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This material is partially based on the book draft “Reinforcement Learning: Foundations” by Shie
Mannor, Yishay Mansour, and Aviv Tamar.

We consider an MDP with finite state space S, finite action space A such that A(s) = A for
all s ∈ S, transition kernel {p(· | s, a) : s ∈ S, a ∈ A}, and time-dependent reward function rt :
S ×A → [−1, 1].

We now define some quantities that will help us define the notion of optimal policy in a known MDP.
Consider the stochastic horizon case (for simplicity, with zero terminal reward) and an arbitrary
stochastic policy π = (π0, π1, . . .). The state-value function V π

t : S → R ∪ {∞} gives the
expected return obtained by running π from any state s ∈ S at time t ≥ 0,

V π
t (s) = E

[
T∑

τ=t

rτ (sτ , aτ )

∣∣∣∣∣ st = s

]

where aτ ∼ πτ (· | sτ ). The action-value function Qπ
t : S ×A → R ∪ {∞} at time t ≥ 0 is defined

by

Qπ
t (s, a) = rt(s, a) +

∑
s′∈S

V π
t+1(s

′)p(s′ | s, a)

This is the expected return of executing action a in state s at time t and then following policy π.
Note that V π

t can be written in the following recursive form

V π
t (s) = E

[
T∑

τ=t

rτ (sτ , aτ )

∣∣∣∣∣ st = s

]

=
∑
a∈A

(
rt(s, a) +

∑
s′∈S

E

[
T∑

τ=t+1

rτ (sτ , aτ )

∣∣∣∣∣ st+1 = s′

]
p(s′ | s, a)

)
πt(a | s)

=
∑
a∈A

(
rt(s, a) +

∑
s′∈S

V π
t+1(s

′)p(s′ | s, a)

)
πt(a | s)

Hence,

V π
t (s) =

∑
a∈A

Qπ
t (s, a)πt(a | s) s ∈ S

For deterministic policies, the above equation becomes V π
t (s) = Qπ

t

(
s, πt(s)

)
for any s ∈ A and

t ≥ 0.

Example. Consider the following game with two states, S (the initial state) and G (the goal
state), and two actions, 0 and 1. Action 1 deterministically leads to the goal state with a reward
of b. Action 0 always carries a reward of a with 0 < a < b, leads to the goal state with probability
p, and remains in state S with probability 1− p.
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S G

r(S, 0) = a

r(S, 0) = a

r(S, 1) = b

We consider two deterministic and stationary Markov policies. Since everything is stationary, we
can omit the subscripts t from V π

t and Qπ
t . Policy π keeps on playing action 0 until the goal state

is reached. Policy π′ plays action 1 and immediately reaches the goal state. Clearly, V π′
(S) = b.

On the other hand,

V π(S) = ap

∞∑
k=1

k(1− p)k−1 =
a

p

Hence, V π(S) > V π′
(S) if and only if p < a

b .

The action-value function for π is Qπ(S, 0) = a
p and Qπ(S, 1) = b. Similarly, Qπ′

(S, 0) = a+(1−p)b

and Qπ′
(S, 1) = b.

We now characterize the optimal policy in the finite horizon case. Since finite horizon is a special
case of stochastic horizon, we do not lose generality by restricting to deterministic policies. To
avoid confusion, we use H to denote the horizon and we call stage any time step h = 0, . . . ,H.
Then, the expected return (or state-value function) of a deterministic policy π = (π0, . . . , πH) at
stage h is

V π
h (s) = E

[
H∑
t=h

rt
(
st, πt(st)

)∣∣∣∣∣ sh = s

]
= rh

(
s, πh(s)

)
+
∑
s′∈S

V π
h+1(s

′)p
(
s′ | s, πh(s)

)
and the action-value function at stage h is

Qπ
h (s, a) = rh(s, a) +

∑
s′∈S

V π
h+1(s

′)p(s′ | s, a)

Let π∗ be the optimal deterministic policy, satisfying V π∗
h (s) ≥ V π

h (s) for all s ∈ S, h ∈ {0, . . . ,H},
and all deterministic policies π. For brevity, we write V ∗

h and Q∗
h.

Using backward induction, it is easy to compute the optimal state-value and action-value functions
for all h = 0, . . . ,H. Let V ∗

H+1 and Q∗
H+1 be constant zero functions. First, observe that

Q∗
H(s, a) = rH(s, a)

V ∗
H(s) = max

a∈A
rH(s, a) = max

a∈A
Q∗

H(s, a)

Now, given Q∗
h and V ∗

h for h ∈ {1, . . . ,H}, we can compute Q∗
h−1 and V ∗

h−1 as follows. By definition
of action-value function,

Q∗
h−1(s, a) = rh−1(s, a) +

∑
s′∈S

V ∗
h (s

′)p(s′ | s, a)
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For the state-value function, we compute the optimal expected return from stage h−1 by maximizing
the sum of the optimal reward at stage h − 1 and the optimal expected return V ∗

h from stage h
onwards,

V ∗
h−1(s) = max

a∈A

(
rh−1(s, a) +

∑
s′∈S

V ∗
h (s

′)p(s′ | s, a)

)
= max

a∈A
Q∗

h−1(s, a)

The above is a manifestation of Bellman’s principle of optimality: the tail of an optimal policy is
optimal for the “tail” problem. In this case, the tail

(
π∗
h, π

∗
h+1 . . .

)
of π∗ is optimal for the problem

defined on stages (h, h+ 1, . . .).

The system of equations

V ∗
h (s) = max

a∈A

(
rh(s, a) +

∑
s′∈S

V ∗
h+1(s

′)p(s′ | s, a)

)
s ∈ S, h = 0, . . . ,H

is called the Bellman optimality equations for finite horizon. Clearly, solving these equations
for the variables {V ∗

h (s) : s ∈ S, h = 0, . . . ,H} gives the optimal policy

π∗
h(s) = argmax

a∈A

(
rh(s, a) +

∑
s′∈S

V ∗
h+1(s

′)p(s′ | s, a)

)
= argmax

a∈A
Q∗

h(s, a)

Solving the Bellman equations, however, requires knowing all the parameters of the MDP.
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