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Discounted MDP
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This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

Similarly to before, we consider an MDP with finite state space S, finite action space A such that
A(s) = A for all s € S, and transition kernel {p(- | s,a) : s €S, a € A}. However, for simplicity
we assume a time-independent reward function r : § x A — [—1,1].

We now want to derive the Bellman optimality equations for the discounted horizon case. We
can not use backward induction because the horizon is stochastic. For any fixed 0 < v < 1, the
state-value function V™ : § — R for a policy 7 gives the vy-discounted return from any initial state
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We can also define the state-value function with respect to an initial state distribution u,
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where sg ~ .

Our goal is to find the policy 7* = (WS,TFT, . ) that maximizes V™ (sg) for each initial state so
with respect to all policies . Let V* the state-value function for the optimal policy w*. Since
P(T =t) = +"1(1 — ), we know that m* = (g, 71, ...) is Markov and deterministic.

Next, we prove an important property of the state-value function.

Lemma 1 For any stationary and deterministic Markov policy 7, V™ satisfies the following |S|
linear equations
VT(s) = r(s, 7'['(8)) + Z p(s' ] s,ﬂ'(s))V”(s/) seS
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This property suggests a way of computing V™ for a fixed policy w, which could be useful if we
want to find 7 maximizing V7.

In view of that, it is convenient to rephrase the above property using vector notation. Let v™, 7™ €
[—1,1]1°! with components v™ (s) = V™ (s) and r™(s) = r(s,7(s)). Let also P™ be a |S| x |S| matrix
with components P7 (s, s') = p(s' | s,7(s)). Then

Note that the above is equivalent to (I — yP™)v™ = r7. Note also that P™ is a row-stochastic
matrix, and therefore its eigenvalues \; satisfy |\;| < 1. Since the eigenvalues of I —~yP™ are of the
form 1 — y\; with 0 < v < 1, they are all positive and so I — yP7” is non-singular. We thus find
that

v = (I o ,_YPTK')fl,rﬂ'

Since inverting the |S| x |S| matrix I — yP™ requires order of |S|? operations, an alternative way
to compute V™ is via (fixed-policy) value iteration: v}, ; = r™ 4+ yP™v], where v{ is an arbitrary
initial vector.

We now show that fixed-policy value iteration converges exponentially fast. First, note that
vf =" + 7P vj =" + yE; [v] ]

where E; [vg] is a vector whose s-th component is

Ei[vg](s) = Y vi(shp(s' | s,7(s))
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Iterating n times, we get
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where the s-th components of E; [r”] and E, ['vg] are defined by

E[r™](s) = Z Z ™ (s, m(s¢)) p(st | St—1,7(s¢-1)) - p(s1 | 5,7())
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En, ['vg] (s) = Z Z ’vg(sn)p(sn | Snflvﬂ'(snfl)) " 'p(Sl | 5777(3))
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Since the components of Ep 4 [r™] are all in [—1,1], we have that
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where 1 = (1,...,1). Moreover, since the expectation is always smaller that the maximum,
En[v]] < 1|v]|.,. This implies
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showing that fixed-policy value iteration converges exponentially fast.

The following result provides an explicit characterization of the optimal state-value function V* and
shows that the optimal policy is stationary and can easily be computed if the state-value function
is known.

Theorem 2 (Bellman Optimality Equations) The following statements hold:

1. V* is the unique solution of the following system of nonlinear equations

V(s) = max (r(s, a) + Z p(s' | s, a)V(s')) sesS
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2. Any stationary policy ™ satisfying

7*(s) € argmax (r(s, a)+v Z p(s | s,a)V*(s/)> seS

a€A s'eS

is such that VT = V*.



Unlike V™, the equation defining V* is not linear. Yet, similarly to V™, we can compute V* using
value iteration (VI):

Vi1(s) = max <r(5,a) +7 Z p(s" | s,a)Vn(S/)> seS
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where Vj is arbitrary. Similarly to fixed-policy value iteration, one can show that

1
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A different method, called policy iteration (PI), constructs a sequence of policies converging to
the optimal policy:

Forn=0,1,...

1. Policy evaluation: Compute V™ using v™ = (I — yP™)~lp™

2. Policy improvement:

Tn+1(8) € argmax <r(s, a)+v Z p(s' | s, a)V””(s')) se8
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PI performs successive rounds of policy improvement, where each policy m,4+1 improves on the
previous one m,. Since the number of stationary policies is bounded, so is the number of strict
improvements, and PI must terminate with an optimal policy after a finite number policy updates.

In terms of running time, PI requires (9(|.A| |S|2 + |S\3) operations per iteration, while VI only
requires O(|A||S|?) operations per iteration. However, in many cases PI has a smaller number of
iterations than VI. Indeed, one can show that V,¥! < V1 < V* for all n > 0, where V,'1 and V,I'!
are the sequences of state-value functions produced, respectively, by VI and PI, and we assume
VOVI — ‘/OPI'

Linear programming duality. In order to obtain more insights on the Bellman equations it
is useful to introduce the notion of discounted occupancy measure ¢™, which adapts to the
discounted infinite horizon criterion the quantity ¢f introduced earlier,

q"(s,a) = qu(s,a) = ZP”(st =s,7(s)=a, T >t)= Z'ytIP’”(st =s5,7(s) = a)
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We can now express the return in terms of the discounted occupancy measure,
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This shows that V™ () is linear in ¢™ (s, a) for any 7. In particular,

V() =Y > r(s.a)q(s.a)
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where ¢* is the discounted occupancy measure of 7*. This also shows that we can find 7* by solving
the following linear program (LP)
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where the constraints define the set of all feasible discounted occupancy measures. The optimal
stationary policy m* can be directly obtained from the solution ¢* of the LP as

q*(s,a)
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and it is easy to verify that the discounted occupancy measure of 7* is indeed ¢*. The dual program

m™(a|s) =
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reveals that the Bellman Optimality equations arise as constraints of the dual program, and that
the state-value function and the discounted occupancy measure are dual decision variables.



