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This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

We consider an MDP with finite state space S, finite action space A such that A(s) = A for
all s € S, transition kernel {p(- | s,a) : s € S, a € A}, and time-dependent reward function r; :
SxA—[-1,1].

We now define some quantities that will help us define the notion of optimal policy in a known MDP.
Consider the stochastic horizon case (for simplicity, with zero terminal reward) and an arbitrary
stochastic policy @ = (mp,71,...). The state-value function V" : S — R U {oo} gives the
expected return obtained by running 7 from any state s € S at time ¢t > 0,
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where a; ~ 7,(- | s;). The action-value function QF : S x A - RU {oo} at time ¢ > 0 is defined
by
QF (s,a) = ru(s,a) + Y V7 (s)pls' | 5,a)
s'eS
This is the expected return of executing action a in state s at time ¢ and then following policy 7.
Note that V™ can be written in the following recursive form
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Hence,

Vi(s) =) Qf(s,a)m(als) seS

acA

For deterministic policies, the above equation becomes V;™(s) = QF (s, m(s)) for any s € A and
t>0.

Example. Consider the following game with two states, S (the initial state) and G (the goal
state), and two actions, 0 and 1. Action 1 deterministically leads to the goal state with a reward
of b. Action 0 always carries a reward of a with 0 < a < b, leads to the goal state with probability
p, and remains in state S with probability 1 — p.



r(S,0) =a

r(S,0) =a
r(S,1)=b

We consider two deterministic and stationary Markov policies. Since everything is stationary, we
can omit the subscripts ¢ from V;™ and Q7. Policy 7 keeps on playing action 0 until the goal state
is reached. Policy 7’ plays action 1 and immediately reaches the goal state. Clearly, V’T/(S ) =0b.

On the other hand,
(S)=apy k(1-p)t=1
k=1 p

Hence, V™(S) > V™ (S) if and only if p < 3
The action-value function for 7 is Q™ (.5,0) = 5 and Q™(S,1) = b. Similarly, Q™ (S,0) = a+(1—p)b
and Q™' (S,1) = b.

We now characterize the optimal policy in the finite horizon case. Since finite horizon is a special
case of stochastic horizon, we do not lose generality by restricting to deterministic policies. To

avoid confusion, we use H to denote the horizon and we call stage any time step h = 0,..., H.
Then, the expected return (or state-value function) of a deterministic policy @ = (7, ..., 7y) at
stage h is
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and the action-value function at stage h is
Qh(s,a) = r(s,a) + Y Vi (s)p(s' | s,a)
s'eS
Let 7v* be the optimal deterministic policy, satisfying Vh’r* (s) >V (s)forallse S, hed{0,...,H},
and all deterministic policies 7. For brevity, we write V;* and Qj.

Using backward induction, it is easy to compute the optimal state-value and action-value functions
forall h =0,...,H. Let V7, and Q% be constant zero functions. First, observe that

Q;I(Sv a’) = TH(S’CL)

V]ikj(s) = Igleaj( TH(S7 a) = Igle%i{ Q?—I(Sv CL)

Now, given Q} and V" for h € {1,..., H}, we can compute Q; _; and V}*_; as follows. By definition
of action-value function,

Qh_1(s,0) =rp_1(s,a) + > Vir(s)p(s' | s,a)

s'eS



For the state-value function, we compute the optimal expected return from stage h—1 by maximizing
the sum of the optimal reward at stage h — 1 and the optimal expected return V;* from stage h
onwards,

Vi_1(s) = max (rh—l(& a)+ D Vi (sw(s' | s, a))

s'eS
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The above is a manifestation of Bellman’s principle of optimality: the tail of an optimal policy is
optimal for the “tail” problem. In this case, the tail (TF;;, Thyl-- ) of w* is optimal for the problem
defined on stages (h,h +1,...).

The system of equations
Vi(s) = max <rh<s,a> + Z@Sv;+1<s’>p<s' | )) SES h=0,... H
S

is called the Bellman optimality equations for finite horizon. Clearly, solving these equations
for the variables {V}*(s) : s €S, h=0,..., H} gives the optimal policy

7 (s) = argmax | ri(s,a) + Z Vi (8p(s' | s,a) | = argmax Qj,(s, a)
acA s acA

Solving the Bellman equations, however, requires knowing all the parameters of the MDP.



