Reinforcement Learning

Discounted MDP

Lecturer: Nicolò Cesa-Bianchi
version January 31, 2024

This material is partially based on the book draft "Reinforcement Learning: Foundations" by Shie Mannor, Yishay Mansour, and Aviv Tamar.

Similarly to before, we consider an MDP with finite state space \mathcal{S}, finite action space \mathcal{A} such that $\mathcal{A}(s)=\mathcal{A}$ for all $s \in \mathcal{S}$, and transition kernel $\{p(\cdot \mid s, a): s \in \mathcal{S}, a \in \mathcal{A}\}$. However, for simplicity we assume a time-independent reward function $r: \mathcal{S} \times \mathcal{A} \rightarrow[-1,1]$.
We now want to derive the Bellman optimality equations for the discounted horizon case. We can not use backward induction because the horizon is stochastic. For any fixed $0<\gamma<1$, the state-value function $V^{\pi}: \mathcal{S} \rightarrow \mathbb{R}$ for a policy π gives the γ-discounted return from any initial state s,

$$
V^{\boldsymbol{\pi}}(s)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right) \mid s_{0}=s\right]
$$

where $a_{t} \sim \pi_{t}\left(\cdot \mid s_{t}\right)$. Note that, since rewards are bounded in $[-1,1]$,

$$
\left|V^{\boldsymbol{\pi}}(s)\right| \leq \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t}\left|r\left(s_{t}, a_{t}\right)\right| \mid s_{0}=s\right] \leq \sum_{t=0}^{\infty} \gamma^{t} \leq \frac{1}{1-\gamma}
$$

We can also define the state-value function with respect to an initial state distribution μ,

$$
V^{\boldsymbol{\pi}}(\mu)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, a_{t}\right)\right]
$$

where $s_{0} \sim \mu$.
Our goal is to find the policy $\boldsymbol{\pi}^{*}=\left(\pi_{0}^{*}, \pi_{1}^{*}, \ldots\right)$ that maximizes $V^{\boldsymbol{\pi}}\left(s_{0}\right)$ for each initial state s_{0} with respect to all policies $\boldsymbol{\pi}$. Let V^{*} the state-value function for the optimal policy $\boldsymbol{\pi}^{*}$. Since $\mathbb{P}(T=t)=\gamma^{t-1}(1-\gamma)$, we know that $\boldsymbol{\pi}^{*}=\left(\pi_{0}, \pi_{1}, \ldots\right)$ is Markov and deterministic.
Next, we prove an important property of the state-value function.
Lemma 1 For any stationary and deterministic Markov policy π, V^{π} satisfies the following $|\mathcal{S}|$ linear equations

$$
V^{\pi}(s)=r(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right) \quad s \in \mathcal{S}
$$

Proof.

$$
\begin{aligned}
V^{\pi}(s) & =\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, \pi\left(s_{t}\right)\right) \mid s_{0}=s\right] \\
& =r(s, \pi(s))+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t} r\left(s_{t}, \pi\left(s_{t}\right)\right) \mid s_{1}=s^{\prime}\right] \\
& =r(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r\left(s_{t}, \pi\left(s_{t}\right)\right) \mid s_{1}=s^{\prime}\right] \\
& =r(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, \pi(s)\right) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, \pi\left(s_{t}\right)\right) \mid s_{0}=s^{\prime}\right] \quad \text { (because } \pi \text { is stationary) } \\
& =r(s, \pi(s))+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right)
\end{aligned}
$$

This property suggests a way of computing V^{π} for a fixed policy π, which could be useful if we want to find π maximizing V^{π}.
In view of that, it is convenient to rephrase the above property using vector notation. Let $\boldsymbol{v}^{\pi}, \boldsymbol{r}^{\pi} \in$ $[-1,1]^{|\mathcal{S}|}$ with components $v^{\pi}(s)=V^{\pi}(s)$ and $r^{\pi}(s)=r(s, \pi(s))$. Let also \boldsymbol{P}^{π} be a $|\mathcal{S}| \times|\mathcal{S}|$ matrix with components $P^{\pi}\left(s, s^{\prime}\right)=p\left(s^{\prime} \mid s, \pi(s)\right)$. Then

$$
\boldsymbol{v}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \boldsymbol{P}^{\pi} \boldsymbol{v}^{\pi}
$$

Note that the above is equivalent to $\left(I-\gamma \boldsymbol{P}^{\pi}\right) \boldsymbol{v}^{\pi}=\boldsymbol{r}^{\pi}$. Note also that \boldsymbol{P}^{π} is a row-stochastic matrix, and therefore its eigenvalues λ_{i} satisfy $\left|\lambda_{i}\right| \leq 1$. Since the eigenvalues of $I-\gamma \boldsymbol{P}^{\boldsymbol{\pi}}$ are of the form $1-\gamma \lambda_{i}$ with $0<\gamma<1$, they are all positive and so $I-\gamma \boldsymbol{P}^{\pi}$ is non-singular. We thus find that

$$
\boldsymbol{v}^{\pi}=\left(I-\gamma \boldsymbol{P}^{\pi}\right)^{-1} \boldsymbol{r}^{\pi}
$$

Since inverting the $|\mathcal{S}| \times|\mathcal{S}|$ matrix $I-\gamma \boldsymbol{P}^{\pi}$ requires order of $|\mathcal{S}|^{3}$ operations, an alternative way to compute V^{π} is via (fixed-policy) value iteration: $\boldsymbol{v}_{n+1}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \boldsymbol{P}^{\boldsymbol{\pi}} \boldsymbol{v}_{n}^{\pi}$ where \boldsymbol{v}_{0}^{π} is an arbitrary initial vector.

We now show that fixed-policy value iteration converges exponentially fast. First, note that

$$
\boldsymbol{v}_{1}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \boldsymbol{P}^{\pi} \boldsymbol{v}_{0}^{\pi}=\boldsymbol{r}^{\pi}+\gamma \mathbb{E}_{1}\left[\boldsymbol{v}_{0}^{\pi}\right]
$$

where $\mathbb{E}_{1}\left[\boldsymbol{v}_{0}^{\pi}\right]$ is a vector whose s-th component is

$$
\mathbb{E}_{1}\left[\boldsymbol{v}_{0}^{\pi}\right](s)=\sum_{s^{\prime} \in \mathcal{S}} \boldsymbol{v}_{s}^{\pi}\left(s^{\prime}\right) p\left(s^{\prime} \mid s, \pi(s)\right)
$$

Iterating n times, we get

$$
\boldsymbol{v}_{n}^{\pi}=\sum_{t=0}^{n-1} \gamma^{t} \mathbb{E}_{t}\left[\boldsymbol{r}^{\pi}\right]+\gamma^{n} \mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right]
$$

where the s-th components of $\mathbb{E}_{t}\left[\boldsymbol{r}^{\pi}\right]$ and $\mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right]$ are defined by

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\boldsymbol{r}^{\pi}\right](s)=\sum_{s_{1} \in \mathcal{S}} \cdots \sum_{s_{t} \in \mathcal{S}} \boldsymbol{r}^{\pi}\left(s_{t}, \pi\left(s_{t}\right)\right) p\left(s_{t} \mid s_{t-1}, \pi\left(s_{t-1}\right)\right) \cdots p\left(s_{1} \mid s, \pi(s)\right) \\
& \mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right](s)=\sum_{s_{1} \in \mathcal{S}} \cdots \sum_{s_{n} \in \mathcal{S}} \boldsymbol{v}_{0}^{\pi}\left(s_{n}\right) p\left(s_{n} \mid s_{n-1}, \pi\left(s_{n-1}\right)\right) \cdots p\left(s_{1} \mid s, \pi(s)\right)
\end{aligned}
$$

Now,

$$
\lim _{n \rightarrow \infty} \boldsymbol{v}_{n}^{\pi}=\sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{t}\left[\boldsymbol{r}^{\pi}\right]=\boldsymbol{v}_{n}^{\pi}
$$

Hence

$$
\boldsymbol{v}^{\pi}-\boldsymbol{v}_{n}^{\pi}=\sum_{t=n}^{\infty} \gamma^{t} \mathbb{E}_{t}\left[\boldsymbol{r}^{\pi}\right]-\gamma^{n} \mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right]=\gamma^{n}\left(\sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{n+t}\left[\boldsymbol{r}^{\pi}\right]-\mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right]\right)
$$

Since the components of $\mathbb{E}_{n+t}\left[\boldsymbol{r}^{\pi}\right]$ are all in $[-1,1]$, we have that

$$
\left|\sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{n+t}\left[\boldsymbol{r}^{\pi}\right]\right| \leq \frac{\mathbf{1}}{1-\gamma}
$$

where $\mathbf{1}=(1, \ldots, 1)$. Moreover, since the expectation is always smaller that the maximum, $\mathbb{E}_{n}\left[\boldsymbol{v}_{0}^{\pi}\right] \leq \mathbf{1}\left\|\boldsymbol{v}_{0}^{\pi}\right\|_{\infty}$. This implies

$$
\left\|\boldsymbol{v}^{\pi}-\boldsymbol{v}_{n}^{\pi}\right\|_{\infty} \leq\left(\frac{1}{1-\gamma}+\left\|\boldsymbol{v}_{0}^{\pi}\right\|_{\infty}\right) \gamma^{n}
$$

showing that fixed-policy value iteration converges exponentially fast.
The following result provides an explicit characterization of the optimal state-value function V^{*} and shows that the optimal policy is stationary and can easily be computed if the state-value function is known.

Theorem 2 (Bellman Optimality Equations) The following statements hold:

1. V^{*} is the unique solution of the following system of nonlinear equations

$$
V(s)=\max _{a \in \mathcal{A}}\left(r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right) \quad s \in \mathcal{S}
$$

2. Any stationary policy π^{*} satisfying

$$
\pi^{*}(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}}\left(r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)\right) \quad s \in \mathcal{S}
$$

is such that $V^{\pi^{*}}=V^{*}$.

Unlike V^{π}, the equation defining V^{*} is not linear. Yet, similarly to V^{π}, we can compute V^{*} using value iteration (VI):

$$
V_{n+1}(s)=\max _{a \in \mathcal{A}}\left(r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) V_{n}\left(s^{\prime}\right)\right) \quad s \in \mathcal{S}
$$

where V_{0} is arbitrary. Similarly to fixed-policy value iteration, one can show that

$$
\max _{s \in \mathcal{S}}\left|V^{*}(s)-V_{n}(s)\right| \leq\left(\frac{1}{1-\gamma}-\max _{s \in \mathcal{S}}\left|V_{0}(s)\right|\right) \gamma^{n}
$$

A different method, called policy iteration (PI), constructs a sequence of policies converging to the optimal policy:

For $n=0,1, \ldots$

1. Policy evaluation: Compute $V^{\pi_{n}}$ using $\boldsymbol{v}^{\pi}=\left(I-\gamma \boldsymbol{P}^{\pi}\right)^{-1} \boldsymbol{r}^{\pi}$
2. Policy improvement:

$$
\pi_{n+1}(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}}\left(r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) V^{\pi_{n}}\left(s^{\prime}\right)\right) \quad s \in \mathcal{S}
$$

PI performs successive rounds of policy improvement, where each policy π_{n+1} improves on the previous one π_{n}. Since the number of stationary policies is bounded, so is the number of strict improvements, and PI must terminate with an optimal policy after a finite number policy updates.
In terms of running time, PI requires $\mathcal{O}\left(|\mathcal{A}||\mathcal{S}|^{2}+|\mathcal{S}|^{3}\right)$ operations per iteration, while VI only requires $\mathcal{O}\left(|\mathcal{A}||\mathcal{S}|^{2}\right)$ operations per iteration. However, in many cases PI has a smaller number of iterations than VI. Indeed, one can show that $V_{n}^{\mathrm{VI}} \leq V_{n}^{\mathrm{PI}} \leq V^{*}$ for all $n \geq 0$, where V_{n}^{VI} and V_{n}^{PI} are the sequences of state-value functions produced, respectively, by VI and PI, and we assume $V_{0}^{\mathrm{VI}}=V_{0}^{\mathrm{PI}}$.

Linear programming duality. In order to obtain more insights on the Bellman equations it is useful to introduce the notion of discounted occupancy measure q^{π}, which adapts to the discounted infinite horizon criterion the quantity q_{t}^{π} introduced earlier,

$$
q^{\pi}(s, a)=\sum_{t=0}^{\infty} q_{t}^{\pi}(s, a)=\sum_{t=0}^{\infty} \mathbb{P}^{\pi}\left(s_{t}=s, \pi(s)=a, T \geq t\right)=\sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}^{\pi}\left(s_{t}=s, \pi(s)=a\right)
$$

where

$$
\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} q^{\pi}(s, a)=\frac{1}{1-\gamma}
$$

We can now express the return in terms of the discounted occupancy measure,

$$
\begin{aligned}
V^{\boldsymbol{\pi}}(\mu) & =\sum_{s^{\prime} \in \mathcal{S}} \mu\left(s^{\prime}\right) V\left(s^{\prime}\right) \\
& =\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(s_{t}, \pi\left(s_{t}\right)\right)\right] \quad \quad \quad\left(\text { where } s_{0} \sim \mu \text { and } s_{t} \sim p\left(\cdot \mid s_{t-1}, \pi\left(s_{t-1}\right)\right)\right. \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{t=0}^{\infty} \gamma^{t} r(s, a) \mathbb{P}^{\boldsymbol{\pi}}\left(s_{t}=s, \pi\left(s_{t}\right)=a\right) \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}^{\pi}\left(s_{t}=s, \pi\left(s_{t}\right)=a\right) \\
& =\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) q^{\pi}(s, a)
\end{aligned}
$$

This shows that $V^{\boldsymbol{\pi}}(\mu)$ is linear in $q^{\boldsymbol{\pi}}(s, a)$ for any π. In particular,

$$
V^{*}(\mu)=\sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} r(s, a) q^{*}(s, a)
$$

where q^{*} is the discounted occupancy measure of π^{*}. This also shows that we can find π^{*} by solving the following linear program (LP)

$$
\begin{array}{rlr}
\max _{q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}} \sum_{s \in \mathcal{S}} & \sum_{a \in \mathcal{A}} r(s, a) q(s, a) \\
\text { subject to: } & q(s, a) \geq 0 & (s, a) \in \mathcal{S} \times \mathcal{A} \\
& \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} q(s, a)=\frac{1}{1-\gamma} & \\
& \sum_{a \in \mathcal{A}} q\left(s^{\prime}, a\right)=\mu\left(s^{\prime}\right)+\gamma \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} p\left(s^{\prime} \mid s, a\right) q(s, a) \quad s^{\prime} \in \mathcal{S}
\end{array}
$$

where the constraints define the set of all feasible discounted occupancy measures. The optimal stationary policy π^{*} can be directly obtained from the solution q^{*} of the LP as

$$
\pi^{*}(a \mid s)=\frac{q^{*}(s, a)}{\sum_{a^{\prime} \in \mathcal{A}} q^{*}\left(s, a^{\prime}\right)}
$$

and it is easy to verify that the discounted occupancy measure of π^{*} is indeed q^{*}. The dual program

$$
\begin{aligned}
& \min _{V: \mathcal{S} \rightarrow \mathbb{R}} \sum_{s \in \mathcal{S}} \mu(s) V(s) \\
& \text { subject to: } \\
& \quad V(s) \geq r(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right) \quad(s, a) \in \mathcal{S} \times \mathcal{A}
\end{aligned}
$$

reveals that the Bellman Optimality equations arise as constraints of the dual program, and that the state-value function and the discounted occupancy measure are dual decision variables.

