
The Role of Transparency in Repeated First-Price Auctions with
Unknown Valuations∗

Nicolo Cesa-Bianchi
University of Milan &
Politecnico di Milano

Milan, Italy
cesa.bianchi@gmail.com

Tommaso Cesari
University of Ottawa

Ottawa, Canada
tommaso.cesari@gmail.com

Roberto Colomboni
University of Milan &
Politecnico di Milano

Milan, Italy
robertocolomboni@gmail.com

Federico Fusco
Sapienza University of Rome

Rome, Italy
fuscof@diag.uniroma1.it

Stefano Leonardi
Sapienza University of Rome

Rome, Italy
leonardi@diag.uniroma1.it

ABSTRACT

We study the problem of regret minimization for a single bidder
in a sequence of �rst-price auctions where the bidder discovers
the item’s value only if the auction is won. Our main contribution
is a complete characterization, up to logarithmic factors, of the
minimax regret in terms of the auction’s transparency, which con-
trols the amount of information on competing bids disclosed by
the auctioneer at the end of each auction. Our results hold under
di�erent assumptions (stochastic, adversarial, and their smoothed
variants) on the environment generating the bidder’s valuations
and competing bids. These minimax rates reveal how the interplay
between transparency and the nature of the environment a�ects
how fast one can learn to bid optimally in �rst-price auctions.
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1 INTRODUCTION

The online advertising market has recently transitioned from sec-
ond to �rst-price auctions. A remarkable example is Google Ad-
Sense’s move at the end of 2021 [40], following the switch made by
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Google AdManager and AdMob. Earlier examples include OpenX,
AppNexus, Index Exchange, and Rubicon [37]. To increase trans-
parency in �rst-price auctions, some platforms (like AdManager)
have a single bidding session for each available impression (uni�ed
bidding) and require all partners to share and receive bid data. After
the �rst-price auction closes, bidders receive the minimum bid price
that would have won them the impression [11]. In practice, advertis-
ers face two main sources of uncertainty in the bidding phase: they
ignore the value of the competing bids and, crucially, ignore the
actual value of the impression they are bidding on. Indeed, clicks
and conversion rates—which are only measured after the auction
is won and the ad is displayed—can vary wildly over time or highly
correlate with competing bids. We remark that ignoring the value
of the impression strongly a�ects the bidder’s utility: it may lead to
overbidding for an impression of low value or, conversely, under-
bidding and losing a valuable one. To cope with this uncertainty,
advertisers rely on auto-bidders that use the feedback provided in
the auctions to learn good bidding strategies. We study the learning
problem faced by a single bidder within the framework of regret
minimization according to the following protocol:

Online Bidding Protocol

for C = 1, 2, . . . ,) do

Valuation+C and competing bid"C are privately generated
The learner posts a bid �C and receives utility UtilC (�C ):

UtilC (�C ) = (+C − �C )I{�C ≥ "C }
The learner observes some feedback /C

The bidder has no initial information on the environment and
seeks to learn the relevant features of the problem on the �y. The
performance of a learning strategy for the bidder—also referred to
as the learner—is measured in terms of the di�erence in total utility
with respect to the best �xed bid. This di�erence is called regret, and
the main goal is to design strategies with asymptotically vanishing
time-averaged regret with respect to the best �xed-bid strategy or,
equivalently, regret sublinear in the time horizon. In this work, we
are speci�cally interested in understanding how the “transparency”
of the auctions—i.e., the amount of information on competing bids
disclosed by the auctioneer after the auction takes place—a�ects the
learning process. There is a clear tension regarding transparency:
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Table 1: Summary of our results. Rows correspond to feedback

models (F=Full, T=Transparent, S=Semi-Transparent, and B=Bandit)

while columns to environments. The minimax regret of every prob-

lem falls in one of the following three regimes: Θ̃(
√
) ) (green),

Θ̃() 2/3 ) (yellow) and Θ̃() ) (red).

Stochastic i.i.d. Adversarial

Smooth General Smooth General

F Th.5: Ω(
√
) ) Th.8: Ω() )

T Th.4: $ (
√
) ) Th.7: $̃ (

√
) )

S Th.3: Ω
(
)

2/3) Th.2: $̃
(
)

2/3)
B Th.1: Ω() ) Th.6: $

(
)

2/3)

on the one hand, bidders want to receive as much information as
possible about the environment to learn the competitor’s bidding
strategies while revealing as little as possible about their (private)
bids. On the other hand, the platform may not want to publicly
reveal its revenue (i.e., the winning bid). Our investigation addresses
both sides of the “transparency dilemma”. Our algorithmic results
provide bidders with a toolbox of learning strategies to (optimally)
exploit the various degrees of transparency, while the tightness
of our results fully characterizes the impact of transparency on
learnability. This complete picture allows platforms to make an
informed decision in choosing their level of transparency, as it is in
their interest to create a thriving environment for advertisers.

To model the level of transparency, we distinguish four natural
types of feedback /C , specifying the conditions under which the
highest competing bid"C and the bidder’s valuation+C are revealed
to the bidder after each round C . In the transparent feedback set-
ting, "C is always observed after the auction is concluded, while
+C is only known if the auction is won, i.e., when �C ≥ "C . In the
semi-transparent setting,"C is only observed when the auction is
lost. In other words, in the semi-transparent setting, the platform
publicly reveals only the winning bid, whereas in the transparent
setting, the platform reveals all bids. We also consider two extreme
settings that provide two natural learning benchmarks: full feed-
back ("C and +C are always observed irrespective of the auction’s
outcome) and bandit feedback ("C is never observed while +C is
only observed by the winning bidder). Note that the learner can
compute the value of the utility UtilC (�C ) at time C with any type of
feedback, including bandit feedback. In this paper, we characterize
the learner’s minimax regret not only with respect to the degree of
transparency of the auction but also with respect to the nature of
the process generating the sequence of pairs (+C , "C ). In particular,
we consider four types of environments: stochastic i.i.d., adversarial,
and their smooth versions (see Section 1.3 for a discussion about
smoothness, and Section 2 for the formal de�nition).

1.1 Overview of Our Results

We report here an overview of our results (see also Table 1). For
simplicity, we often hide the logarithmic factors with the $̃ notation.

Stochastic i.i.d. settings.

• In both the full and transparent feedback models, the minimax
regret is of order

√
) (Theorems 4 and 5), and adding the smooth-

ness requirement leaves this rate unchanged.

• In the semi-transparent feedback model, the minimax regret is
of order ) 2/3 (Theorems 2 and 3). Also in this case, adding the
smoothness requirement leaves this rate unchanged.

• In the bandit feedback model, smoothness is crucial for sublinear
regret (Theorem 1). In particular, smoothness implies a minimax
regret of ) 2/3 (this is obtained by combining the upper bound in
Theorem 6 and the lower bound in Theorem 3).

Adversarial settings.

• Without smoothness, sublinear regret cannot be achieved, even
with full feedback (Theorem 8).

• In both the full and transparent feedback model, the minimax
regret in a smooth environment is of order

√
) (combining the

lower bound in Theorem 5 and the upper bound in Theorem 7).

• Both with semi-transparent and bandit feedback, the minimax
regret in a smooth environment is of order ) 2/3 (combining the
lower bound in Theorem 3 and the upper bound in Theorem 6).

Interestingly, the minimax regret rates for �rst-price auctions
mirror the allowed regret regimes in �nite partial monitoring games
[8] and online learning with feedback graphs [2]. This is somehow
surprising, as it has been shown in Lattimore [33] that games with
continuous outcome/action spaces allow for a much larger set of
regret rates—see also Bernasconi et al. [10], Bolić et al. [13], Cesa-
Bianchi et al. [15].

Table 1 reveals some interesting properties of the learnability of
the problem: full feedback and transparent feedback are essentially
equivalent, while semi-transparent feedback and bandit feedback
di�er only in the stochastic i.i.d. setting. Qualitatively, this tells
the platform that disclosing all bids (instead of only the winning
one) drastically improves the learnability of the problem (green vs.
yellow entries in Table 1). Besides, revealing at least the winning
bid avoids some pathological behavior (yellow entries vs. red entry
for the general i.i.d. environment with bandit feedback). Moreover,
while smoothness is key for learning in the adversarial setting, in
the stochastic case smoothness is only relevant for bandit feedback.

"C +C bid

UtilC

"C+C bid

UtilC bid

Util

Δ

1★

Figure 1: The utility function is generally neither Lipschitz nor con-

tinuous. If "C ≤ +C (top left plot), then UtilC is upper-semi contin-

uous and one-sided Lipschitz; conversely, if "C ≥ +C (bottom left

plot), then UtilC is still one-sided Lipschitz—from the other side—and

lower-semi continuous. Summing up the two types of utilities re-

sults in a total utility that may be neither one-sided Lipschitz nor

semi-continuous (right plot, where the two utility functions of the

other two plots are summed up. There, 1★ is the optimal bid and Δ

is the neighborhood of 1★ where the total utility is “good enough”).
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1.2 Technical Challenges

The utility function. The utilitiesUtilC (1) = (+C−1)I{"C ≤ 1} are
de�ned over a continuous decision space [0, 1] and are neither Lips-
chitz nor continuous, see Figure 1. Actually, even weaker properties,
i.e., that the expected cumulative reward 1 ↦→ ∑

C ∈[) ] E
[
UtilC (1)

]
is one-sided Lipschitz or semi-continuous, do not hold in general.
We address this problem by developing techniques designed to
control the approximation error incurred when discretizing the
bidding space. This is a non-trivial problem without regularity as-
sumption, as the neighborhood of the optimal bid where the total
utility is “good enough” can be arbitrarily small in general (see the
red interval Δ in the rightmost plot of Figure 1). In the stochastic
i.i.d. setting, the approximation error is controlled by building a
sample-based non-uniform grid of candidate bids, which can be of
independent interest. This allows us to estimate the distribution
of the competing bids uniformly over the subintervals of [0, 1]. In
the adversarial setting, instead, we use the smoothness assumption
to guarantee that the expected utility is Lipschitz. In this case, the
approximation error is controlled using a uniform grid with an
appropriate grid-size (Lemma 4).

The feedback models. Our feedback models interpolate between
bandit (only the bidder’s utility is observed) and full feedback (+C
and"C are always observed). In the stochastic i.i.d. case, the di�er-
ent levels of transparency are crucial to the process of building the
non-uniform grids used to control the discretization error. In the
adversarial case, when there are only  allowed bids, the optimal
rates are of order

√
) ln and

√
 ) under full and bandit feedback,

respectively. While the semi-transparent feedback is not enough to
improve on the bandit rate, the transparent one can be exploited via
a more sophisticated approach. To this end, we design an algorithm,
Exp3.FPA, enjoying the full feedback regret rate of order

√
) ln 

while only relying on the weaker transparent feedback.

Lower bounds. The linear lower bounds (Theorems 1 and 8) ex-
ploit a “needle in a haystack” phenomenon, where there is a hidden
optimal bid 1★ in the [0, 1] interval and the learner has no way
of �nding 1★ using the feedback it has access to. This is indeed
the case in the non-smooth adversarial full-feedback setting and in
the non-smooth i.i.d. bandit setting. To prove the remaining lower
bounds, we design careful embeddings of known hard instances
into our framework. In particular, in Theorem 5 we embed the hard
instance for prediction with two experts and in Theorem 3 the hard
instance for  = Θ() 1/3) bandits.

1.3 Related Work

Transparency in �rst-price auctions. The role of transparency in
repeated �rst-price auctions has been investigated by Bergemann
and Hörner [9], but mostly from a game-theoretic viewpoint. In
particular, they study the impact of the feedback policy on the
bidders’ strategy and show how disclosing the bids at the end of
each round a�ects the equilibria of a bidding game with in�nite
horizon. In contrast, we want to characterize the impact of di�erent
amounts of feedback (or degrees of transparency) on the learner’s
regret, which is measured against the optimal �xed bid in hindsight.

Auctions with unknown valuations. Although the problem of re-
gret minimization in �rst-price auctions has been studied before,
only a few papers consider the natural setting of unknown val-
uations. Feng et al. [23] introduce a general framework for the
study of regret in auctions where a bidder’s valuation is only ob-
served when the auction is won. In the special case of �rst-price
auctions, their setting is equivalent to our transparent feedback
when the sequence of pairs (+C , "C ) is adversarially generated. Fol-
lowing a parameterization introduced by Weed et al. [39], Feng

et al. [23] provide a $
(√
) lnmax{Δ−10 ,) }

)
regret bound, where

Δ0 = minC<C ′ |"C−"C ′ | is controlled by the environment. In the sto-
chastic i.i.d. case, their results translate into distribution-dependent

guarantees that do not translate into a worst-case sublinear bound
(we obtain a

√
) rate). In the adversarial case, their guarantees

are still linear in the worst-case (we obtain
√
) bounds by lever-

aging the smoothness assumption). Achddou et al. [1] consider a
stochastic i.i.d. setting with the additional assumption that +C and
"C are independent. Their main result is a bidding algorithm with
distribution-dependent regret rates (of order) 1/3+Y or

√
) , depending

on the assumptions on the underlying distribution) in the transpar-
ent setting. Again, this result is not comparable to ours because of
the independence assumption and the distribution-dependent rates
(which do not allow to recover our minimax rates). Other works
consider regret minimization in repeated second-price auctions
with unknown valuations. Dikkala and Tardos [19] investigate a
repeated bidding setting, but do not consider regret minimization.
Weed et al. [39] derive regret bounds for the case when "C are
adversarially generated, while+C are stochastically or adversarially
generated and the feedback is transparent.

First-price auctions with known valuations. Considerably more
works study �rst price auctions when the valuation +C is known to
the bidder at the beginning of each round C . Note that these results
are not directly comparable to ours. Balseiro et al. [7] look at the case
when the+C are adversarial and the"C are either stochastic i.i.d. or
adversarial. In the bandit feedback case (when"C is never observed),
they show that the minimax regret is Θ̃

(
)

2/3) in the stochastic case

and Θ̃
(
)

3/4) in the adversarial case. Han et al. [29] prove a $̃
(√
)
)

regret bound in the semi-transparent setting ("C observed only
when the auction is lost) with adversarial valuations and stochastic
bids. Han et al. [28] focus on the adversarial case, when +C and"C
are both generated adversarially. They prove a $̃

(√
)
)
regret bound

in the full feedback setting ("C always observed) when the regret is
de�ned with respect to all Lipschitz shading policies. This setup is
extended in Zhang et al. [42] where the authors consider the case
in which the bidder is provided access to hints before each auction.
Zhang et al. [41] also studied the full information feedback setting
and design a space-e�cient variant of the algorithm proposed by
Han et al. [28]. Badanidiyuru et al. [5] introduce a contextual model
in which +C is adversarial and "C = ⟨\, GC ⟩ + YC where GC ∈ R3 is
contextual information available at the beginning of each round
C , \ ∈ R3 is an unknown parameter, and YC is drawn from an
unknown log-concave distribution. They study regret in bandit and
full feedback settings.
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Dynamics in �rst-price auctions. A di�erent thread of research is
concerned with the convergence property of the regret minimiza-
tion dynamics in �rst-price auctions (or, more speci�cally, with the
learning dynamics of mean-based regret minimization algorithms).
Feldman et al. [22] show that with continuous bid levels, coarse-
correlated equilibria exist whose revenue is below the second price.
Feng et al. [24] prove that regret minimizing bidders converge to a
Bayesian Nash equilibrium in a �rst-price auctions when bidder val-
ues are drawn i.i.d. from a uniform distribution on [0, 1]. Kolumbus
and Nisan [32] show that if two bidders with �nitely many bid val-
ues converge, then the equilibrium revenue of the bidder with the
highest valuation is the second price. Deng et al. [18] characterize
the equilibria of the learning dynamics depending on the number
of bidders with the highest valuation. Their characterization is for
both time-average and last-iterate convergence.

Smoothed adversary. Smoothed analysis of algorithms, originally
introduced by Spielman and Teng [38] and later formalized for
online learning by Rakhlin et al. [35] and Haghtalab et al. [25],
is a known approach to the analysis of algorithms in which the
instances at every round are generated from a distribution that
is not too concentrated. Recent works on the smoothed analysis
of online learning algorithms include Block et al. [12], Bolić et al.
[13], Cesa-Bianchi et al. [14, 15, 17], Durvasula et al. [21], Haghtalab
et al. [25, 27], Kannan et al. [30].

Online learning in metric spaces. Our problem is related to online
learning in metric spaces [31], where the action space is endowed
with a metric and the losses are induced by a sequence of Lips-
chitz functions de�ned onto it. Tight regret bounds are known,
parameterized by some notion of dimension of the metric space,
in both the full and the bandit models. The simple structure of our
action space ([0, 1] with the Euclidean distance) allows us to obtain
tight bounds by either using a uniform grid (Theorems 6 and 7) or
sample-based grids (Theorems 2 and 4), without resorting to the
more elaborate techniques that characterize this line of research,
e.g., zooming (which is typically used in the bandit feedback model
to account for the lack of feedback). Also related to our model is
the study of piecewise and regular Lipschitz functions [6, 20, 36].
In particular, Lemma 1 and Theorem 3 in Balcan et al. [6] imply our
Theorem 6 in the special case of independent processes.∗

2 THE LEARNING MODEL

We introduce formally the repeated bidding problem in �rst-price
auctions. At each time step C , a new item arrives for sale, for which
the learner holds some unknown valuation +C ∈ [0, 1]. The learner
bids some �C ∈ [0, 1] and, at the same time, a set of competitors
bid for the same object. We denote their highest competing bid
by "C ∈ [0, 1]. The learner gets the item at cost �C if it wins the
auction (i.e., if �C ≥ "C ), and does not get it otherwise. Then,
the learner observes some feedback /C and gains utility UtilC (�C ),
where, for all 1 ∈ [0, 1], UtilC (1) = (+C − 1)I{1 ≥ "C } (see the
Protocol in Section 1). Crucially, at time C the learner does not

∗Combining the second part of their Lemma 1 with their Theorem 3 to lift in-
dependence gives void guarantees in the general case (note that there is a typo in
the statement of their Lemma 1: as it can be seen in the proof, the correct result is

: = % · O
(
" · ^ · F +

√
" log(%/Z )

)
) and, without assuming independence, % = )

in our setting).

know its valuation +C for the item before bidding, implying that
its bid �C only depends on its past observations /1, . . . , /C−1 (and,
possibly, some internal randomization). The goal of the learner is
to design a learning algorithm A that maximizes its utility. More
precisely, we measure the performance of an algorithm A by its
regret ') (A) against the worst environment S in a certain class Ξ:
') (A) = supS∈Ξ ') (A,S), where

') (A,S) = sup
1∈[0,1]

E

[
)∑
C=1

UtilC (1) −
)∑
C=1

UtilC (�C )
]
.

The expectation in the previous display is taken with respect to the
randomness of the algorithmA which selects �C , and (possibly) the
randomness of the environment S generating the (+C , "C ) pairs.

The environments. In this paper we consider both stochastic i.i.d.
and adversarial environments.

• Stochastic i.i.d.: The pairs (+1, "1), (+2, "2), . . . are a stochastic
i.i.d. process.

• Adversarial: The sequence (+1, "1), (+2, "2), . . . is generated by
an oblivious adversary.

Following previous works in online learning (see Section 1.3), we
also study versions of the above environments that are constrained
to generate the sequence of (+C , "C ) values using distributions that
are “not too concentrated”. To this end, we introduce the notion of
smooth distributions.

De�nition 1 (Haghtalab et al. [26]). LetX be a domain that supports

a uniform distribution a . A measure ` on X is said to be f-smooth if

for all measurable subsets � ⊆ X, we have ` (�) ≤ a (�)
f .

We thus also consider the following two types of environments.

• The f-smooth stochastic i.i.d. environment, which is a stochastic
i.i.d. environment where the common distribution of all pairs
(+1, "1), (+2, "2), . . . is f-smooth.

• The f-smooth adversarial setting, where the pairs (+1, "1), . . .
form a stochastic process such that, for each C , the distribution
of the pair (+C , "C ) is f-smooth.

The feedback. After describing the environments that we study,
we now specify the types of feedback the learner receives at the
end of each round, from the richest to the least informative.

• Full feedback. The learner observes its valuation and the highest
competing bid: /C = (+C , "C ).
• Transparent feedback. The learner always observes"C , but +C is
only revealed if it gets the item: /C is equal to (★, "C ) if �C < "C
and to (+C , "C ) otherwise.
• Semi-transparent feedback2. The learner observes +C if it gets
the item and"C otherwise: /C is equal to (★, "C ) if �C < "C and
to (+C ,★) otherwise.
• The bandit feedback3. The learner observes +C if it gets the item
and the symbol ★ otherwise: /C is ★ if �C < "C and to +C other-
wise.

2This feedback is similar to the winner-only feedback in Han et al. [29].
3We call this the bandit feedback because it is equivalent to receiving UtilC (�C )

(with the extra information★ to distinguish between losing the item and winning it
with+C = �C , which does not a�ect regret guarantees).
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3 THE STOCHASTIC I.I.D. SETTING

In this section, we investigate the problem of repeated bidding
in �rst-price auctions with unknown valuations, when the pairs
of valuations and highest competing bids are drawn i.i.d. from a
�xed but unknown distribution. We start by proving in Section 3.1
that it is impossible to achieve sublinear regret under the bandit
feedback model without any assumption on the distribution of the
environment. Then, in Section 3.2, we give matching upper and
lower bounds of order ) 2/3 in the semi-transparent feedback model.
Notably, the lower bound holds for smooth distributions, while the
upper bound works for any (possibly non-smooth) distributions.
Finally, in Section 3.3 we prove that both the full and transpar-
ent feedback yield the same minimax regret regime of order

√
) ,

regardless of the regularity of the distribution.

3.1 I.I.D. – Bandit Feedback

In the bandit feedback model, at each time step, the learner observes
the valuation +C (and nothing else) when the auction is won, and
observes nothing when the auction is lost. The crucial di�erence
with the other (richer) types of feedback is the amount of informa-
tion received about"C , which, in the bandit case, is just the relative
position with respect to �C (i.e., whether "C ≤ �C or �C < "C ).
This allows to hide in the interval [0, 1] an optimal bid 1★ which
the learner cannot uncover over a �nite time horizon. Following
this idea, a di�cult environment should randomize between two
scenarios: a good scenario with large value +C = 1 and"C slightly
smaller than 1★ and a bad one with poor value +C = 0 and "C
slightly larger than 1★. Then, to avoid su�ering linear regret, the
learner has to �nd this tiny interval around 1★ (the “needle in a
haystack”).

Theorem 1. Consider the problem of repeated bidding in �rst-

price auctions in a stochastic i.i.d. environment with bandit feedback.

Then, any learning algorithm A satis�es ') (A) ≥ 1
13) .

Proof. We construct a randomized i.i.d. environment S, such
that any deterministic algorithm A su�ers linear regret against it,
and then apply Yao’s minimax principle to conclude the proof. The
randomized environment is simple: before starting the sequence,
a uniform seed 1★ is drawn uniformly at random in (1/3, 1/2 − Y),
where Y is a small parameter we set later. Then, the i.i.d. sequence
(+1, "1), (+2, "2), . . . is drawn as follows: at each time step C with
probability 1/2 we have (+C , "C ) =

(
1, 1★

)
, otherwise

(
0, 1★ + Y

)
.

The best bid in hindsight, 1★, yields an overall expected utility of
)
2 (1 − 1★), which is at least )/4, as 1★ belongs to (1/3, 1/2).
We now upper bound the utility achievable by any deterministic

algorithm A against S. Fix any such algorithm, and consider its
bids against any environment that selects the valuations +C to be
either 0 or 1 (as the one we just constructed). At each time step, the
feedback that A receives is 0, 1 or ★ (when the item is allocated
to one of the competitors), so that the history of the bids posted
by A is naturally described by a ternary decision tree of height
) , where each level corresponds to a time step and any node to a
bid. Crucially, the leaves of this tree are �nite (at most 3) ), which
means that the algorithm A only posts bids in a �nite subset # of
[0, 1]. Now, let Y = 3−2)/12; we have that, with probability at least
1 − 6#Y/(1−6Y ) ≥ 1 − 4−) , the set [1★, 1★ + Y] does not intersect # .

Collect Bids

1: input: Time horizon )0
2: -0 ← 0 and" (0) ← 0

3: for each round C = 1, 2, . . . ,)0 do

4: Post bid �C = 0 and observe the highest competing bid"C
5: Sort the observed highest competing bids in increasing order:
" (1) ≤ " (2) ≤ · · · ≤ " ()0 )

6: if " ()0 ) = 0 then return candidate bid -0
7: for 8 = 1, 2, . . . do

8: 9★8−1 ← max
{
9 ∈ {0, . . . ,)0} | -8−1 = " ( 9 )

}
9: 98 ← min

{
9★8−1 +

⌈√
)0

⌉
,)0

}
, -8 ← " ( 98 )

10: if 98 = )0 then let  ← 8 and break;

11: return Candidate bids -0, -1, -2, . . . , - 

Note: the randomness is with respect to the uniform seed 1★ drawn
by S, while the bound on the probability holds independently to
the choice of the deterministic algorithm A.

The total utility of A when [1★, 1★ + Y] does not intersect # is
easy to analyze: every time thatA posts bids smaller than 1★, then
it never wins the item (zero utility). Instead, if it posts bids larger
than 1★+Y, then it always gets the item (whose average value is 1/2),
paying at least 1★ + Y ≥ 1/3. Putting these two cases together, we
have proved that at each time step the expected utility earned by the
learner is at most 1/6 = 1/2 − 1/3, when [1★, 1★ + Y] ∩ # = ∅ (which
happens with probability at least 1−4−) ). Finally, by combining the
lower bound on the performance of 1★ with the upper bound on the
expected utility of the learner, we get ') (A,S) ≥ (1 − 4−) ) ()/4 −
)/6) ≥ )/13. □

3.2 I.I.D. – Semi-Transparent Feedback

In this section, we prove two results settling the minimax regret
for the semi-transparent feedback where the environment is i.i.d.
(and, possibly, smooth). First, we construct a learning algorithm,
Collecting Bandit, achieving ) 2/3 regret against any i.i.d. envi-
ronment. Then, we complement it with a lower bound of the same
order (up to log terms) obtained even in a smooth i.i.d. environment.

3.2.1 A )
2/3 Upper Bound for the i.i.d. Environment. Our learning

algorithm Collecting Bandit is composed of two phases. First, for
)0 = Θ() 2/3) rounds, it collects samples from the highest competing
bid random variables"1, "2, . . . , ")0 by posting dummy bids �1 =
�2 = · · · = �)0 = 0. Among these values (plus the value-0 = 0), the
algorithm selectsΘ(

√
)0) candidate bids according to their ordering,

in such a way that the empirical frequencies of bids"1, "2, . . . , ")0
landing strictly in between two consecutive selected values are at
most Θ(1/√)0) (see the pseudocode of Collect Bids for details).
Second, for the remaining time steps, it runs any bandit algorithm,
using as candidate bids the ones collected in the �rst phase (see
Collecting Bandit for details). Note that, in this second phase,
the (less informative) bandit feedback would be enough to run
the algorithm: the additional information provided by the semi-
transparent feedback is only exploited in the initial “collecting bids”
phase.

As a �rst step, we state a simple concentration result pertaining
the i.i.d. process ","1, "2, . . . , ")0 , for )0 ∈ N. If I is the family
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of all the subintervals of [0, 1] and X ∈ (0, 1), we de�ne

E)0
X

=

⋂
� ∈I

{��� 1)0 ∑)0
C=1 I{"C ∈ � } − P[" ∈ � ]

��� < 8

√
ln(1/X )
)0

}
.

The family I of all the subintervals of [0, 1] has VC dimension 2

(see, e.g., Mitzenmacher and Upfal [34, Chapter 14.2]). Therefore,

E)0
X

is realized with probability at least 1 − X , via standard sample
complexity bound for Y-samples (see, e.g., Mitzenmacher and Upfal
[34, Theorem 14.15]). This is summarized in the following lemma.

Lemma 1. For every)0 ∈ N and X ∈ (0, 1), we have P[E)0
X
] ≥ 1−X .

For the sake of readability, we introduce the following notation:

Notation 1. Let X = {G0, . . . , G } be any �nite grid with 0 =

G0 < G1 < · · · < G ≤ 1, we denote by :X : [0, 1] → {0, 1, . . . ,  }
the function that maps each 1 ∈ [0, 1] to the unique : such that

1 ∈ [G: , G:+1), with the convention that G +1 = 2.

We now prove a lemma that allows us to control the expected
cumulative utility of any bid in [0, 1] with that of the best bid in a
discretization (without relying on any smoothness assumption).

Lemma 2. Consider any �nite gridX = {G0, . . . , G }, with 0 = G0 <

G1 < · · · < G ≤ 1, and assume that the process ","1, "2, . . . of

the highest competing bids form an i.i.d. sequence. For all 1 ∈ [0, 1]
and )0,)1 ∈ N with )0 < )1, E

[∑)1
C=)0+1 UtilC (1)

]
is at most

E


)1∑

C=)0+1
UtilC

(
G:X (1 )

)
+ ()1 −)0)P

[
G:X (1 ) < " < G:X (1 )+1

]
.

Proof. Fix any 1 ∈ [0, 1], )0,)1 ∈ N with )0 < )1, and a time
step C ∈ {)0 + 1, . . . ,)1}. Then
E
[
UtilC (1)

]
= E

[
(+C − 1)I{1 ≥ "C }

]
≤ E

[
(+C − G:X (1 ) )

(
I{G:X (1 ) ≥ "C } + I{1 ≥ "C > G:X (1 ) }

) ]
≤ E

[
UtilC (G:X (1 ) )

]
+ P[G:X (1 ) < "C ≤ 1]

≤ E
[
UtilC (G:X (1 ) )

]
+ P[G:X (1 ) < "C < G:X (1 )+1] .

Summing over all times C and recalling that "C and " share the
same distribution, yields the conclusion. □

As a corollary of Lemmas 1 and 2 we obtain a similar discretiza-
tion error guarantee when the grid of points X is random.

Lemma 3. Fix any )0 ∈ N and X ∈ (0, 1). Let X = {-0, . . . , - }
be a random set containing a random number  of points satis-

fying 0 = -0 < -1 < · · · < - ≤ 1. Assume that the ran-

dom variables  ,-0, -1, . . . , - +1 are H)0 -measurable, where H)0
is the history up to and including time )0. Assume that the process

(+1, "1), (+2, "2), . . . of the valuations/highest competing bids form

an i.i.d. sequence. Then, for all 1 ∈ [0, 1] and )1 ∈ N with )1 > )0,

we have:

E


)1∑

C=)0+1
UtilC (1)


≤ E


)1∑

C=)0+1
UtilC

(
-:X (1 )

)
+ ()1 −)0)

(
1
)0

)0∑
C=1

P
[
-:X (1 ) < "C < -:X (1 )+1

]
+ 8

√
ln(1/X )
)0
+ X

)
.

Collecting Bandit (CoBa)

1: input: Time horizon) , bandit algorithm Ã for gains in [−1, 1]
2: )0 ← ⌈) 2/3⌉
3: Run Collect Bids with horizon )0 and obtain -0, -1, . . . , - 
4: Initialize Ã on  + 1 actions (one for each candidate bid -8 )

and ) −)0 as time horizon
5: for each round C = )0 + 1,)0 + 2, . . . ,) do

6: Receive from Ã the bid �C = -�C for some �C ∈ {0, 1, . . . ,  }
7: Post bid �C and observe feedback /C
8: Reconstruct UtilC (�C ) from /C and feed it to Ã

We are now ready to present the main theorem of this section.

Theorem 2. Consider the problem of repeated bidding in �rst-

price auctions in a stochastic i.i.d. environment with semi-transparent

feedback. Then there exists a learning algorithm A such that

') (A) ≤ 16
(
13 +
√
ln)

)
)

2/3 .

Proof. We prove that Collecting Bandit yields the desired
bound when its learning routine Ã is (a rescaled version of) MOSS
[3]: since MOSS is designed to run with gains in [0, 1] while the
utilities we observe are in [−1, 1], we �rst apply the reward transfor-
mation G ↦→ G+1

2 to the observed utilities. This costs a multiplicative
factor of 2 on the regret guarantees of MOSS. Leveraging the fact
that the empirical frequency between two consecutive -: and -:+1
generated by Collect Bids is at most 2/√)0 by design and applying
Lemma 3 with )1 = ) to the random variables -0, -1, . . . , - , we

get, for all 1 ∈ [0, 1], that E
[∑)

C=)0+1 UtilC (1)
]
is upper bounded by

E


)∑

C=)0+1
UtilC

(
-:X (1 )

)
+ () −)0) ©«

2
√
)0
+ 8

√
ln(1/X)
)0

+ Xª®¬
= (★) .

Now, applying the tower rule to the expectation conditioning to the
historyH)0 up to time)0, we can use the fact that the regret of the

rescaled version of MOSS is upper bounded by 98
√
( + 1) () −)0)

and the number of points  + 1 collected by Collect Bids is at
most

√
)0 + 1 to obtain

(★) ≤ E


)∑
C=)0+1

UtilC (�C )

+ 98

√
(
√
)0 + 1) () −)0)

+ () −)0) ©«
2
√
)0
+ 8

√
ln(1/X)
)0

+ Xª®¬
.

Finally, tuning X = 1/)0, upper bounding the cumulative regret over
the �rst)0 rounds with)0, and recalling that)0 = ⌈) 2/3⌉, yields the
conclusion. □

3.2.2 A )
2/3 Lower Bound for the Smooth i.i.d. Environment. We

prove that the $̃ () 2/3) bound achieved by Collecting Bandit is
indeed optimal, up to logarithmic terms. Our lower bound consists
in carefully embedding into our model a hard multiarmed bandit
instance with  = Θ() 1/3) arms, which entails a lower bound of
order Ω(

√
 ) ) = Ω() 2/3). This proof agenda involves various chal-

lenges: we want to embed a discrete construction of  independent
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Figure 2: Left: The support of the base density 5 lies inside the yellow

and green regions. The perturbation 6F,Y of 5 occurs inside the green

region, where the four rectangles '1F,Y , . . . , '
4
F,Y (in red and blue) lie.

Right: The corresponding qualitative plots of 1 ↦→ E[UtilC (1 ) ] (black,
dotted) and ? ↦→ EF,Y [UtilC (1 ) ] (red, solid).

actions into our continuous framework, where the utilities of di�er-
ent bids are correlated, while enforcing smoothness. Furthermore,
the semi-transparent feedback is richer than the bandit one. We
report here a proof sketch and refer the interested reader to the full
version of the paper [16] for the missing details.

Theorem 3. Consider the problem of repeated bidding in �rst-

price auctions in a stochastic i.i.d. f-smooth environment with semi-

transparent feedback, for f ∈ (0, 1/66]. Then, any learning algorithm

A satis�es, for ) ≥ 8, ') (A) ≥ 3
104
)

2/3 .

Proof sketch. De�ne, for all E,< ∈ [0, 1], the density

5 (E,<) = I[ 7
8 , 1

] (E)
(

1

(E −<)2
I[ 1

4 , E−
1
8

] (<) + 4

E − 1/4 I
[
0,

1
4

) (<)
)
§ .

Let P0 be a probability measure such that (+ ,"), (+1, "1), . . . is
a P-i.i.d. sequence where each pair (+ ,") has common probability
density function 5 . Denoting by E0 the expectation with respect to
P
0, we have, for any bid 1 ∈ [0, 1] and any time step C

E
0
[
UtilC (1)

]
=1

(
1
2 + (1 − 41) ln

6
5

)
I[
0,
1
4

) (1) + 1

8
I[ 1

4 ,
3
4

) (1)
−

(
412 − 61 + 17

8

)
I[ 3

4 ,
7
8

) (1) + (
15
16 − 1

)
I[ 7

8 ,1
] (1) .

This function grows with 1 on [0, 1/4), has a plateau of maxi-
mizers [1/4, 3/4], then decreases on (3/4, 1] (see Figure 2, right). We
introduce the perturbation space Ξ:

Ξ =
{
(F, Y) ∈ [0, 1]2 : F − Y ≥ 1

4 andF + Y ≤ 3
4

}
and de�ne, for all (F, Y) ∈ Ξ, the four rectangles

'1F,Y = [15/16, 1] × [F − Y, F), '2F,Y = [15/16, 1] × [F, F + Y),
'3F,Y = [7/8, 15/16) × [F − Y, F), '4F,Y = [7/8, 15/16) × [F, F + Y) .
For all (F, Y) ∈ Ξ, we introduce the probability density function
5F,Y as follows 5F,Y = 5 + 6F,Y , where the perturbation 6F,Y is
de�ned as follows

6F,Y (E,<) =
16

9

(
I'1

F,Y∪'4
F,Y
(E,<) − I'2

F,Y∪'3
F,Y
(E,<)

)
.

§Note, we use the notation I� (G ) to denote the indicator function that has value
1 when G ∈ �, and 0 otherwise.

We refer to the left plot in Figure 2 for a visualization of the support
of the 5F,Y . For all (F, Y) ∈ Ξ, let PF,Y be a probability measure such
that (+ ,"), (+1, "1), (+2, "2), . . . is a PF,Y -i.i.d. sequence where
each pair (+ ,") has common probability density function 5F,Y .
Denoting by EF,Y the expectation with respect to PF,Y , we have,
for any bid 1 ∈ [0, 1] and any C

E
F,Y

[
UtilC (1)

]
= E

0
[
UtilC (1)

]
+ Y

144
ΛF,Y (1)

where ΛD,A is the tent map centered at D with radius A de�ned as
ΛD,A (G) = max {1 − |G − D |/A, 0}. In words, in a perturbed scenario
P
F,Y the expected utility is maximized at the peak of a spike cen-

tered atF with length and height Θ(Y) perturbing the plateau area
[1/4, 3/4] of maximum height (see Figure 2, right). De�ne, for all
times C ∈ N, the feedback function kC : [0, 1] →

(
[0, 1] × {★}

)
∪(

{★} × [0, 1]
)
, as follows:

1 ↦→
{
(+C ,★) if 1 ≥ "C
(★, "C ) if 1 < "C

and note that, in our semi-transparent feedback model, the feedback
/C received after bidding �C at time C iskC (�C ). Crucially, for each
(F, Y) ∈ Ξ and each 1 ∈ [0, 1] \ [F − Y,F + Y], the distribution of
kC (1) under PF,Y coincides with the distribution ofkC (1) under P0.
In push-forward notation, it holds that

P
F,Y
kC (1 ) = P

0
kC (1 ) . (1)

Now, let  ∈ N, Y = 1/(4 ) ,F: = 1/4+ (2: − 1)Y and P: = P
F: ,Y (for

each : ∈ [ ]). At a high level, we built a problem with two crucial
properties: (i) we know in advance the region where the optimal bid
belongs to (i.e., the interval [1/4, 3/4]), but (ii) when the underlying
scenario is determined by the probability measure P: , the learner
has to detect inside this potentially optimal region where a spike
of height (and length) Θ(Y) occurs (to avoid su�ering su�er Ω(Y) )
regret). This last task can be accomplished only by locating where
the perturbation in the base probability measure occurs, which,
given the feedback structure, can only be done by playing in the
interval [F: −Y,F: +Y) if the underlying probability is P: , su�ering
instantaneous regret of order Y whenever the underlying proba-
bility is P9 , with 9 ≠ : . Given that we partitioned the potentially
optimal region [1/4, 3/4] into Θ(1/Y) disjoint intervals where these
perturbations can occur, the feedback structure implies that each
of these intervals deserves its dedicated exploration.

To better highlight this underlying structure, in the full version,
we show that our problem is not easier than a simpli�ed  -armed
stochastic bandit problem, where the instances we consider are
determined by the probability measures P1, . . . , P . In this bandit
problem, when the underlying probability measure is induced by
some P: , the corresponding arm : has an expected reward Θ(Y)
larger than the others. Then, via an information-theoretic argument,
we can show that any learner would need to spend at least order of
1/Y2 rounds to explore each of the arms (paying Ω(Y) each time) or
else, it would pay a regret Ω(Y) ). Hence, the regret of any learner,
in the worst case, is lower bounded by Ω

(  
Y2
Y + Y)

)
= Ω

(
 2 + ) 

)
(recalling our choice of Y = 1/(4 )). Picking  = Θ() 1/3) yields a
lower bound of order ) 2/3. □
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3.3 I.I.D. – Transparent/Full Feedback

This section completes the study of the stochastic i.i.d. environment
by determining the minimax regret when the learner has access to
full or transparent feedback.

3.3.1 A
√
) Upper Bound for the i.i.d. Environment. While with

semi-transparent feedback, the learning algorithm has to rely on
dummy bids �1 = · · · = �)0 = 0 to gather information about the
distribution of the highest competing bids, with the transparent
one, this information is collected for free at each bidding round. To
use this extra information, we present a wrapper W.T.FPA (for a
sequence of base learning algorithms for the transparent feedback
model) whose purpose is restarting the learning process with a
geometric step to update the set of candidate bids. We assume
that each of the wrapped base algorithms Ãg can take as input
any �nite subset X ⊂ [0, 1] and returns bids in X. Furthermore,
for all ) ′, we let R) ′ (Ãg ,X) be an upper bound on the regret
over ) ′ rounds of Ãg with input X against the best �xed G ∈ X.
Formally, we require that for any two times )0 < )1 such that
) ′ = )1 −)0, the quantity R) ′ (Ãg ,X) is an upper upper bound on

maxG∈X E
[∑)1

C=)0+1 UtilC (G) −
∑)1
C=)0+1 UtilC (�C )

]
, where �C ∈ X is

the sequence of prices played by Ãg (with input X) when started
at round C = )0 + 1 and ran up to time)1. Without loss of generality,
we assume that ) ′ ↦→ R) ′ (Ãg ,X) is non-decreasing.

W.T.FPA (Wrapper for Transparent First-Price Auctions)

1: input: Base algorithms Ã1, Ã2, . . .

2: initialization: B ← 0

3: for each epoch g = 1, 2, . . . do

4: Xg ← {0} ∪ {"1, . . . , "B } (with X1 = {0})
5: Start Ãg with input Xg and run it for C = B + 1, . . . , B + 2g−1
6: Update B ← B + 2g−1

Proposition 1. Consider the problem of repeated bidding in �rst-

price auctions in a stochastic i.i.d. environment with transparent feed-

back. Then the regret ofW.T.FPA run with base algorithms Ã1, Ã2, . . .

satis�es

') (W.T.FPA) ≤
⌈log2 ()+1) ⌉∑

g=2

R2g−1
(
Ãg ,Xg

)
+ 3 + 16

(√
2 + 2

)√
) ln) .

Proof. Fix an arbitrary epoch g ∈
{
2, . . . ,

⌈
log2 () + 1)

⌉}
; we

want to bound the regret su�ered there by W.T.FPA using Lemma 3.
Using the notation of the lemma, let X = Xg ,  + 1 = |X|, )0 =∑g−1
g ′=1 2

g ′−1
= 2g−1−1 (the time passed from the beginning of epoch

1 up to and including the end of epoch g −1),)1 = min{)0+2g−1,) }
(the end of epoch g), and let -0 < -1 < · · · < - be the distinct
elements of X in increasing order, where we note that -0 = 0,
- ≤ 1, and we set - +1 = 2. Let H)0 be the history, including
time )0.

Applying Lemma 3 (together with the fact that the empirical
frequency between any two consecutive values -: and -:+1 is 0 by
design), and exploiting the monotonicity of ) ′ ↦→ R) ′ (Ãg ,Xg ) for

the last epoch (if )0 + 2g−1 > ) ), we obtain, for all 1 ∈ [0, 1] and
X ∈ (0, 1),

E


)1∑

C=)0+1
UtilC (1)


≤

)1∑
C=)0+1

E

[
UtilC

(
-:X (1 )

)]
+ 2g−1

(
8

√
ln(1/X )
)0
+ X

)

≤
)1∑

C=)0+1
E [UtilC (�C )] + R2g−1

(
Ãg ,Xg

)
+ 2g−1

(
8

√
ln(1/X )
2g−1−1 + X

)
.

Summing over epochs g ∈
{
2, . . . ,

⌈
log2 () + 1)

⌉}
, upper bounding

by 1 the regret incurred in the �rst epoch, and tuning X = 1/) yields
the conclusion. □

Now we are only left to design appropriate base algorithms
Ã1, Ã2, . . . for the transparent feedback to wrap W.T.FPA around.

The Exp3.FPA algorithm. To this end, we introduce the Exp3.FPA
algorithm (designed to run with transparent feedback), which bor-
rows ideas from online learning with feedback graphs [2]. Similar
algorithms for related settings have been previously proposed by
Weed et al. [39] and Feng et al. [23]. For the familiar reader, note
that our setting can be seen as an instance of online learning with
strongly observable feedback graphs. In contrast to a black-box
application of feedback-graph results, we shave o� a logarithmic
term (in the time horizon) by using a dedicated analysis. For any
G ∈ [0, 1], we denote by XG the Dirac distribution centered at G .

Exp3.FPA

1: input: Finite X ⊂ [0, 1], and exploration rate W ∈ (0, 1)
2: Let Ḡ ← max{X} and, for all G ∈ X, letF1 (G) ← 1

3: for each round C = 1, 2, . . . do

4: Post bid �C ∼ ?C ← (1 − W) FC

∥FC ∥1
+ WXḠ

5: For all G ∈ X, de�ne the reward estimate:

6̂C (G) ← (+C − G)I{G ≥ "C }
I{"C ≤ �C }∑
~≥"C

?C (~)

6: For all G ∈ X, update the weight:
FC+1 (G) ← FC (G) exp

(
W6̂C (G)

)

Note that the transparent feedback is su�cient to compute the
reward estimates in Line 5. We defer the proof of the following
proposition to the full version.

Proposition 2. Let X ⊂ [0, 1] be a �nite set, ) ∈ N a time horizon,

and tune the exploration rate as W =
√
ln( |X|)/(4 − 1)) . Then, the

regret of Exp3.FPA against the best �xed bid in X is

max
G∈X
E

[
)∑
C=1

UtilC (G) −
)∑
C=1

UtilC (�C )
]
≤ 2

√
(4 − 1) ln

(
|X|

)
)

Putting together Propositions 1 and 2 yields the desired rate.

Theorem 4. Consider the problem of repeated bidding in �rst-price

auctions in a stochastic i.i.d. environment with transparent feedback.

Then there exists a learning algorithm A such that

') (A) ≤ 3 + 2
(√

2 + 2
) (√

2(4 − 1) + 8
)√
) ln) .
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Figure 3: The expected utility function for three di�erent distribu-

tions: P0 in purple, P+ in orange, and P+ in green.

Proof. The statement of the theorem holds forW.T.FPA runwith
the base algorithm of each epoch g being �G?3.�%� tuned with

W = W (g) =
√
ln( |Xg |)/

(
(4 − 1)2g−1

)
. Substituting the guarantees

of Proposition 2 into those of Proposition 1 and recalling that |Xg | ≤
2g−1 for each epoch g = 2, 3, . . . , yields the desired bound. □

3.3.2 A
√
) Lower Bound for the i.i.d. Environment. We complement

the positive result of Theorem 4 with a matching lower bound of
order

√
) . The idea underlying our hard instance is to embed the

well-known lower bound for prediction with (two) experts into
our framework: we construct two smooth distributions that are
“similar” but have two di�erent optimal bids whose performance is
separated so that no learner can identify the correct distribution
without su�ering less than

√
) regret.

Theorem 5. Consider the problem of repeated bidding in �rst-

price auctions in a stochastic i.i.d. f-smooth environment with full

feedback, for f ∈ (0, 1/9]. Then, any learning algorithm A satis�es

') (A) ≥ 1
2048

√
) .

Proof. We prove the theorem by Yao’s principle: we show that
there exists a distribution over stochastic f-smooth environments
such that any deterministic learning algorithm A su�ers Ω(

√
) )

regret against it, in expectation. We do that in two steps. First, for
every Y ∈ (0, 1/2) we construct a pair of 1/9-smooth distributions
that are hard to discriminate for the learner. Then, we prove that, for
the right choice of Y, any learner su�ers the desired regret against
a uniform mixture of them. For visualization, we refer to Figure 3.

As a tool for our construction, we introduce a baseline probability
measure P0, such that the sequence (+ ,"), (+1, "1), (+2, "2), . . .
is P0-i.i.d., and (+ ,") has distribution P0(+ ," ) whose density is

5 0 (E,<) = 8 (I&+ (E,<) + I&− (E,<)),

where &+ = (0, 1/4) × (0, 1/4) and &− = (3/4, 1) × (1/4, 1/2). A conve-
nient way to visualize this distribution is to draw a uniform random
variable*C in the square &+ and then toss an unbiased coin. If the
coin yields heads, then (+C , "C ) is equal to *C , otherwise (+C , "C )
coincides with *C translated by (3/4, 1/4). With some simple com-
putation, it is possible to explicitly compute the expected utility
of posting any bid 1 ∈ [0, 1] when (+C , "C ) is drawn following the

distribution P0 (and expectation E0):

E
0 [UtilC (1)] =




1
4 (1 − 81) if 1 ∈ [0, 1/4)
− 1
8 (1612 − 141 + 3) if 1 ∈ [1/4, 1/2)

1
2 (1 − 21) if 1 ∈ [1/2, 1]

The function E0 [UtilC (1)] has two global maxima in [0, 1], of value
1/128, attained in 1/16 and 7/16 (see purple line in Figure 3).

For any Y ∈ (0, 1/2), we also de�ne two additional (perturbed)
probability measures P±Y , such that the sequence (+ ,"), (+1, "1),
. . . is P±Y -i.i.d. and the distribution P±Y(+ ," ) of (+ ,") has density:

5 ±Y (E,<) = 8(1 ± Y)I&+ (E,<) + 8(1 ∓ Y)I&− (E,<).

Note, | |5 ±Y | |∞ < 9, while | |5 0 | |∞ = 8, therefore all the distributions
considered in this proof are 1/9-smooth. To visualize these new
perturbed distributions, recall the construction of P0(+ ," ) using
the coin toss and the uniform random variable* : in this case, the
coin is biased, and the probability of tails is (1±Y )/2. It is possible
to explicitly compute the expected utility under these perturbed
distributions for any bid 1 ∈ [0, 1]: E±Y [UtilC (1)] is equal to




1
4 (1 − 81) ± Y

1
4 (1 − 81) if 1 ∈ [0, 14 )

− 1
8 (1612 − 141 + 3) ±

Y
4 (812 − 111 + 2) if 1 ∈ [ 14 ,

1
2 )

1
2 (1 − 21 ∓

3
4Y) if 1 ∈ [ 12 , 1]

(2)

For visualization, we refer to Figure 3 (bottom). The crucial property
of the distributions we constructed is that the instantaneous regret
of not playing in the “correct” region is Ω(Y); formally, we have the
following result (missing proofs are deferred to the long version).

Claim 1. There exists two disjoint intervals �+ and �− in [0, 1] such
that, for any Y ∈ (0, 1/2) and any time C , the following hold:

max
G∈[0,1]

E
±Y [UtilC (G)] ≥ E±Y [UtilC (1)] + 1

128Y, for all 1 ∉ �±

Since the two distributions are “Y-close¶”, any learner needs at
least 1/Y2 rounds to discriminate which ones of the two distributions
it is actually facing, paying each error with an instantaneous regret
of Ω(Y) (Claim 1). All in all, any learner su�ers a regret that is
Ω(Y · 1

Y2
+ Y) ), which is of the desired Ω(

√
) ) order for the right

choice of Y ≈ ) −1/2.
As the last step of the proof, we formalize the above argument.

Fix Y = 1/(4√) ) and rename P+Y = P
1 and P−Y = P

2. Similarly,
denote with �1 and �2 the two intervals �+ and �− as in the statement
of Claim 1. For each 9 ∈ {0, 1, 2}, consider the run of A against
the stochastic environment which draws (+1, "1), (+2, "2), . . . i.i.d.
from P9 . Let #1 be the random variable that counts the number
of times that algorithm A posts a bid in �1. Similarly, #2 counts
the number of times that it posts a bid in �2 . For 8 = 1, 2, we have
the following crucial relation between the expected value of #8
under P8 . Note, the results hold because the two distributions are
so similar that the deterministic algorithm A bids in the wrong
region a constant fraction of the time steps.

Claim 2. The following inequality holds: 12
∑
8=1,2 E

8 [#8 ] ≤ 3
4) .

¶In the full version, we formally prove that their total variation is at most Θ(Y ) .
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We �nally have all the ingredients to conclude the proof. Con-
sider an environment that selects uniformly at random either P1

or P2 and then draws the (+C , "C ) i.i.d. following it. We prove that
the algorithm A su�ers linear regret against this randomized en-
vironment and, by a simple averaging argument, against at least
one of them. Speci�cally, if 1★8 is the optimal bid in the scenario

determined by P8 , for 8 ∈ {1, 2}, we have

') (A) ≥
1

2

∑
8=1,2

E
8

[
)∑
C=1

UtilC (1★8 ) −
)∑
C=1

UtilC (�C )
]

(∗)
≥ 1

1024
√
)

∑
8=1,2

E
8 [) − #8 ]

(◦)
≥ 1

512
√
)

(
) − 3

4
)

)
=

√
)

2048

where (∗) follows by Claim 1 and choice of Y, and (◦) by Claim 2. □

4 THE ADVERSARIAL SETTING

In this section we complete the perspective on repeated bidding
in �rst-price auction by investigating the adversarial environment.
In particular, we consider two models: the standard one, where
the sequence (+1, "1), (+2, "2), . . . is chosen upfront in a deter-
ministic oblivious way, and the smooth environment, where the
sequence (+1, "1), (+2, "2), . . . is some f-smooth stochastic pro-
cess. In Section 4.1 we construct an algorithm achieving ) 2/3 regret
in the bandit feedback model under the smoothness assumption;
this result, together with the lower bound of the same order for
the semi-transparent feedback (Theorem 3) settles the problem for
these two feedback regimes. Then, in Section 4.2 we provide an-
other upper bound, namely an algorithm achieving

√
) regret in the

transparent feedback model under the smoothness assumption; this
result, together with the lower bound of the same order for the semi-
transparent feedback (Theorem 5) settles the problem for these two
feedback regimes. Finally, in Section 4.3 we provide a lower bound
proving that the non-smooth adversarial environment is too hard
to learn, even when the learner has access to full feedback.

4.1 Smooth – Bandit Feedback

The smoothness assumption regularizes the objective function: if
(+C , "C ) is smooth, then the expected utility is Lipschitz.

Lemma 4 (Lipschitzness). Let (+C , "C ) be a f-smooth random vari-

able in [0, 1]2. Then the induced expected utility function E [UtilC (·)]
is 2/f-Lipschitz in [0, 1]:��E [UtilC (~) − UtilC (G)]�� ≤ 2

f
|~ − G |, ∀G,~ ∈ [0, 1] . (3)

Proof. Let G > ~ be any two bids in [0, 1], we have:��E[UtilC (G) − UtilC (~)]��
=

��E [(+C − G)I{"C ≤ G} − (+C − ~)I{"C ≤ ~}]��
=

��E [(+C − G)I{~ < "C ≤ G} + (G − ~)I{"C ≤ ~})]
��

≤ P
[
"C ∈ [G,~]

]
+ (G − ~) ≤ 2

f (G − ~). □

Interestingly, we only need the marginal distribution of"C to be
f-smooth for the previous lemma to hold. This Lipschitzness prop-
erty has the immediate corollary that any �ne enough discretization
of [0, 1] contains a bid whose utility is close the the optimal one.

Lemma 5 (Discretization Lemma). Let X be any �nite grid of bids

in [0, 1], and let X (X) be the largest distance of a point in [0, 1] to X
(i.e., X (X) = max?∈[0,1] minG∈X |?−G |), then if each pair of random
variables (+1, "1), . . . , (+) , ") ) is f-smooth, we have the following:

sup
1∈[0,1]

E

[
)∑
C=1

UtilC (1)
]
−max
G∈X
E

[
)∑
C=1

UtilC (G)
]
≤ 3

X (X)
f

) .

Proof. Fix any such sequence and let 1★ a �xed bid such that

sup
1∈[0,1]

E

[
)∑
C=1

UtilC (1)
]
≤ E

[
)∑
C=1

UtilC (1★)
]
+ X (X)

f
) . (4)

If1★ is inX there is nothing to prove, otherwise these exists G★ ∈ X
such that |1★ − G★ | ≤ X (X) (by de�nition of X (X)). It holds that

)∑
C=1

E
[
UtilC (1★) − UtilC (G★)

] (L)
≤

)∑
C=1

2

f
|1★ − G★ | ≤ 2

X (X)
f

) .

where (L) follows by Lipschitzness and Lemma 4. The right-hand
side with Equation (4) concludes the proof of the lemma. □

We can combine the above discretization lemma with any (opti-
mal) bandits algorithm to get the desired bound on the regret. For
details, we refer to the pseudocode of Discretized Bandit.

Discretized Bandit

1: input: Time horizon) , bandit algorithm Ã for gains in [−1, 1],
grid of  bids X

2: Initialize Ã on  actions, one for each G ∈ X, time horizon )
3: for each round C = 1, 2, . . . ,) do

4: Receive from Ã the bid �C ∈ X
5: Post bid �C and observe feedback /C
6: Reconstruct UtilC (�C ) from /C and feed it to Ã

Theorem 6. Consider the problem of repeated bidding in �rst-

price auctions in an adversarial f-smooth environment with bandit

feedback. Then there exists a learning algorithm A such that

') (A) ≤ 29
f )

2/3 .

Proof. We prove that algorithm Discretized Bandit with the
right choice of learning algorithm Ã and grid of bids X achieves
the desired bound on the regret. As learning algorithm Ã we use
(a rescaled version of) the Poly INF algorithm [4]: since Poly INF is
designed to run with gains in [0, 1] while the utilities we observe
are in [−1, 1], we �rst apply the reward transformation G ↦→ G+1

2
to the observed utilities. This transformation costs a multiplicative
factor of 2 in the regret guarantees of Poly INF.

The analysis builds on the discretization result in Lemma 5, by
choosing as X the uniform grid of ⌈) 2/3⌉ + 1 equally spaced bids on
[0, 1] (note, X (X) becomes ) −1/3). Fix any f-smooth environment
S, by Lemma 5, the following chain of inequalities holds:

max
1∈[0,1]

E

[
)∑
C=1

UtilC (1)
]
≤ max
G∈X
E

[
)∑
C=1

UtilC (G)
]
+ 6

f
)

2/3

≤ E
[
)∑
C=1

UtilC (�C )
]
+ 6

f
)

2/3 + 23) 2/3 ≤ 29

f
)

2/3 .
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The second inequality follows from the guarantees of (the rescaled
version of) Poly INF [4, Theorem 11]. □

4.2 Smooth – Transparent Feedback

For transparent feedback, we combine two tools: the adversarial
discretization result (Lemma 5) and the algorithm Exp3.FPA for
learning with transparent feedback on a �nite grid. Note, using
any other

√
 ) black box learning algorithm (like in the previous

section for bandits) would yield a suboptimal regret bound of ) 2/3.

Theorem 7. Consider the problem of repeated bidding in �rst-price

auctions in an adversarial f-smooth environment with transparent

feedback. Then there exists a learning algorithm A such that

') (A) ≤ 6

(
1

f
+
√
ln)

) √
) .

Proof. Consider algorithm Exp3.FPA on the uniform grid X of
⌈
√
) ⌉ + 1 bids, with X (X) ≤

√
) . Fix any f-smooth environment S,

Lemma 5 implies the following:

max
1∈[0,1]

E

[
)∑
C=1

UtilC (1)
]
≤ max
G∈X
E

[
)∑
C=1

UtilC (G)
]
+ 6

f

√
)

≤ E
[
)∑
C=1

UtilC (�C )
]
+ 6

(
1

f
+
√
ln)

) √
),

where the second inequality follows from Proposition 2. □

4.3 The (Non-Smooth) Adversarial Model

The positive results provided in the previous sections hold under
either one of two conditions: the environment is stochastic and
the learner has at least the semi-transparent feedback (Theorem 1
says that bandit feedback is not enough) or the environment uses
smooth distributions. These settings allow the learner to compute
a discrete class of representative bids e�ciently. In this section, we
formally argue that learning is impossible if any of these assump-
tions is dropped. Speci�cally, the standard adversarial environment
that generates the sequence without any smoothness constraint
is too strong. In particular, we construct a randomized sequence
(+1, "1), (+2, "2), . . . that induces any learner to su�er at least lin-
ear regret. This construction shares some similarities with the lower
bound construction in Theorem 1, the main di�erence being that
the best bid 1★ is randomized and hidden in such a way that even
a learner having access to full feedback cannot pin-point it.

Theorem 8. Consider the problem of repeated bidding in �rst-

price auctions in an adversarial environment with full feedback. Then,

any learning algorithm A satis�es ') (A) ≥ )/24.

Proof. We prove the result via Yao’s principle, showing that
there exists a randomized environment S such that any determinis-
tic learning algorithm su�ers )/24 regret against it. The random se-
quence posted byS is based on two randomized auxiliary sequences
!1, !2, . . . and *1,*2, . . . de�ned as follows. They are initiated to
!0 = 1/2,*0 = 2/3. They then evolve recursively as follows:{

!C = !C−1 + 2
3ΔC−1 and*C = *C−1, with probability 1

2 ,

*C = *C−1 − 2
3ΔC−1 and !C = !C−1, with probability 1

2 ,

where ΔC−1 = *C−1 − !C−1. For each realized sequence of the
(!C ,*C ) pairs, the actual sequence of the ("C ,+C ) selected by S
is constructed as follows. At each time step C , the environment se-
lects ("C ,+C ) = (!C , 1) or (*C , 0), uniformly at random; so that the
distribution is characterized by two levels of independent random-
ness: the auxiliary sequence of shrinking intervals and the choice
between (!C , 1) and (*C , 0).

We move our attention to the expected performance of the best
�xed bid in hindsight. For each realization of the random auxiliary
sequence, there exists a bid �★ such that (8) it wins all the auctions
(+C , "C ) of the form (!C , 1) (which we may call “good auctions”
because they bring positive utility when won) and (88) it loses
all the auctions (+C , "C ) of the form (*C , 0) (called “bad auctions”
because they bring negative utility). Thus its expected utility at
each time step is at least 1/6: with probability 1/2 the environment
selects a good auction, which induces a utility of (1 − !C ) ≥ 1/3. All
in all, the optimal bid achieves an expected utility of at least )/6.

Consider now the performance of any deterministic algorithm
A: for any �xed time C > 1 and possible realization of the past
observations, the learner posts some deterministic bid �C . If �C <
!C−1, then it gets 0 utility, so we only consider the following cases:

• If �C ∈ [!C−1, !C−1 + 1
3ΔC−1), then the bidder gets the item with

probability 1/4 (!C = !C−1, +C is set to 1 and "C = !C ) with an
expected utility of (1−!C )/4 ≤ 1/8.
• If �C ∈ [!C−1 + 1

3ΔC−1, !C−1 +
2
3ΔC−1), the bidder gets the item

with probability 1/2 (when !C = !C−1 and *C = *C−1 − 2
3ΔC−1)

for an expected utility of 1
4 (1 − 2!C−1 −

1
3ΔC−1) ≤ 0

• If �C ∈ [!C−1 + 2
3ΔC−1,*C−1), the bidder gets the item with

probability 3/4 (when !C = !C−1 and when *C = *C−1, +C = 1

and"C = !C ) for an expected utility of 1
4 (1 − !C−1) −

1
4 (!C−1 +

1
3ΔC−1) +

1
4 (1 − !C−1 −

2
3ΔC−1) ≤

1
8

• If �C ≥ *C−1, the bidder always gets the item with a negative
expected utility.

All in all, the expected utility of any deterministic algorithm is at
most )/8. If we compare this quantity with the lower bound on
the expected utility of the best bid in hindsight, we get the desired
result: E [') (A,S)] ≥ )/6 − )/8 = )/24. □

A �nal observation: the main ingredient in the proof is the elab-
orate auxiliary sequence. To construct it, we only needed the non-
smoothness of "C , while we may have chosen the valuations +C
to be smooth, say uniformly in [0, 1/4] for the bad auctions and in
[3/4, 1] for the good ones.

5 CONCLUSION

Motivated by the recent shift from second to �rst-price auctions in
online advertising markets, this paper comprehensively analyzes
the online learning problem of repeated bidding in �rst-price auc-
tions under the realistic assumption that the bidder does not know
its valuation before bidding. We characterize the minimax regret
achievable for di�erent levels of transparency in the auction format
and di�erent data generation models, considering both the stochas-
tic i.i.d. and the standard adversarial model, while also considering
smoothness. Although our regret rates are tight in their depen-
dence on the time horizon ) , a natural open problem is studying
their minimax dependence on the smoothness parameter f . This
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paper belongs to the long line of research that studies economic
problems from the online learning perspective; an intriguing open
problem consists in o�ering a uni�ed framework to characterize in
a satisfying way all these games with partial feedback, similar to
what has been done for partial monitoring and feedback graphs.
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