I MEZZI TRASMISSIVI ELETTRICI

Pietro Nicoletti

Pietro.Nicoletti@torino.alpcom.it

Pier Luca Montessoro

Montessoro@uniud.it

http://www.uniud.it/~montessoro

Nota di Copyright

- Questo insieme di trasparenze (detto nel seguito slides) è protetto dalle leggi sul copyright e dalle disposizioni dei trattati internazionali. Il titolo ed i copyright relativi alle slides (ivi inclusi, ma non limitatamente, ogni immagine, fotografia, animazione, video, audio, musica e testo) sono di proprietà degli autori indicati a pag. 1.
- Le slides possono essere riprodotte ed utilizzate liberamente dagli istituti di ricerca, scolastici ed universitari afferenti al Ministero della Pubblica Istruzione e al Ministero dell'Università e Ricerca Scientifica e Tecnologica, per scopi istituzionali, non a fine di lucro. In tal caso non è richiesta alcuna autorizzazione.
- Ogni altra utilizzazione o riproduzione (ivi incluse, ma non limitatamente, le riproduzioni su supporti magnetici, su reti di calcolatori e stampate) in toto o in parte è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori.
- L'informazione contenuta in queste slides è ritenuta essere accurata alla data della pubblicazione. Essa è fornita per scopi meramente didattici e non per essere utilizzata in progetti di impianti, prodotti, reti, ecc. In ogni caso essa è soggetta a cambiamenti senza preavviso. Gli autori non assumono alcuna responsabilità per il contenuto di queste slides (ivi incluse, ma non limitatamente, la correttezza, completezza, applicabilità, aggiornamento dell'informazione).
- In ogni caso non può essere dichiarata conformità all'informazione contenuta in queste slides.
- In ogni caso questa nota di copyright non deve mai essere rimossa e deve essere riportata anche in utilizzi parziali.

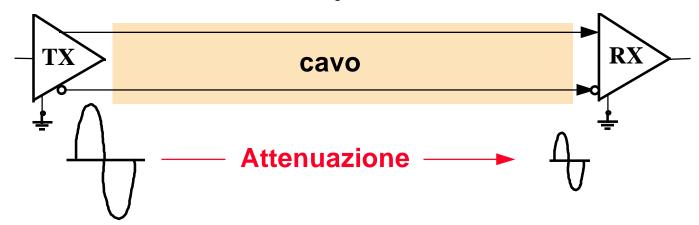
- Il mezzo trasmissivo elettrico ideale ha le seguenti caratteristiche:
 - resistenza bassa
 - capacità bassa
 - induttanza bassa
- Ovvero è un mezzo non dispersivo e non dissipativo:
 - tutta la potenza inviata sul canale dal trasmettitore arriva al ricevitore
 - il segnale non viene distorto passando nel canale

- Le caratteristiche principali di un mezzo trasmissivo sono:
 - Vp: velocità di propagazione del segnale espresso come frazione di c (velocità della luce nel vuoto):
 - valori compresi tra 0.5 e 0.8 c
 - Z = R + jl impedenza della linea
 - dimensione dei conduttori
 - unità di misura americana AWG
 - in funzione della resistività del conduttore permette di calcolarne la resistenza

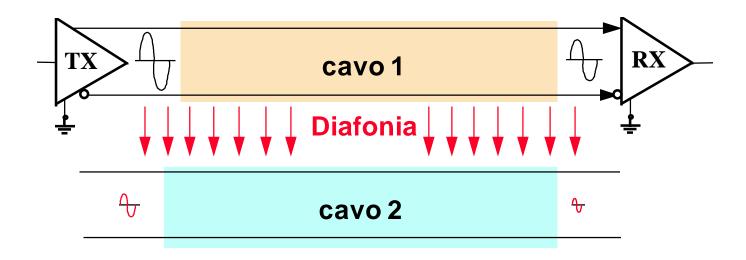
- Scala per misurare la dimensione dei fili di rame
- È una regressione geometrica
 - con 39 valori compresi nell'intervallo 000 gage (0.460 inch di diametro) e 36 gage (0.005 inch di diametro)
- Ogni incremento di un gage corrisponde ad un rapporto tra i diametri di:

$$\left(\frac{0.460}{0.005}\right)^{1/39} = 92^{1/39} = 1.229322$$

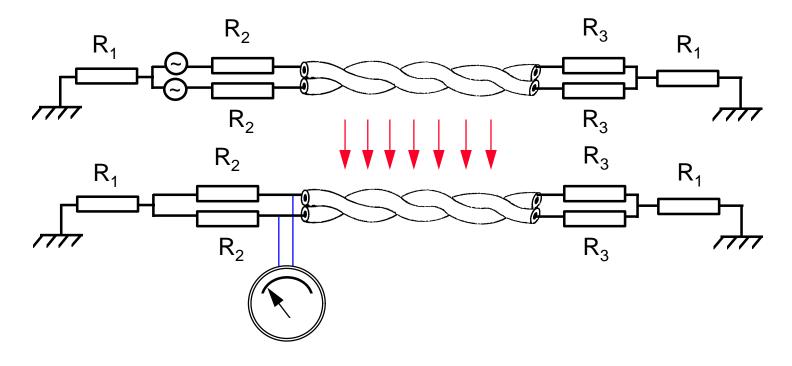
- 24 o 22 AWG per il cablaggio strutturato
- 26 AWG per i cavetti di permutazione


AWG	mm (Ø)	mm ²	Kg/Km	Ω/Km
22	0.6438	0.3255	2.894	52.96
23	0.5733	0.2582	1.820	84.21
24	0.5106	0.2047	1.746	87.82
25	0.4547	0.1624	1.414	108.4
26	0.4049	0.1288	1.145	133.9

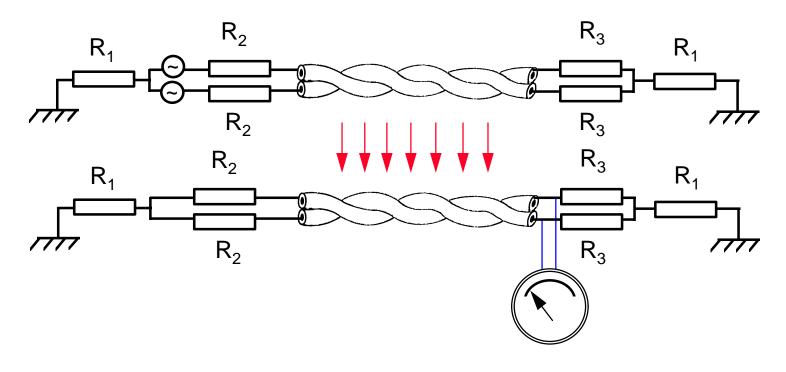
- Le caratteristiche elettriche dipendono da:
 - caratteristiche meccaniche e geometriche del cavo:
 - numero dei conduttori e loro diametro
 - distanza dei conduttori
 - concentricità tra conduttore e isolante
 - presenza di schermi
 - materiali usati nella costruzione, sia conduttori che isolanti, i quali determinano:
 - costante dielettrica
 - permeabilità magnetica
 - conduttanza



- L'attenuazione è la riduzione di ampiezza del segnale di uscita di un cavo rispetto al segnale di ingresso:
 - cresce in dB linearmente con la lunghezza del cavo e con la radice quadrata della frequenza
 - per ridurre l'attenuazione dei cavi si usano spesso isolanti espansi, che per la presenza di aria, ne riducono la capacità



- La diafonia (cross-talk) è la misura di quanto un cavo disturba quello vicino, espressa quindi in dB negativi:
 - per praticità viene normalmente data come attenuazione di diafonia e quindi espressa in dB positivi


NEXT: Near End Cross-Talk

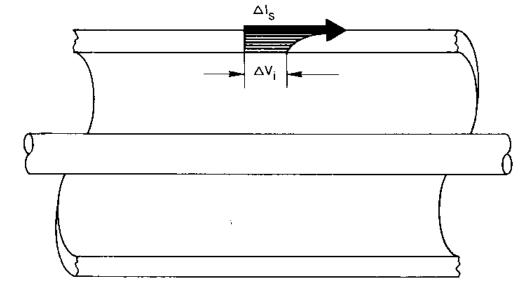
- NEXT o paradiafonia:
 - misura del segnale indotto sul un cavo vicino, effettuata dalla stessa parte del trasmettitore

FEXT: Far End Cross-Talk

- FEXT o telediafonia:
 - misura del segnale indotto sul un cavo vicino, effettuata all'estremità opposta del trasmettitore

- L'impedenza di un cavo deve rimanere entro determinati limiti rispetto al valore nominale lungo tutto il cavo
 - variazioni di impedenza comportano riflessione di segnale, attenuazione ed interferenze
- Fattori che possono compromettere la corretta impedenza del cavo:
 - centratura del conduttore centrale rispetto all'isolante lungo tutto il cavo
 - schiacciamenti lungo il cavo, che ne variano la geometria, dovuti a:
 - difetti di fabbricazione in fase di cordatura
 - stiramento del cavo in fase d'installazione

- La presenza di schermi può comportare:
 - maggiore immunità ai disturbi elettromagnetici
 - riduzione dell'emissione di radio disturbi
 - maggior costanza dell'impedenza
 - se applicata a singole coppie riduce la diafonia
- È necessario effettuare una corretta messa a terra degli schermi:
 - problema non banale in quanto le frequenze possono essere molto alte



- Foglio (foil):
 - foglio sottile di mylar alluminato che avvolge il cavo sotto la guaina di protezione esterna.
 - questi cavi vengono spesso chiamati foiled
- Calza (braid):
 - trecciola di fili di rame che avvolge il cavo
 - ha una conducibilità migliore del foglio di alluminio, ma la copertura non è completa
- Foglio più calza:
 - è la schermatura migliore, ma aumentano le dimensioni e il costo del cavo

Impedenza di trasferimento

- È il parametro che indica l'efficacia della schermatura
 - è il rapporto tra la corrente indotta sulla superficie esterna dello schermo e la tensione che si sviluppa sulla superficie interna

$$Z_t(\Omega) = \frac{\Delta V_i}{\Delta I_s}$$

- Per ridurre i danni provocati da un incendio i cavi possono essere costruiti con le seguenti caratteristiche:
 - flame retardant: propagazione ritardata della fiamma
 - low smoke fume (LSF): bassa emissione di fumi
 - zero halogen (OH): assenza di emissione di gas tossici
- Cavi di tipo plenum:
 - resistono ad alte temperature
 - non propagano l'incendio, ma carbonizzano
 - carbonizzando emettono gas altamente tossici

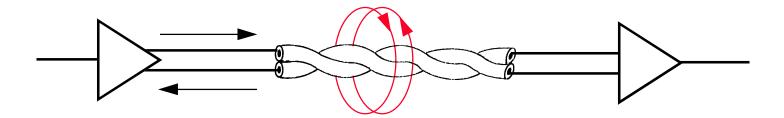
- Il cavo ideale alle alte frequenze ha:
 - bassa attenuazione e bassa diafonia
 - per ottenere queste caratteristiche un cavo deve avere:
 - elevata dimensione del conduttore interno
 - buona spaziatura tra i conduttori
 - bassa costante dielettrica (idealmente aria)
 - coppie schermate singolarmente e globalmente
 - cavi con tali caratteristiche sono ingombranti, pesanti, difficili da posare e facilmente incendiabili
- La scelta è sempre di compromesso

- È costituito da:
 - un conduttore centrale
 - una parte isolante concentrica al conduttore, sovente costituita da un materiale espanso che ne migliora la capacità
 - uno o più schermi

- Caratteristiche principali del cavo coassiale:
 - sistema trasmissivo adattato in impedenza
 - banda passante sino ad 1 GHz, idonea per trasmissioni con tecnica FDM
 - connessione con tecniche a:
 - crimpare
 - vampiro
 - fissaggio con morsetto a vite
- Viene impiegato principalmente:
 - nella TV via cavo (CATV)
 - impedenza 75Ω
 - nelle reti locali
 - impedenza 50Ω

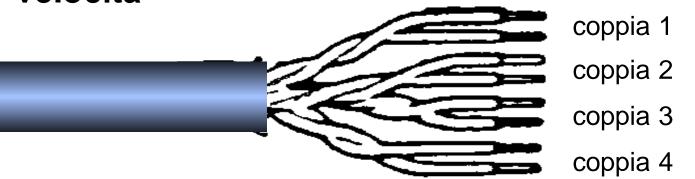
- Utilizzato nelle reti Ethernet 10Base5 (tipo RG213).
 - Costituito da:
 - un conduttore centrale in rame di tipo solido
 - isolante in materiale espanso o compatto (teflon)
 - due schermi in foglio di alluminio
 - due schermi in calza

- Utilizzato nelle reti Ethernet 10Base2 (tipo RG58).
 - Costituito da:
 - un conduttore centrale in rame di tipo trefolato
 - isolante in materiale espanso o compatto
 - uno schermo in foglio di alluminio
 - uno schermo in calza
 - Attenuazione 2.7 volte superiore al cavo Thick

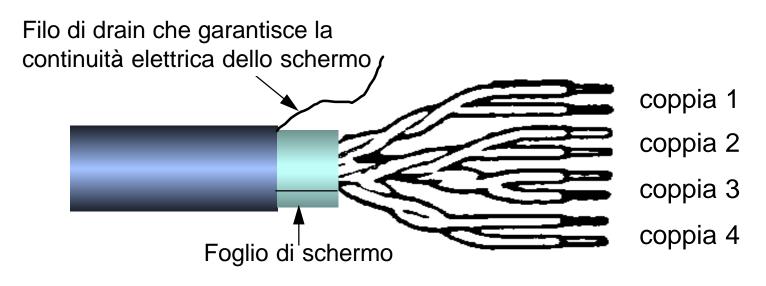


- Costituito da una o più coppie (pair) di conduttori di rame ritorti (binati, twisted)
- Impegato in fonia, reti locali, cablaggio strutturato
 - le caratteristiche elettriche richieste per impiego sulle reti locali sono nettamente superiori a quelle per impieghi di sola fonia
- Banda passante più bassa del coassiale
- Costi ridotti e installazione semplice

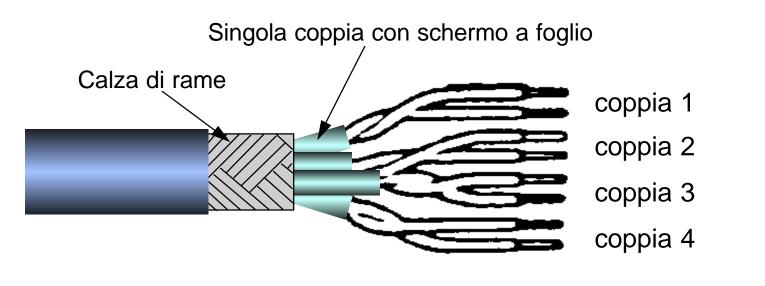
- La binatura serve per far sì che mediamente i campi elettromagnetici esterni agiscano in egual modo sui due conduttori
 - una tecnica di trasmissione differenziale elimina i disturbi


Passi di binatura differenziati servono per ridurre la diafonia (cross-talk) tra le coppie

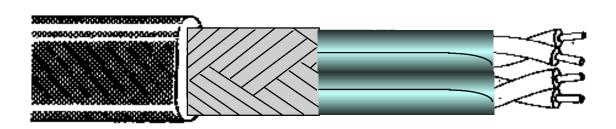
- UTP (Unshielded Twisted Pair):
 - doppino non schermato ($Z = 100\Omega$)
- FTP (Foiled Twisted Pair):
 - doppino con schermo globale in foglio di alluminio ($Z = 100\Omega$)
- S-UTP o S-FTP:
 - doppino con schermo globale costituito da un foglio di alluminio e da una calza in rame ($Z = 100 \Omega$)
- STP (Shielded Twisted Pair):
 - doppino con singole coppie schermate più schermo globale (Z = 150Ω)



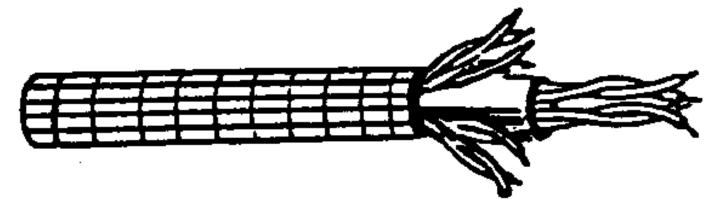
- A una coppia o due coppie utilizzato tipicamente per fonia
- A quattro coppie utilizzato nel cablaggio strutturato
- Multicoppie (10, 20, 25, 50, 100, 300 coppie) utilizzato normalmente sulle dorsali fonia, a volte su dorsali dati a basse o medie velocità


Cavo FTP a 100Ω

- A quattro coppie con schermo globale in foglio utilizzato nel cablaggio strutturato
- Multicoppie 25 coppie (difficilmente si trova con un maggior numero di coppie) utilizzato normalmente sulle dorsali fonia, a volte su dorsali dati a basse o medie velocità



- A quattro coppie singolarmente schermate in foglio più schermo globale in calza di rame
 - utilizzato nel cablaggio strutturato
 - ridottissima diafonia tra le coppie, costo elevato, difficile da intestare sui plug RJ45 schermati



- Conosciuto come cavo di Tipo 1 IBM
 - come cavo Tipo 1 IBM viene testato fino a 20 MHz
 - come cavo STP o STP-A viene testato fino a 100 MHz (STP ISO/IEC IS 11801) o 300 MHz (STP-A TIA/EIA 568A)
 - è formato da due coppie singolarmente schermate a foglio più uno schermo globale in calza di rame
 - dimensione dei conduttori 22 AWG

- È costituito da un cavo di Tipo 1 IBM con l'aggiunta di 4 coppie non schermate da 100 Ω che possono essere utilizzate per fonia o Ethernet 10BaseT
 - pensato per il Cabling System IBM come soluzione integrata dati (2 coppie a 150Ω) e fonia (4 coppie a 100Ω)

- Cavo a 150 Ω con due coppie singolarmente schermate in foglio e schermo globale in calza di rame
 - utilizzato come cavetto di permutazione nel Cabling System IBM
 - i conduttori sono di tipo trefolato ed hanno una dimensione di 26 AWG

- Impieghi inerenti alle 5 categorie di cavi:
 - categoria 1: per telefonia analogica
 - categoria 2: per telefonia digitale a trasmissione dati a bassa velocità (linee seriali)
 - categoria 3: reti locali che non producano frequenze fondamentali superiori a 12.5 MHz
 - Ethernet 10BaseT e 100BaseT4, Token Ring 4 Mb/s, 100VG AnyLan su 4 coppie
 - categoria 4: reti locali che non producano frequenze fondamentali superiori a 20 MHz
 - Token Ring 16 Mb/s
 - categoria 5: reti locali che non producano frequenze fondamentali superiori a 32 MHz
 - FDDI MLT-3, Ethernet 100BaseTX, 100VG AnyLan su 2 coppie

- Gli standard TIA/EIA 568A e ISO/IEC IS 11801 definiscono quattro categorie di cavi:
 - cavi di categoria 3: testati fino a 16 MHz
 - cavi di categoria 4: testati fino a 20 MHz
 - cavi di categoria 5: testati fino a 100 MHz
 - **cavo STP 150** Ω
 - testato fino a 100 MHz secondo lo standard ISO/IEC IS 11801 e denominato STP
 - testato fino a 300 MHz secondo lo standard TIA/EIA 568A e denominato STP-A
 - da considerarsi come categoria 5 sebbene abbia caratteristiche elettriche superiori

UTP/FTP: caratteristiche elettriche

Caratteristiche del cavo			Categoria del cavo		
Caratteristiche Elettriche @ 20 °C	Unità di Misura	MHz	3	4	5
Impedenza	Ω	1÷16 1÷20 1÷100	100 +/- 15	100 +/- 15	100 +/- 15
Mutua capacità di ogni coppia	nf / 100 m	0.1	6.57	5.59	5.59
Velocità di Propagazione			0.6 c	0.6 c	0.6 c
massimo valore di Resistenza	Ω / 100 m		9.4	9.4	9.4

Caratteristiche del cavo			Categoria del cavo			
Caratteristiche Elettriche @ 20 °C	Unità di Misura	MHz	3	4	5	
Attenuazione massima ammessa	dB / 100 m	0.064 0.256 0.512 0.772 1 4 8 10 16 20 25 31.25 62.5 100	0.92 1.31 1.84 2.23 2.56 5.59 8.55 9.86 13.15 - -	0.75 1.11 1.51 1.87 2.13 4.27 6.25 7.23 8.88 10.2 - -	0.72 1.05 1.48 1.81 2.07 4.27 5.92 6.57 8.22 9.21 10.52 11.84 17.11 22.04	

UTP/FTP: diafonia

Caratteristiche del cavo			Categoria del cavo		
Caratteristiche Elettriche @ 20 °C	Unità di Misura	MHz	3	4	5
Near End Crosstalk (NEXT), minimo valore ammesso	dB@100 m	0.150 0.772 1 4 8 10 16 20 25 31.25 62.5 100	54 43 41 32 28 26 23 - - -	68 58 56 47 42 41 38 36 -	74 64 62 53 48 47 44 42 41 40 35 32

Caratterist	Cavo STP a 150 Ω		
Caratteristiche Elettriche @ 20 °C	a 130 52		
Impedenza	Ω	1÷100	150 ± 15
massima capacità tra una coppia sbilanciata e la terra	pf / 100 m	0.001	100
massima impedenza di trasferimento	mΩ/m	1 10	50 100
Velocità di Propagazione minima			0.6 c
massimo valore di Resistenza	Ω / 100 m		6

Caratterist	Cavo STP a 150 Ω		
Caratteristiche Elettriche @ 20 °C			
Attenuazione massima ammessa	dB / 100 m	4 8 10 16 20 25 31.25 62.5 100	2.2 3.1 3.6 4.4 4.9 6.2 6.9 9.8 12.3

Caratteris	Cavo STP		
Caratteristiche Elettriche @ 20 °C	11113 311 31		
Near End Crosstalk (NEXT), minimo valore ammesso	dB@100 m	4 8 10 16 20 25 31.25 62.5 100	58 54.9 53 50 49 47.5 46 41 38