
Reinforcement Learning

Model-Free RL

Lecturer: Nicolò Cesa-Bianchi version February 11, 2024

This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

Generally speaking, we can distinguish two main tasks in RL:

1. Prediction is concerned with computing V π given π. Hence, we want to measure how good
is a policy with respect to a certain evaluation criterion (e.g., finite, infinite or discounted
horizon). This is akin to estimating the statistical risk of a predictor in supervised learning.

2. Control is concerned with learning the optimal policy π∗. This is akin to learning the Bayes
optimal predictor in supervised learning.

In model-free RL, we avoid learning the structure of the MDP. Rather, we directly learn the
optimal policy by interacting with the MDP. There are two main approaches: methods based on
policy iteration and methods based on value iteration.

• Policy iteration methods: Recall that policy iteration methods loop over two phases:
policy evaluation, where V π is computed for the current policy π, and policy improvement,
where π is updated. Using a traditional terminology, we call critic the block that performs
policy evaluation and actor the block that performs policy improvement. The main algorithm
used to implement the critic block is TD(λ).

Policy Improvement
(actor)

Policy Evaluation
(critic)

Environment

• Value iteration methods: These methods use online versions of value iteration. They can
be off-policy (Q-learning) when they learn the optimal policy by observing the trajectory gen-
erated by a different policy, or on-policy (SARSA) when the policy generating the trajectories
converges to the optimal policy.

We consider the discounted infinite horizon criterion and focus on MDP with finite state space S,
finite action space A such that A(s) = A for all s ∈ S, transition kernel {p(· | s, a) : s ∈ S, a ∈ A},
and time-independent reward function r : S ×A → [−1, 1].

A stochastic policy π is fully mixed if πt(a | s) > 0 for all t ≥ 0 and all (s, a) ∈ S ×A.

1

A Markov chain is irreducible if for any two states s, s′, there is a non-zero probability of going
from s to s′ in a finite number of steps. As a consequence, every state of an irreducible Markov
chain is visited infinitely often with probability 1.

An MDP is communicating if the Markov chain induced by any stationary fully mixed policy is
irreducible.

The MDP below here, with two states s, s′ and a single action a is non-communicating because
state s is absorbing: the probability of going from s to s′ in any number of steps is zero.

s s′a, 1 a, 12

a, 12

The next result states that if any stationary fully mixed policy ensures that all states are visited
infinitely often, then even nonstationary fully mixed policies have the same guarantee.

Theorem 1 The Markov chain induced on a communicating MDP by any (possibly nonstationary)
fully mixed policy is irreducible.

By definition of fully mixed policy, we also have that every state-action pairs (s, a) ∈ S ×A occurs
infinitely often. This will be key to prove the convergence of Q-learning and SARSA.

Recall the action-value function Qπ : S ×A → [−1, 1] for a stationary Markov policy π,

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

V π(s′)p(s′ | s, a)

This is the expected return of executing action a in state s and then following policy π.

Similarly to the Bellman system of equations for the optimal state-value function V ∗,

V ∗(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

)
s ∈ S

we can define a corresponding system for the optimal action-value function Q∗ = Qπ∗
,

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)V ∗(s′) (s, a) ∈ S ×A

This is the expected return of executing action a in state s and then following the optimal policy
π∗. Clearly, Q∗ gives access to π∗ because

π∗(s) ∈ argmax
a∈A

Q∗(s, a) s ∈ S

Also, comparing the definitions of V ∗ and Q∗ we get

V ∗(s) = max
a∈A

Q∗(s, a) s ∈ S

2

and so we obtain

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)max
a′∈A

Q∗(s′, a′) (s, a) ∈ S ×A

The above is equivalent to

Q∗(s, a)− r(s, a)− γ E
[
max
a′∈A

Q∗(s′, a′)

∣∣∣∣ s, a] = 0 (1)

where the expectation is with respect to the draw of the next state s′ according to the distribution
p(· | s, a).

Q-learning. We now study the problem of learning Q∗ without knowing the transition kernel
p(· | s, a). Let Qt be the current guess for Q∗. Given any sequence of state-action pairs (st, at), we
could use the identity (1) and run gradient descent with respect the square loss function

ℓt(x) =
1

2

(
x− r(st, at)− γ E

[
max
a∈A

Qt(s, a)

∣∣∣∣ st, at])2

The gradient descent step is xt+1 = xt − ηt
d
dxℓt(xt), which for xt = Qt(st, at) takes the form

Qt+1(st, at) = Qt(st, at)− ηt

(
Qt(st, at)− r(st, at)− γ E

[
max
a∈A

Qt(s, a)

∣∣∣∣ st, at])
= (1− ηt)Qt(st, at) + ηt

(
r(st, at) + γ E

[
max
a∈A

Qt(s, a)

∣∣∣∣ st, at])
This looks fine, except that we cannot compute the expectation because the transition function
is unknown. The solution is to run gradient descent on a perturbed gradient, in which the
conditional expectation

E
[
max
a∈A

Qt(s, a)

∣∣∣∣ st, at]
is replaced by maxa∈AQt(st+1, a) where st+1 is drawn from p(· | st, at).

Algorithm 1 (Q-learning)

Input: Fully mixed policy π : S → ∆A, initial state s0 ∈ S
1: Set Q0(s, a) = 0 for all (s, a) ∈ S ×A
2: for t = 0, 1, . . . do
3: Observe action at ∼ π(· | st), reward rt = r(st, at) and next state st+1 drawn from p(· | st, at)
4: Update Qt+1(st, at) = (1− ηt)Qt(st, at) + ηt

(
r(st, at) + γmax

a∈A
Qt(st+1, a)

)
5: end for

Note that we learn Q∗ by running an arbitrary fully mixed policy π. For this reason, Q-learning is
called an off-policy learning algorithm.

The proof of convergence of Q-learning (and SARSA) is based on this result from the field of
iterative stochastic approximation.

3

Lemma 2 Let X be a finite set and consider the iterates F0, F1, . . ., where Ft : X → R for all
t ≥ 0, F0(x) = 0 for all x ∈ X , and

Ft+1(x) =
(
1− ηt(x)

)
Ft(x) + ηt(x)

(
H(Ft)(x) + νt + ζt

)
for some operator H on the space of functions F : X → R, for some sequence η0, η1, . . . such that
ηt : X → [0, 1] for all t ≥ 0, and for random variables νt and ζt for t ≥ 0. If the following properties
hold:

1. Stepsize For every x ∈ X ,∑
t≥0

ηt(x) = ∞ and
∑
t≥0

ηt(x)
2 < ∞

2. Noise For all t ≥ 0, E
[
νt | ν0, ζ0, . . . , νt−1, ζt−1

]
= 0 and |νt| ≤ M

3. Bias lim
t→∞

ζt = 0 with probability 1

4. Contraction There exist F ∗ and 0 ≤ γ < 1 such that for any F we have ∥H(F)− F ∗∥∞ ≤
γ ∥F − F ∗∥∞

Then
lim
t→∞

Ft(x) = F ∗(x) x ∈ X

with probability 1.

We now prove the convergence of Q-learning when ηt is a function ηt : S × A → [0, 1] of the
state-action pairs defined by

ηt(s, a) =
I{s = st, a = at}

Nt(s, a)
where Nt(s, a) =

t∑
τ=0

I{sτ = s, aτ = a} (2)

where ηt(s, a) = 0 for (s, a) ̸= (st, at).

Theorem 3 Assume that Q-learning is run with a fully mixed policy π on a communicating MDP.
Then

lim
t→∞

Qt(s, a) = Q∗(s, a) (s, a) ∈ S ×A

with probability 1.

Proof. We verify the conditions ensuring that we can apply Lemma 2. Let H be the operator
Q 7→ H(Q) acting on the set of functions Q : S ×A → R defined by

H(Q)(s, a) = r(s, a) + γE
[
max
a′∈A

Q(s′, a′)

∣∣∣∣ s, a] (3)

where the expectation is with respect to the random draw of s′ from p(· | s, a). Let also

νt = r(st, at) + γmax
a∈A

Qt(st+1, a)−H(Qt)(st, at)

4

Then
Qt+1(st, at) = (1− ηt)Qt(st, at) + ηt

(
H(Qt)(st, at) + νt

)
With our choice of ηt, and using the fact that, with probability 1, for each (s, a) ∈ S ×A there are
infinitely many t for which st = s, at = a, we have

∑
t≥0

ηt(s, a) =

∞∑
n=1

1

n
= ∞ and

∑
t≥0

ηt(s, a)
2 =

∞∑
n=1

1

n2
< ∞

As for the noise condition, it is easy to prove by induction on t = 0, 1, . . . that ∥Qt∥∞ ≤ 1
1−γ . Hence

|νt| ≤ 2
1−γ . Moreover,

E
[
νt | st, at

]
= γ E

[
max
a∈A

Qt(st+1, a)

∣∣∣∣ st, at]− γ E
[
max
a∈A

Qt(s, a)

∣∣∣∣ st, at] = 0

as st+1 and s are drawn from the same distribution p(· | st, at). Finally, because of (1), H(Q∗) = Q∗

and thus

∥H(Q)−Q∗∥∞ = ∥H(Q)−H(Q∗)∥∞

= γ max
s,a

∣∣∣∣E[max
b

Q(s′, b)−max
b′

Q∗(s′, b′)
∣∣∣ s, a]∣∣∣∣

≤ γ max
s,a

E
[∣∣∣max

b
Q(s′, b)−max

b′
Q∗(s′, b′)

∣∣∣ ∣∣∣∣ s, a]
where in the last step we used

∣∣E[X]
∣∣ ≤ E

[
|X|
]
that holds for any random variable X because the

absolute value is a convex function. Now consider
∣∣maxbQ(s′, b) − maxb′ Q

∗(s′, b′)
∣∣ and assume

maxbQ(s′, b)−maxb′ Q
∗(s′, b′) ≥ 0. Then∣∣max

b
Q(s′, b)−max

b′
Q∗(s′, b′)

∣∣ = max
b

Q(s′, b)−max
b′

Q∗(s′, b′)

≤ max
b

(
Q(s′, b)−Q∗(s′, b)

)
≤ max

b

∣∣Q(s′, b)−Q∗(s′, b)
∣∣

If maxbQ(s′, b)−maxb′ Q
∗(s′, b′) ≤ 0, then we proceed similarly to bound∣∣max

b
Q(s′, b)−max

b′
Q∗(s′, b′)

∣∣ = max
b′

Q∗(s′, b′)−max
b

Q(s′, b) ≤ max
b′

∣∣Q∗(s′, b′)−Q(s′, b′)
∣∣

Hence, in both cases we have

∥H(Q)−Q∗∥∞ ≤ γ max
s,a

E
[
max

b

∣∣Q(s′, b)−Q∗(s′, b)
∣∣ ∣∣∣∣ s, a]

≤ γ max
s′,b

∣∣Q(s′, b)−Q∗(s′, b)
∣∣ (because E

[
f(X)

]
≤ maxx f(x))

= γ ∥Q−Q∗∥∞

This concludes the proof. □

5

SARSA. Q-learning is an off-policy method: we learn Q∗ while running an arbitrary policy π
satisfying certain minimal properties. As V π can be much smaller than V ∗, the algorithm has no
control on the return while learning Q∗. SARSA, instead, is an on-policy method: Q∗ is learned by
a policy that is being updated. This allows the algorithm to control the return during the learning
process.

Recall the Q-learning update step:

Qt+1(st, at) = (1− ηt)Qt(st, at) + ηt
(
r(st, at) + γmax

a∈A
Qt(st+1, a)

)
where st+1 ∼ p(· | st, at) and at ∼ π(· | st). SARSA replaces maxa∈AQt(st+1, a) with Qt(st+1, at+1),
where at+1 is selected by a policy πt based on the current approximation Qt of the action-value
function.

Algorithm 2 (SARSA)

Input: Initial state s0 ∈ S
1: Set Q0(s, a) = 0 for all (s, a) ∈ S ×A
2: Draw a random initial action a0
3: for t = 0, 1, . . . do
4: Observe reward rt = r(st, at) and next state st+1 drawn from p(· | st, at)
5: Draw action at+1 ∼ πt

(
· | st+1, Qt

)
6: Update Qt+1(st, at) = (1− ηt)Qt(st, at) + ηt

(
r(st, at) + γQt(st+1, at+1)

)
7: end for

Concretely, we consider the two following approaches for the policy πt(· | s,Q):

• Greedy: play any action in argmax
a∈A

Q(s, a)

• ε-greedy: If in state s at time t, then play Greedy with probability 1− εt(s); otherwise play
a random action in A.

Theorem 4 Assume that the SARSA (Algorithm 2) is run on a communicating MDP with a εt-
greedy policy such that εt = εt(s) = 1/Nt(s), where Nt(s) is the number of visits of state s in the
time steps from 0, . . . , t. If the learning rate ηt is chosen according to (2), then

lim
t→∞

Qt(s, a) = Q∗(s, a) (s, a) ∈ S ×A

Proof. The proof applies Lemma 2 using the same operator H and the same noise parameter νt
as in the proof of Q-learning. However, this time the bias term ζt is not equal to zero. We have

Qt+1(st, at) =
(
1− ηt(st, at)

)
Qt(st, at) + ηt(st, at)

(
r(st, at) + γ Qt(st+1, at+1)

)
where ηt(s, a) = 0 for (s, a) ̸= (st, at). Now,

r(st, at) + γ Qt(st+1, at+1) = r(st, at) + γmax
b

Qt(st+1, b) + γ
(
Qt(st+1, at+1)−max

b
Qt(st+1, b)

)
︸ ︷︷ ︸

ζt

6

Let νt = r(st, at) + γmax
b

Qt(st+1, b)−H(Qt)(st, at) where the operator H is defined in (3). There-

fore

Qt+1(st, at) =
(
1− ηt(st, at)

)
Qt(st, at) + ηt(st, at)

(
H(Qt)(st, at) + νt + ζt

)
The contraction condition and the noise condition in Lemma 2 are both satisfied (see the proof of
Theorem 3). Since the MDP is communicating and ε-greedy is fully mixed because εt(s) > 0 for
all t and s, each pair (s, a) ∈ S × A is visited infinitely often w.p. 1 and the stepsize condition is
satisfied. Since for all s, εt(s) → 0 for t → ∞, limt→∞ ζt = 0 with w.p. 1 and the bias condition is
satisfied. This concludes the proof. □

We now state and prove two auxiliary results which give us some insights on the discounted return.
The first result bounds the variation in discounted return for a greedy policy based on some Q
different from Q∗.

Lemma 5 For any Q : S ×A → R, let π(s) = argmax
a

Q(s, a) for all s ∈ S. Then

∥V π − V ∗∥∞ ≤ 2

1− γ
∥Q−Q∗∥∞

Proof. For any s ∈ S, let π∗(s) = argmax
a

Q∗(s, a) and ∥Q−Q∗∥∞ = ∆. Then

V ∗(s)−Q∗(s, π(s)) = Q∗(s, π∗(s)
)
−Q∗(s, π(s))

= Q∗(s, π∗(s)
)
−Q

(
s, π∗(s)

)
+Q

(
s, π∗(s)

)
+Q

(
s, π(s)

)
−Q∗(s, π(s))−Q

(
s, π(s)

)
≤ 2∆ +Q

(
s, π∗(s)

)
−Q

(
s, π(s)

)
≤ 2∆ +Q

(
s, π∗(s)

)
−Q

(
s, π∗(s)

)
(by definition of π)

Hence, choosing an initial state s0,

V ∗(s0) ≤ Q∗(s0, π(s0))+ 2∆

= r
(
s0, π(s0)

)
+ γE

[
V ∗(s1) | s0

]
+ 2∆ (where s1 ∼ p

(
· | s0, π(s0)

)
)

≤ E

[
t−1∑
τ=0

γtr
(
sτ , π(sτ)

)]
+ γtE

[
V ∗(st) | s0

]
+ 2∆

t−1∑
τ=0

γτ (where sτ ∼ p
(
· | sτ−1, π(sτ−1)

)
)

≤ V π(s0) +
2∆

1− γ
(for t → ∞)

This concludes the proof. □

The second result shows how the discounted return of a stochastic policy π is affected by pertur-
bations of π.

Lemma 6 For any two stochastic policies π, ρ let π′ = (1− ε)π + ερ. Then∥∥V π − V π′∥∥
∞ ≤ 2ε

(1− γ)2

7

Proof. Since we are interested in bounding the difference
∣∣V π(s) − V π′

(s)
∣∣ for any initial state

s, we can map rewards r(s, a) ∈ [−1, 1] to new rewards 1 + r(s, a) ∈ [0, 2] without affecting the
difference of the state-value functions. Hence, without loss of generality, we may assume rewards
are bounded in [0, 2]. For any s ∈ S, with probability 1 − ε we have π′(· | s) ≡ π(· | s). Let T be
the stochastic horizon and Tε be the first time that π and π′ choose their action from two different
distributions. Hence, P(Tε > t | T ≥ t) = (1 − ε)t. Let rπt be the reward of π at time t starting
from s0 = s. Then

V π(s) = E

[∞∑
t=0

I{T ≥ t}rπt

]
and V π′

(s) ≥ E

[∞∑
t=0

I{T ≥ t}I{Tε > t}rπt

]

where the inequality holds because the reward accumulated by π′ for all t ≥ Tε is nonnegative due
to the nonnegativity assumption for the rewards. Therefore

V π(s)− V π′
(s) ≤ E

[∞∑
t=0

I{T ≥ t}I{Tε ≤ t}rπt

]

≤ 2E

[∞∑
t=0

I{T ≥ t}I{Tε ≤ t}

]
(because rπt ≤ 2)

≤ 2

∞∑
t=0

P(T ≥ t)P(Tε ≤ t | T ≥ t)

≤ 2
∞∑
t=0

γt
(
1− (1− ε)t

)
=

2

1− γ
− 2

1− γ(1− ε)

≤ 2ε

(1− γ)2

concluding the proof. □

Using these results, we can prove that, for any λ > 0, there is a time step tλ after which the policies
used by SARSA are λ-optimal.

Theorem 7 Assume that the SARSA (Algorithm 2) is run on a communicating MDP with a εt-
greedy policy such that εt(s) = 1/Nt(s), where Nt(s) is the number of visits of state s in the time
steps from 0, . . . , t. Then, for any λ > 0, there is a time tλ such that for all t ≥ tλ, ∥V ∗ − V πt∥∞ ≤
λ.

Proof. Since each state is sampled infinitely often, there is a time t1 such that nt1(s) ≥ 4
λ(1−γ)2

times for all s ∈ S, implying εt(s) ≤ λ(1− γ)2/4 for all s ∈ S and t ≥ t1. Since Qt → Q∗, there is a
time t2 such that ∥Qt −Q∗∥∞ ≤ λ(1−γ)/4 for all t ≥ t2. Recall that πt is the εt-greedy policy used

8

by SARSA at time t and let gt be the greedy policy (based on Qt). Then for all t ≥ max{t1, t2},

∥V ∗ − V πt∥∞ ≤ ∥V ∗ − V gt∥∞ + ∥V gt − V πt∥∞ (by the triangle inequality)

≤ 2

1− γ
∥Qt −Q∗∥∞ +

2maxs εt(s)

(1− γ)2
(by Lemma 5 and 6)

≤ λ

2
+

λ

2
= λ

concluding the proof. □

9

