Reinforcement Learning

The value functions

Lecturer: Nicolò Cesa-Bianchi

version January 29, 2024

This material is partially based on the book draft "Reinforcement Learning: Foundations" by Shie Mannor, Yishay Mansour, and Aviv Tamar.

We consider an MDP with finite state space S, finite action space A such that A(s) = A for all $s \in S$, transition kernel $\{p(\cdot | s, a) : s \in S, a \in A\}$, and time-dependent reward function $r_t : S \times A \rightarrow [-1, 1]$.

We now define some quantities that will help us define the notion of optimal policy in a known MDP. Consider the stochastic horizon case (for simplicity, with zero terminal reward) and an arbitrary stochastic policy $\boldsymbol{\pi} = (\pi_0, \pi_1, \ldots)$. The **state-value function** $V_t^{\boldsymbol{\pi}} : S \to \mathbb{R} \cup \{\infty\}$ gives the expected return obtained by running $\boldsymbol{\pi}$ from any state $s \in S$ at time $t \geq 0$,

$$V_t^{\boldsymbol{\pi}}(s) = \mathbb{E}\left[\left|\sum_{\tau=t}^T r_{\tau}(s_{\tau}, a_{\tau})\right| s_t = s\right]$$

where $a_{\tau} \sim \pi_{\tau}(\cdot \mid s_{\tau})$. The **action-value** function $Q_t^{\pi} : S \times A \to \mathbb{R} \cup \{\infty\}$ at time $t \ge 0$ is defined by

$$Q_t^{\pi}(s, a) = r_t(s, a) + \sum_{s' \in \mathcal{S}} V_{t+1}^{\pi}(s') p(s' \mid s, a)$$

This is the expected return of executing action a in state s at time t and then following policy π . Note that V_t^{π} can be written in the following recursive form

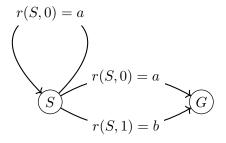
$$\begin{aligned} V_t^{\pi}(s) &= \mathbb{E}\left[\sum_{\tau=t}^T r_{\tau}(s_{\tau}, a_{\tau}) \middle| s_t = s\right] \\ &= \sum_{a \in \mathcal{A}} \left(r_t(s, a) + \sum_{s' \in \mathcal{S}} \mathbb{E}\left[\sum_{\tau=t+1}^T r_{\tau}(s_{\tau}, a_{\tau}) \middle| s_{t+1} = s'\right] p(s' \mid s, a) \right) \pi_t(a \mid s) \\ &= \sum_{a \in \mathcal{A}} \left(r_t(s, a) + \sum_{s' \in \mathcal{S}} V_{t+1}^{\pi}(s') p(s' \mid s, a) \right) \pi_t(a \mid s) \end{aligned}$$

Hence,

$$V_t^{\boldsymbol{\pi}}(s) = \sum_{a \in \mathcal{A}} Q_t^{\boldsymbol{\pi}}(s, a) \pi_t(a \mid s) \qquad s \in \mathcal{S}$$

For deterministic policies, the above equation becomes $V_t^{\pi}(s) = Q_t^{\pi}(s, \pi_t(s))$ for any $s \in \mathcal{A}$ and $t \ge 0$.

Example. Consider the following game with two states, S (the initial state) and G (the goal state), and two actions, 0 and 1. Action 1 deterministically leads to the goal state with a reward of b. Action 0 always carries a reward of a with 0 < a < b, leads to the goal state with probability p, and remains in state S with probability 1 - p.



We consider two deterministic and stationary Markov policies. Since everything is stationary, we can omit the subscripts t from V_t^{π} and Q_t^{π} . Policy π keeps on playing action 0 until the goal state is reached. Policy π' plays action 1 and immediately reaches the goal state. Clearly, $V^{\pi'}(S) = b$. On the other hand,

$$V^{\pi}(S) = ap \sum_{k=1}^{\infty} k(1-p)^{k-1} = \frac{a}{p}$$

Hence, $V^{\pi}(S) > V^{\pi'}(S)$ if and only if $p < \frac{a}{b}$.

The action-value function for π is $Q^{\pi}(S,0) = \frac{a}{p}$ and $Q^{\pi}(S,1) = b$. Similarly, $Q^{\pi'}(S,0) = a + (1-p)b$ and $Q^{\pi'}(S,1) = b$.

We now characterize the optimal policy in the finite horizon case. Since finite horizon is a special case of stochastic horizon, we do not lose generality by restricting to deterministic policies. To avoid confusion, we use H to denote the horizon and we call stage any time step $h = 0, \ldots, H$. Then, the expected return (or state-value function) of a deterministic policy $\boldsymbol{\pi} = (\pi_0, \ldots, \pi_H)$ at stage h is

$$V_{h}^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^{H} r_{t}(s_{t}, \pi_{t}(s_{t})) \middle| s_{h} = s\right] = r_{h}(s, \pi_{h}(s)) + \sum_{s' \in \mathcal{S}} V_{h+1}^{\pi}(s') p(s' \mid s, \pi_{h}(s))$$

and the action-value function at stage h is

$$Q_{h}^{\pi}(s, a) = r_{h}(s, a) + \sum_{s' \in \mathcal{S}} V_{h+1}^{\pi}(s') p(s' \mid s, a)$$

Let π^* be the optimal deterministic policy, satisfying $V_h^{\pi^*}(s) \ge V_h^{\pi}(s)$ for all $s \in S$, $h \in \{0, \ldots, H\}$, and all deterministic policies π . For brevity, we write V_h^* and Q_h^* .

Using backward induction, it is easy to compute the optimal state-value and action-value functions for all $h = 0, \ldots, H$. Let V_{H+1}^* and Q_{H+1}^* be constant zero functions. First, observe that

$$Q_H^*(s,a) = r_H(s,a)$$
$$V_H^*(s) = \max_{a \in \mathcal{A}} r_H(s,a) = \max_{a \in \mathcal{A}} Q_H^*(s,a)$$

Now, given Q_h^* and V_h^* for $h \in \{1, \ldots, H\}$, we can compute Q_{h-1}^* and V_{h-1}^* as follows. By definition of action-value function,

$$Q_{h-1}^*(s,a) = r_{h-1}(s,a) + \sum_{s' \in \mathcal{S}} V_h^*(s') p(s' \mid s,a)$$

For the state-value function, we compute the optimal expected return from stage h-1 by maximizing the sum of the optimal reward at stage h-1 and the optimal expected return V_h^* from stage honwards,

$$V_{h-1}^{*}(s) = \max_{a \in \mathcal{A}} \left(r_{h-1}(s,a) + \sum_{s' \in \mathcal{S}} V_{h}^{*}(s')p(s' \mid s,a) \right)$$
$$= \max_{a \in \mathcal{A}} Q_{h-1}^{*}(s,a)$$

The above is a manifestation of Bellman's **principle of optimality:** the tail of an optimal policy is optimal for the "tail" problem. In this case, the tail $(\pi_h^*, \pi_{h+1}^*...)$ of π^* is optimal for the problem defined on stages (h, h+1, ...).

The system of equations

$$V_{h}^{*}(s) = \max_{a \in \mathcal{A}} \left(r_{h}(s, a) + \sum_{s' \in \mathcal{S}} V_{h+1}^{*}(s') p(s' \mid s, a) \right) \qquad s \in \mathcal{S}, \ h = 0, \dots, H$$

is called the **Bellman optimality equations** for finite horizon. Clearly, solving these equations for the variables $\{V_h^*(s) : s \in S, h = 0, ..., H\}$ gives the optimal policy

$$\pi_h^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \left(r_h(s, a) + \sum_{s' \in \mathcal{S}} V_{h+1}^*(s') p(s' \mid s, a) \right) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_h^*(s, a)$$

Solving the Bellman equations, however, requires knowing all the parameters of the MDP.