere, Anytime"
 - constraint is battery life-time (10-15% increase per year)
 - Second order effect is that higher current draws decrease effective battery energy capacity

Summary of Motivations

Ideas made

- Innovative applications
 - Micromechanics, smart sensors, bioinformatics, genetics, healthcare...
- Financial
 - Reducing packaging, PCB, power supply, heat-sink costs (high volumes)
 - Achieving energy savings
- O Reliability
 - Power dissipated as heat, higher temps reduce speed and reliability
 - Current draw causes IR drops in power supply voltage
 - Switching current (dl/dT) causes inductive power supply voltage bounce µ Ldl/dT

www.accent.it mar-04

Constant Design Squeeze

Ideas made

Low Power Design Challenge

Accent Design Technology Services

www.accent.it mar-04

The challenge

"To design an electronic system (HW *and* SW) that provides the target functionality with minimum power consumption"

The solution

From the system concept down to the implementation phase, adopt a design style that includes power consumption as a figure of merit, and exploit all the opportunities and techniques available at each design level to reduce it

Power saving opportunities

Power Ingredients

real

- Dynamic Dissipation $P_{dyn} = aC_L V_{DD} F$
- Short-Circuit Currents
 - $\boldsymbol{P_{sc}} = \boldsymbol{V_{DD}}\boldsymbol{I_{sc}}$
- Static Dissipation
 - $P_{stat} = V_{DD} I_{leak}$

Coming soon (90 and 65 nm):

 Gate leakage, a tunnelling current through gate oxide insulation

Trends of Power Dissipation in Temperature

System / Application level optimization

Accent Design Technology Services

www.accent.it mar-04

□ Analyze the target application

- how the user exercises the device
- how the environment exercises the device

Detect functional states; profile their power consumption; modify/introduce new execution modes that consume less power

- find out opportunities for working at lower *energy* cost
- E.g. turn off the display's backlight of a portable music player
- E.g. use lower precision/resolution
- ✓ E.g. introduce dynamic power managers

- Display no/small images
- MP3 full/lossy decompression
- (turn the monitor off, stop/slow down hard disk spinning etc)

This approach brings biggest savings, but solutions are specific
 customize general indications for the case in hand
 your
 Ideas made

Project objective:

add an *efficient* and *unified power management strategy* on each electronic controller unit to reduce power consumption in stand-by mode

System Solution

Architecture level

Dynamic Power & Energy Management

Accent Design Technology Services

www.accent.it mar-04

Opportunities for

power optimization

An electronic system is a combination of:

- Hardware:
 - Computation/storage/communication units, peripherals
- Software :
 - Application code and system (O.S., stacks, HAL) code
- **Energy is required by all hardware units**
- Software organization affects how hardware consumes energy

System Dynamic Power Management controls all the units

O O.S., HW power manager

Ideas made

□ HW/SW codesign: allocate processing elements

- Choose the most power efficient IPs
 - RISC, DSP, Configurable Processors, Reconfigurable Coprocessors
 - Dedicated processing engines (multimedia codec, baseband modules)
 - Memories, memory interfaces, I/O interfaces...

Explore the bindings between functional tasks and processing elements; try scheduling the tasks

structural approach (platform extension and optimization)

Dynamic Power Management (1/2)

- □ Circuits and systems are:
 - Designed to deliver peak performance, but ... do not need peak performance most of the time
- **Dynamic Power Management (DPM):**
 - Shut-down idle components
 - clocks off / supply off
- Dynamic Energy Management (DEM):
 - Reduces Energy/Charge consumption by dynamically adapting performance levels to the current workload

 \Rightarrow Dynamic Voltage Scaling (DVS):

Dynamic Power has a x² dependency on supply voltage

slow-down components - scale frequency and voltage

Problem:

- Analyze how the system is managed dynamically
- Power control policies (predictive, adaptive...)

Ideas made

Episode classification

Interactive (Acrobat Reader), Producer (MP3 playback), and Consumer (sound daemon) episodes.

In devices with an Embedded Operating System, the OS knows which tasks are running or waiting. It can therefore, perform the DPM decisions...

... but HW should provide full control to SW

- Memory mapped activity monitors /exception triggers
- Memory mapped clock gating enable/disable and frequency scaling
- Wake-up module with programmable sources
- Snooping logic (wake-up conditions)
- Level shifters at the voltage domain boundaries
- Control interface to drive external Voltage Regulator

Dynamic Battery Management

Maximize battery elapsed and total life-time by applying DPM closed loop control based on battery's behaviour (residual charge, time to empty,etc.)

ACCENT Adaptive Power Management DESIGN TECHNOLOGY SERVICES 100% Required processing 0% speed 100% Traditional Power on/off consumption 0% Traditional on/off Energy taken from the battery Adaptive power management Ideas made Time rea Accent **Design Technology Services** www.accent.it mar-04 34

Voltage and F scaling save energy

□ Just-in-time computation

• Stretch execution time up to the max tolerable

able **Ideas** made

Variable-supply Architectures

- High-efficiency adjustable DC-DC converter
- Adjustable synchronization
 - Variable-frequency clock generator [Chandrakasan96]
 - Self-timed circuits [Nielsen94]
- **Example:** Power-pro architecture, Crusoe embedded processor

Power Savings in a Baseband

www.accent.it mar-04

Intel Mobile Pentium

Table 1: Maximum Performance vs. Battery Optimized Mode

Maximum Performance Mode			Battery Optimized Mode			
Frequency	Voltage	Max. Power Consumption	Frequency	Voltage	Max. Power Consumption	
500 MHz**	1.1 V	8.1 VV	300 MHz	.975 V	4.5 W	
600 MHz**	1.1 V	9,7 W	300 MHz	.975 V	4.5 W	
600 MHz*	1.35 V	14.4 W	500 MHz	1.10 V	8.1 W	
600 MHz	1.6 V	20.0 W	500 MHz	1.35 V	12.2 W	
650 MHz	1.6 V	21.5 W	500 MHz	1.35 V	12.2 W	
700 MHz	1.6 V	23.0 W	550 MHz	1.35 V	13.2 W	
750 MHz	1.35 V	17.2 W	500 MHz	1.10 V	8.1 W	
750 MHz	1.6 V	24.6 W	550 MHz	1.35 V	13.2 W	
800 MHz	1.6 V	25.9 W	650 MHz	1.35 V	15.1 VV	
850 MHz	1.6 V	27.5 W	700 MHz	1.35 V	16.1 W	
900 MHz	1.7 V	30.7 W	700 MHz	1.35 V	16.1 W	
1 GHz	1.7 V	34.0 W	700 MHz	1.35 V	16.1 W	

source: Intel

Ideas made

A glance to batteries

- While waiting for reliable Power Scavenging techniques...
 Let's model the Battery :
 - traditional techniques for low power design assume a constant voltage supply that delivers a fixed amount of energy
 - not valid for battery-operated devices
 - the higher the average discharge current, the higher the energy waste of the battery (see constant current load)

A glance to batteries

- Actual battery life-time depends also on the profile (over time) of the current load
 - A smaller average current can discharge the battery faster than a larger one, if current levels are more skewed from the average value
- **Battery models:** discrete time model (VHDL) for Lithium-Ion batteries:
 - first order effect (state of charge, discharge rate and frequenc y)
 - second order effect (output resistance, temperature)

useful for battery behavior analysis and design exploration !

- Monitor the State of Charge (SOC) of the battery and decide when reduced power states are entered
- □ it can be combined with work-load driven policies
- **Example: MP3 Digital Audio Player Battery Driven DPM**
 - SOC above 50% (i.e. Vdd > 3.7 V)
 Full decompression (44KHz samples/s, 128 kbps, 87mW)
 - SOC between 50% and 20% (i.e. Vdd > 3.3 V)
 Lossy decompression (22.05KHz samples/s, 64 kbps, 50mW)
 - SOC below 20% (i.e. Vdd < 3.3 V)
 sleep (1 mW)

No WDDPM		WDDPM
No BDDPM	66683	89570
BDDPM	74340	100457

Low Power Design Techniques SW

Accent Design Technology Services

www.accent.it mar-04

The crucial question

www.accent.it

• How much is the power?

47

The design flow

To realize the target functionality, select the most energy-efficient way to implement the processing algorithm, among those ways that respect area/timing constraints

Different Memory usage

Trade off processing speed and memory area

- Data type, data flow, flow control
 - Array, pointer array, binary array, linked list
- SW writing style and techniques (see later)

- Datapath plus controller unit
- Many degrees of freedom: parallelism, pipeline stages, computation precision, etc
 your
 Ideas made

Accent **Design Technology Services**

Embedded SW Coding

Software coding guidelines: minimize power due to data transfer and data processing

- SW data organization (e.g. stack, heap, data placement) \mathbf{O}
- Reinforce spatial and temporal locality (e.g. caches) \mathbf{O}
- Loop transformations \mathbf{O}
- Abstract data type to minimize memory power \mathbf{O}
- Coding style Ο
- Exploit ISA specific instructions \mathbf{O}
- Compiling techniques \mathbf{O}
- Code density optimization \mathbf{O}
- Exploit underlying system architecture Ο

play major role due to traffic reduction

✓ **better** results

Software optimizations

High level

Linear loop transformations

- Loop permutation
- Loop skewing
- Loop reversal
- O Loop scaling
- Iteration space tiling
- Multi-loop transformations
 - Loop Fusion/Fission

Compiler options: fast code usually consumes less

Ex: MPEG4 decoder

- □ Source code optimizations give as much as 32.3% energy savings
- Compiler optimizations account for only 0.6% energy savings

Low level

- Instruction selection
- Reorder instructions
 - Reduce inter-instruction effects
 - to minimize Hamming distance
- Register assignment
 - Minimize spills to memory

Low Power Design Challenges Conclusions

Accent Design Technology Services

www.accent.it mar-04

Conclusion: think low power

- □ Low power design methodology is a way to approach the system specification and design, a coherent design style.
- □ It requires cross-area competences, a global vision of HW/SW, and a concurrent engineering process
 - Even more mandatory for VDSM technologies (0.09um and beyond)

□ Applying ideas

- Identify opportunities as early as possible in the design flow
- Design the SW components/mechanisms to exploit them
- Design the HW components/mechanisms to exploit them

□ Complete and coherent design methodology

- Combine EDA tools in a robust design flow
- Check that EDA tools are able to apply specific features
 - Sometimes they do not work
 - Change the design entry to let the tool work
 - Find workarounds, e.g. by driving the tool with TCL scripts
- Continuously experiment new tools

