
Reinforcement Learning

Introduction

Lecturer: Nicolò Cesa-Bianchi version January 23, 2024

This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

Reinforcement Learning (RL) is concerned with the design and analysis of algorithms that learn
how to make decisions in arbitrary environments. A crucial aspect is that decisions must be taken
sequentially and the algorithms must consider the implications of their decisions. Some practical
problems to which RL has been applied are:

• Playing a board game, like Chess or Go.

• Controlling a robot to complete a certain task; for example, collecting items or rescuing
people.

• Driving a car to a given destination.

• Keeping the parameters of a physical process in a safe and useful range of values (e.g., a
controlled nuclear reaction that generates heat).

• Deciding which advertisement to show to each new visitor of a website.

• Managing a portfolio of stocks.

There are two features that typically distinguish RL applications from standard ML applications:

1. The decisions made by the algorithm may affect the outcome of future decisions.

2. When making a decision among a number of options, the algorithm typically observes only the
outcome of the chosen option; the outcomes of the other options remain partially or totally
unknown.

Note that only one of these two features may appear in a RL application. For example, in advertising
the first feature is missing as we may ignore the effect on the next visitor of showing an ad to the
current visitor. On the other hand, in portfolio management the second feature is missing as we
can simulate the outcome of an investment decision irrespective to the decision we actually made.

We use the word agent to refer to an algorithm operating in an environment. We can abstract the
interaction between agent and environment through the mathematical notion of discrete-time
decision process. At each time step, the agent is in a known state and the following happens:

1. The agent selects an action among those available in the current state and executes it

2. The agent’s current state changes.

1

In the first part of this course we focus on finite decision processes, where the set S of states
and the set A of actions are both finite. In the second part, we will consider the case in which the
state set can be arbitrarily large. For each s ∈ S, we use A(s) to denote the actions available in
state s.

Example 1 (Finding the shortest path in a weighted directed graph.) This is one of the
most fundamental algorithmic problems on graphs and can be viewed as a deterministic decision
process where the states are the nodes of the graph and the actions available in each state correspond
to the outgoing edges. The edge weight is the cost of traversing the edge. Given a start state and a
goal state, the agent must find the sequence of actions corresponding to the path of minimum total
cost from the start node to the goal node. When the graph is fully known, the optimal sequence of
actions can be found using, for example, Dijkstra’s algorithm for single source and single destination
shortest path.

Example 2 (Managing an inventory.) A retailer sells one item at the time from a certain set
of goods. The retailer has either no items in stock (state E) or exactly one item is stock (state F).
If the state is E, the retailer can order one item from the supplier (action “order”). If the item
is immediately sold, then the next state is again E; otherwise, the next state is F . If the state is
F and the item in stock gets sold, then the next state is E. If the item remains in stock, then the
retailer pays for holding the stock. Note that action “¬order” (do not order a new item) is the only
action possible in state F . If action “¬order” is executed in state E, then the retailer may miss
a sale if someone willing to buy shows up. Note also that the action “order” executed in state E

E F

¬order

order

¬order

order

¬order

can lead to state E (if the ordered item is immediately sold) or to state F (if the ordered item is
not sold immediately). The actual next state (E or F) thus depends on the current demand for the
item, which is typically not known until the item is put on sale.

In order to capture the uncertainty in the effect of an action on the environment, we allow the
state transition to be stochastic, where the distribution over the future state depends on both the
current state and the action selected by the agent. In symbols, for every s ∈ S and a ∈ A(s) there
exists a probability distribution p(· | s, a) over S (called transition kernel) where p(s′ | s, a) is
the probability that the next state is s′ when action a is executed in state s.

2

The triple
〈
S,A, {p(· | s, a) : s ∈ S, a ∈ A(s)}

〉
defines a Markov Decision Process (MDP).

The Markovian property refers to the fact that the next state only depends on the current state
and the selected action, and not on the previous states and actions.

The behavior of the agent interacting with an MDP is specified by a control policy. A determin-
istic control policy is a map from states to actions. The stochastic sequence (s0, a0, s1, a1, . . .) of
states and actions generated by a policy started from some initial state s0 ∈ S is called a trajec-
tory. In this trajectory, st+1 ∼ p(· | st, at) for all t ≥ 0 where the notation ∼ means that st+1 is
a random variable drawn from p(· | st, at). We also write P

(
st+1 = s | st, at

)
= p(s | st, at) where

P(· | ·) denotes conditional probability.

A policy π = (πt)t≥0 is a sequence of mappings πt, where each πt maps any possible history (i.e.,
past trajectory including the current state) ht = (s0, a0, . . . , st−1, at−1, st) to an action at ∈ A(st).
A deterministic Markov policy π = (πt)t≥0 can be written, for all t ≥ 1, as πt : S → A such that
at = πt(st). In other words, the action selected at time t only depends on the current state st and
not on the history. Control policies can be randomized. Then πt(ht) is a probability distribution
over A(st) and at ∼ πt(· | ht).

Recall that a Markov chain on a state space S with initial state s0 is a random walk s0, s1, . . .
over S such that

P
(
st = s′ | s0, . . . , st−1

)
= P

(
st = s′ | st−1

)
for all s′ ∈ S and for all t ≥ 1.

If we fix a (randomized) Markov policy and an initial state s0 ∈ S, then the stochastic sequence
(st)t≥0 of states traversed by the policy is a Markov chain with transition probabilities

P
(
st+1 = s′ | st = s

)
=

∑
a∈A(st)

P
(
st+1 = s′, at = a | st = s

)
=

∑
a∈A(st)

P
(
st+1 = s′ | st = s, at = a

)
P(at = a | st = s)

=
∑

a∈A(st)

p(s′ | s, a)πt(a | s)

From now on, to simplify notation we assume A(s) ≡ A for all s ∈ S. All the results we show
remain true even when this assumption is lifted.

Recall that an MDP models an environment, while the policy defines a behavior of the agent. In
general, we would like the agent to behave in a way that is best possible in the given environment.
We can achieve that by assigning values to the policies and instructing the agent to learn the policy
with the highest value.

As each policy corresponds to a stochastic trajectory (s0, a0, s1, a1, . . .) of state and actions, we can
assign a value to each trajectory. In the MDP framework, this is done by assigning a reward rt(s, a)
to each state-action pair, where rt : S×A → R is a time-dependent reward function, and then by
summing up the rewards along the trajectory. In many practical examples, the interaction between
the agent and the environment ends after a certain number of rounds (e.g., in a Chess game). In
this case, we also use a terminal reward function rend : S → R assigning a value to the state
reached at the end of the interaction (in a Chess game, the terminal reward reflects whether the

3

agent won the game whereas the rewards assigned to state-action pairs traversed during the game
may help the agent distinguish “good” moves from “bad” moves).

Example 3 (Recycling robot.) A robot roams an office to collect empty cans that have to be
recycled. The robot can be in three states depending on the battery charge: H (high charge), L
(low charge), R (rescue me). Our goal is to have the robot search for cans as often as possible
while entering the rescue state as few times as possible. Hence, we assign a positive reward to the
search action (from any state) and a negative reward to the call action (from the R state). Since
recharging is a neutral action, we give it a zero reward. In the figure, the label a, p on an edge (s, s′)

L H

R

search,α

search,1− α

recharge,1

search,1− β

search,β

call,1− δ

call,δ

indicates the action name a and the transition probability p = p(s′ | s, a).

The role of the reward is similar to that of the loss in supervised machine learning: it is the main
signal through which the agent learns a desired behavior. As we said earlier, we instruct agents to
maximize their cumulative reward along the trajectory followed on the MDP. The expected value of
the cumulative reward is called return. Given a policy with stochastic trajectory (s0, a0, s1, a1, . . .)
on a given MDP, we can define the return according to the folowing two evaluation criteria:

• Finite horizon: E

[
T−1∑
t=0

rt(st, at) + rend(sT)

]

• Infinite horizon: lim
T→∞

E

[
1

T

T−1∑
t=0

rt(st, at)

]

In the case of infinite horizon there is no terminal reward.

4

We also consider the important case of a stochastic horizon, i.e., when T can be a random variable.
To define the return using a stochastic horizon, we identify a subset G ⊆ S of goal states in the
MDP and stop the interaction as soon as the agent reaches any state in G. Denoting by s0, s1, . . .
the stochastic trajectory of states realized by the agent’s policy, we define T = min {t ≥ 0 : st ∈ G}.
The return of a stochastic Markov policy π according to the stochastic horizon criterion is the same
as the finite horizon case, with the only difference that T is now a random variable.

It is easy to see that any MDP with state space S ′ and finite horizon T ′ can be transformed into an
equivalent MDP with state space S = S ′ × [T ′],1 goal states G = {(s, T ′) : s ∈ S ′} and stochastic
horizon T = T ′. Hence the finite horizon is a special case of the stochastic horizon.

In many applications, for instance when the agent controls a physical process, there are no specific
goal states and the interaction goes on forever. However, the interaction may stop at any point of
time because of certain events like a fault or an external cause. The presence of random stopping
points in an MDP without goal states can be implemented with a small modification to the MDP
so that the horizon becomes stochastic rather than infinite. Given an MDP

〈
S,A, p(· | s, a)

〉
without goal states, we add a single goal state sG and define a new transition kernel p′ defined
by p′(sG | s, a) = 1 − γ and p′(s′ | s, a) = γ p(s′ | s, a) for each s, s′ ∈ S \ {sG}, a ∈ A, and for
some 0 < γ < 1. The resulting evaluation criterion, which is a special case of stochastic horizon, is
known as the discounted infinite horizon (or γ-discounted horizon). In practice, the discounted
infinite horizon assumes that the interaction may stop at any point of time with probability 1− γ.

For all t ≥ 0, assuming st−1 ̸= sG, the probability of not stopping at time t is

P
(
st ̸= sG | st−1, at−1

)
= γ

∑
s′ ̸=sG

p(s′ | st−1, at−1

)
= γ

for any action at−1 ∈ A. Therefore, given any policy executing actions a0, a1, . . ., the probability
of stopping at time t+ 1 or later assuming s0 ̸= sG is

P(T > t) = P
(
s1 ̸= sG, . . . , st ̸= sG | s0, a0

)
=

t∏
τ=1

P
(
sτ ̸= sG | sτ−1, aτ−1

)
= γt

Since the event T = t does not depend on the specific trajectory of states and actions, we can fix
any infinite trajectory h =

(
s0, a0, s1, a1, . . .

)
and write the return on this trajectory in expectation

with respect to the randomness of T as

∞∑
t=0

t∑
τ=0

rτ (sτ , aτ)P(T = t+ 1) =

∞∑
τ=0

rτ (sτ , aτ)

∞∑
t=τ

P(T = t+ 1)

=
∞∑
τ=0

rτ (sτ , aτ)P(T > τ)

=
∞∑
t=0

γtrt(st, at)

1For any positive integer n, we use the notation [n] = {1, . . . , n}.

5

Taking expectation with respect to the randomness in the trajectory, we obtain that the return
with respect to the discounted infinite horizon is

E

[∞∑
t=0

γtrt(st, at)

]

Suboptimality of the greedy policy. The greedy policy is a deterministic policy defined as

πt(s) = argmax
a∈A

rt(s, a)

It is easy to construct examples of MDP where this policy is never optimal. In the deterministic
MDP below, if s0 = s, the greedy policy achieves an expected return of ε with respect to the infinite
horizon criterion. On the other hand, the optimal policy π∗, such that π∗(s) = 1 and π∗(s′) = 0,
achieves an expected return of 1 with respect to the same criterion.

s s′

r(s, 1) = 0

r(s′, 1) = 0

r(s, 0) = ε r(s′, 0) = 1

We now show that in order to maximize any performance criterion it is sufficient to consider
Markov policies. Let µ be a probability distribution over the initial state s0 and let qπt (s, a) =
Pπ(st = s, at = a, T ≥ t) be the occupancy measure evaluated at (s, a). This is the distribution
of (st, at) under strategy π (with initial state distribution µ). Note that the stochastic horizon
performance criterion2 depends linearly on the rewards rt(st, at), which implies that any two policies
that induce the same occupancy measure for all t ≥ 0 have the same performance. Indeed, letting
(s0, a0), (s1, a1) be the stochastic trajectory generated by π, and letting rt(s, ·) = rend(s) for any

2Recall that this includes the finite horizon criterion. A similar result also holds for the infinite horizon criterion.

6

goal state s ∈ G,

R(π) = E

[
T−1∑
t=0

rt(st, at) + rend(sT)

]

= E

[
T∑
t=0

rt(st, at)

]

=
∞∑
t=0

∑
s∈S

∑
a∈A

rt(s, a)Pπ(st = s, at = a, T ≥ t)

=

∞∑
t=0

∑
s∈S

∑
a∈A

rt(s, a)q
π
t (s, a)

Theorem 4 (Sufficiency of Markov policies) Given an MDP with state space S and initial
state distribution µ, consider a (possibly stochastic) non-Markov policy π. Then there exists a
stochastic Markov policy π′ such that qπt = qπ

′
t for all t ≥ 0.

Proof. For every t ≥ 0, every state s ∈ S, and every a ∈ A let

π′
t(a | s) = qπt (a, s)∑

a′∈A qπt (a
′, s)

Clearly, π′ is Markov because π′
t(· | s) only depends on s and not on the history. We prove that

qπt = qπ
′

t by induction on t ≥ 0. Let Pπ be the probability of states and actions when π is run on
the MDP. For t = 0,

qπ
′

0 (a, s) = Pπ′(
a0 = a | s0 = s

)
µ(s) =

qπ0 (a, s)∑
a′∈A qπ0 (a

′, s)
µ(s) = qπ0 (a, s)

because
∑

a′∈A qπ0 (a
′, s) = µ(s) by definition. Now assume qπt−1 = qπ

′
t−1 holds. Note that

Pπ′(
st = s, T ≥ t

)
=

∑
s′∈S

∑
a′∈A

Pπ′(
st−1 = s′, at−1 = a′, T ≥ t

)
p(s | s′, a′)

=
∑
s′∈S

∑
a′∈A

qπ
′

t−1(a
′, s′)p(s | s′, a′)

=
∑
s′∈S

∑
a′∈A

qπt−1(a
′, s′)p(s | s′, a′) (by inductive hyp.)

= Pπ
(
st = s, T ≥ t

)
where p is the transition kernel of the MDP (which does not depend on the policy). Therefore,

qπ
′

t (a, s) = Pπ′(
at = a | st = s, T ≥ t

)
Pπ′(

st = s, T ≥ t
)

= π′
t(a | s)Pπ

(
st = s, T ≥ t

)
=

qπt (a, s)∑
a′∈A qπt (a

′, s)
Pπ

(
st = s, T ≥ t

)
= qπt (a, s)

7

and this concludes the proof. □

So, from now on, without loss of generality we only consider Markov policies.

For any MDP and stochastic Markov policy π, recall the definition

R(π) = E

[
T−1∑
t=0

∑
a∈A

rt(st, a)πt(a | st) + rend(sT)

]

for the return of the policy (from state s0) computed using the stochastic horizon criterion. We
now show that randomization cannot increase the return of a Markov policy.

Theorem 5 (Sufficiency of deterministic Markov policies) Given an MDP with state space
S, consider a stochastic Markov policy π. If the MDP is such that T = t is independent of
the trajectory of states and actions, then there exists a deterministic Markov policy π′ such that
R(π′) ≥ R(π) from any initial state s0.

Proof. Since T = t does not depend on the trajectory, we can write,

R(π) =

∞∑
t=0

P(T = t)E

[
t−1∑
τ=0

rτ (sτ , aτ) + rend(st)

]
=

∞∑
t=0

P(T = t)Rt(π0, . . . , πt)

where aτ ∼ πτ (· | sτ) for τ ≥ 0 and we defined

RT (π0, . . . , πT) = E

[
T−1∑
t=0

rt(st, at) + rend(sT)

]

So, without loss of generality, we can assume T is fixed.

Given π = (π0, . . . , πT−1), we prove that there exist π′
0, . . . , π

′
T−1 deterministic such that

RT (π
′
0, . . . , π

′
T−1) ≥ RT (π)

The proof is by backward induction on t ∈ [T −1]. For the base case t = T − 1, let π′
T−1 be defined

by

π′
T−1(sT−1) = argmax

a∈A

(
rT−1(sT−1, a) + E

[
rend(sT)

])
for any sT−1 ̸∈ G, where sT ∼ p(· | sT−1, a). Then π′

T−1 is deterministic and

rT−1

(
sT−1, π

′
T−1(s

′
T−1)

)
+ E

[
rend(sT)

]
≥ E

[
rT−1(sT−1, aT−1) + rend(sT)

]
where s′T ∼ p

(
· | sT−1, π

′
T−1(sT−1)

)
. So we have

RT (π0, . . . , πT−2, π
′
T−1) ≥ RT (π)

For the inductive step, assume there exist deterministic π′
t+1, . . . , π

′
T−1 such that

RT (π0, . . . , πt, π
′
t+1, . . . , π

′
T−1) ≥ RT (π)

8

Let π′
t be defined by

π′
t(st) = argmax

a∈A
E

[
rt(st, a) +

T−1∑
τ=t+1

rτ
(
sτ , π

′
τ (sτ)

)
+ rend(sT)

]

where st+1 ∼ p(· | st, a). Then π′
t is deterministic and

RT (π0, . . . , πt, π
′
t+1, . . . , π

′
T−1)

= E

[
t−1∑
τ=0

rτ (sτ , aτ)

]
+ E

[
rt(st, at) +

T−1∑
τ=t+1

rτ
(
sτ , π

′
τ (sτ)

)
+ rend(sT)

]
(st+1 ∼ p(· | st, at))

≤ E

[
t−1∑
τ=0

rτ (sτ , aτ)

]
+max

a∈A
E

[
rt(st, a) +

T−1∑
τ=t+1

rτ
(
sτ , π

′
τ (sτ)

)
+ rend(sT)

]
(st+1 ∼ p(· | st, a))

= E

[
t−1∑
τ=0

rτ (sτ , aτ)

]
+ E

[
T−1∑
τ=t

rτ
(
sτ , π

′
τ (sτ)

)
+ rend(sT)

]
(by definition of π′

t)

= RT (π0, . . . , πt−1, π
′
t, . . . , π

′
T−1)

This proves the induction step and concludes the proof. □

9

