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This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

Similarly to before, we consider an MDP with finite state space S, finite action space A such that
A(s) = A for all s ∈ S, and transition kernel {p(· | s, a) : s ∈ S, a ∈ A}. However, for simplicity
we assume a time-independent reward function r : S ×A → [−1, 1].

We now want to derive the Bellman optimality equations for the discounted horizon case. We
can not use backward induction because the horizon is stochastic. For any fixed 0 < γ < 1, the
state-value function V π : S → R for a policy π gives the γ-discounted return from any initial state
s,

V π(s) = E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
where at ∼ πt(· | st). Note that, since rewards are bounded in [−1, 1],

∣∣V π(s)
∣∣ ≤ E

[ ∞∑
t=0

γt
∣∣r(st, at)∣∣

∣∣∣∣∣ s0 = s

]
≤

∞∑
t=0

γt ≤ 1

1− γ

We can also define the state-value function with respect to an initial state distribution µ,

V π(µ) = E

[ ∞∑
t=0

γtr(st, at)

]

where s0 ∼ µ.

Our goal is to find the policy π∗ =
(
π∗
0, π

∗
1, . . .

)
that maximizes V π(s0) for each initial state s0

with respect to all policies π. Let V ∗ the state-value function for the optimal policy π∗. Since
P(T = t) = γt−1(1− γ), we know that π∗ = (π0, π1, . . .) is Markov and deterministic.

Next, we prove an important property of the state-value function.

Lemma 1 For any stationary and deterministic Markov policy π, V π satisfies the following |S|
linear equations

V π(s) = r
(
s, π(s)

)
+ γ

∑
s′∈S

p
(
s′ | s, π(s)

)
V π(s′) s ∈ S
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Proof.

V π(s) = E

[ ∞∑
t=0

γtr
(
st, π(st)

)∣∣∣∣∣ s0 = s

]

= r
(
s, π(s)

)
+
∑
s′∈S

p
(
s′ | s, π(s)

)
E

[ ∞∑
t=1

γtr
(
st, π(st)

)∣∣∣∣∣ s1 = s′

]

= r
(
s, π(s)

)
+ γ

∑
s′∈S

p
(
s′ | s, π(s)

)
E

[ ∞∑
t=1

γt−1r
(
st, π(st)

)∣∣∣∣∣ s1 = s′

]

= r
(
s, π(s)

)
+ γ

∑
s′∈S

p
(
s′ | s, π(s)

)
E

[ ∞∑
t=0

γtr
(
st, π(st)

)∣∣∣∣∣ s0 = s′

]
(because π is stationary)

= r
(
s, π(s)

)
+ γ

∑
s′∈S

p
(
s′ | s, π(s)

)
V π(s′)

□

This property suggests a way of computing V π for a fixed policy π, which could be useful if we
want to find π maximizing V π.

In view of that, it is convenient to rephrase the above property using vector notation. Let vπ, rπ ∈
[−1, 1]|S| with components vπ(s) = V π(s) and rπ(s) = r

(
s, π(s)

)
. Let also P π be a |S|× |S| matrix

with components P π(s, s′) = p
(
s′ | s, π(s)

)
. Then

vπ = rπ + γP πvπ

Note that the above is equivalent to (I − γP π)vπ = rπ. Note also that P π is a row-stochastic
matrix, and therefore its eigenvalues λi satisfy |λi| ≤ 1. Since the eigenvalues of I − γP π are of the
form 1 − γλi with 0 < γ < 1, they are all positive and so I − γP π is non-singular. We thus find
that

vπ = (I − γP π)−1rπ

Since inverting the |S| × |S| matrix I − γP π requires order of |S|3 operations, an alternative way
to compute V π is via (fixed-policy) value iteration: vπ

n+1 = rπ + γP πvπ
n where vπ

0 is an arbitrary
initial vector.

We now show that fixed-policy value iteration converges exponentially fast. First, note that

vπ
1 = rπ + γP πvπ

0 = rπ + γE1

[
vπ
0

]
where E1

[
vπ
0

]
is a vector whose s-th component is

E1

[
vπ
0

]
(s) =

∑
s′∈S

vπ
s (s

′)p
(
s′ | s, π(s)

)
Iterating n times, we get

vπ
n =

n−1∑
t=0

γtEt

[
rπ
]
+ γnEn

[
vπ
0

]
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where the s-th components of Et

[
rπ
]
and En

[
vπ
0

]
are defined by

Et

[
rπ
]
(s) =

∑
s1∈S

· · ·
∑
st∈S

rπ
(
st, π(st)

)
p
(
st | st−1, π(st−1)

)
· · · p

(
s1 | s, π(s)

)
En

[
vπ
0

]
(s) =

∑
s1∈S

· · ·
∑
sn∈S

vπ
0 (sn) p

(
sn | sn−1, π(sn−1)

)
· · · p

(
s1 | s, π(s)

)
Now,

lim
n→∞

vπ
n =

∞∑
t=0

γtEt

[
rπ
]
= vπ

n

Hence

vπ − vπ
n =

∞∑
t=n

γt Et

[
rπ
]
− γnEn

[
vπ
0

]
= γn

( ∞∑
t=0

γtEn+t

[
rπ
]
− En

[
vπ
0

])

Since the components of En+t

[
rπ
]
are all in [−1, 1], we have that∣∣∣∣∣

∞∑
t=0

γtEn+t

[
rπ
]∣∣∣∣∣ ≤ 1

1− γ

where 1 = (1, . . . , 1). Moreover, since the expectation is always smaller that the maximum,
En

[
vπ
0

]
≤ 1 ∥vπ

0∥∞. This implies

∥vπ − vπ
n∥∞ ≤

(
1

1− γ
+ ∥vπ

0∥∞
)
γn

showing that fixed-policy value iteration converges exponentially fast.

The following result provides an explicit characterization of the optimal state-value function V ∗ and
shows that the optimal policy is stationary and can easily be computed if the state-value function
is known.

Theorem 2 (Bellman Optimality Equations) The following statements hold:

1. V ∗ is the unique solution of the following system of nonlinear equations

V (s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V (s′)

)
s ∈ S

2. Any stationary policy π∗ satisfying

π∗(s) ∈ argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

)
s ∈ S

is such that V π∗
= V ∗.
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Unlike V π, the equation defining V ∗ is not linear. Yet, similarly to V π, we can compute V ∗ using
value iteration (VI):

Vn+1(s) = max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)Vn(s
′)

)
s ∈ S

where V0 is arbitrary. Similarly to fixed-policy value iteration, one can show that

max
s∈S

∣∣V ∗(s)− Vn(s)
∣∣ ≤ ( 1

1− γ
−max

s∈S

∣∣V0(s)
∣∣) γn

A different method, called policy iteration (PI), constructs a sequence of policies converging to
the optimal policy:

For n = 0, 1, . . .

1. Policy evaluation: Compute V πn using vπ = (I − γP π)−1rπ

2. Policy improvement:

πn+1(s) ∈ argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V πn(s′)

)
s ∈ S

PI performs successive rounds of policy improvement, where each policy πn+1 improves on the
previous one πn. Since the number of stationary policies is bounded, so is the number of strict
improvements, and PI must terminate with an optimal policy after a finite number policy updates.

In terms of running time, PI requires O
(
|A| |S|2 + |S|3

)
operations per iteration, while VI only

requires O
(
|A| |S|2

)
operations per iteration. However, in many cases PI has a smaller number of

iterations than VI. Indeed, one can show that V VI
n ≤ V PI

n ≤ V ∗ for all n ≥ 0, where V VI
n and V PI

n

are the sequences of state-value functions produced, respectively, by VI and PI, and we assume
V VI
0 = V PI

0 .

Linear programming duality. In order to obtain more insights on the Bellman equations it
is useful to introduce the notion of discounted occupancy measure qπ, which adapts to the
discounted infinite horizon criterion the quantity qπt introduced earlier,

qπ(s, a) =
∞∑
t=0

qπt (s, a) =
∞∑
t=0

Pπ
(
st = s, π(s) = a, T ≥ t

)
=

∞∑
t=0

γt Pπ
(
st = s, π(s) = a

)
where ∑

s∈S

∑
a∈A

qπ(s, a) =
1

1− γ
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We can now express the return in terms of the discounted occupancy measure,

V π(µ) =
∑
s′∈S

µ(s′)V (s′)

= E

[ ∞∑
t=0

γt r
(
st, π(st)

)]
(where s0 ∼ µ and st ∼ p(·|st−1, π(st−1))

=
∑
s∈S

∑
a∈A

∞∑
t=0

γt r(s, a)Pπ
(
st = s, π(st) = a

)
=
∑
s∈S

∑
a∈A

r(s, a)
∞∑
t=0

γt Pπ
(
st = s, π(st) = a

)
=
∑
s∈S

∑
a∈A

r(s, a)qπ(s, a)

This shows that V π(µ) is linear in qπ(s, a) for any π. In particular,

V ∗(µ) =
∑
s∈S

∑
a∈A

r(s, a)q∗(s, a)

where q∗ is the discounted occupancy measure of π∗. This also shows that we can find π∗ by solving
the following linear program (LP)

max
q:S×A→R

∑
s∈S

∑
a∈A

r(s, a)q(s, a)

subject to: q(s, a) ≥ 0 (s, a) ∈ S ×A∑
s∈S

∑
a∈A

q(s, a) =
1

1− γ∑
a∈A

q(s′, a) = µ(s′) + γ
∑
s∈S

∑
a∈A

p(s′ | s, a)q(s, a) s′ ∈ S

where the constraints define the set of all feasible discounted occupancy measures. The optimal
stationary policy π∗ can be directly obtained from the solution q∗ of the LP as

π∗(a | s) = q∗(s, a)∑
a′∈A q∗(s, a′)

and it is easy to verify that the discounted occupancy measure of π∗ is indeed q∗. The dual program

min
V :S→R

∑
s∈S

µ(s)V (s)

subject to:

V (s) ≥ r(s, a) + γ
∑
s′∈S

p(s′ | s, a)V (s′) (s, a) ∈ S ×A

reveals that the Bellman Optimality equations arise as constraints of the dual program, and that
the state-value function and the discounted occupancy measure are dual decision variables.
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