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Abstract
We introduce new Perceptron-based algorithms for the online multitask binary classification prob-
lem. Under suitable regularity conditions, our algorithmsare shown to improve on their baselines
by a factor proportional to the number of tasks. We achieve these improvements using various types
of regularization that bias our algorithms towards specificnotions of task relatedness. More specif-
ically, similarity among tasks is either measured in terms of the geometric closeness of the task
reference vectors or as a function of the dimension of their spanned subspace. In addition to adapt-
ing to the online setting a mix of known techniques, such as the multitask kernels of Evgeniouet al.,
our analysis also introduces a matrix-based multitask extension of thep-norm Perceptron, which
is used to implement spectral co-regularization. Experiments on real-world data sets complement
and support our theoretical findings.
Keywords: mistake bounds, perceptron algorithm, multitask learning, spectral regularization

1. Introduction

In this work we study online supervised learning algorithms that process multiple data streams at
the same time. More specifically, we consider themultitask classification learning problem where
observed data describe different learning tasks.

Incremental multitask learning systems, which simultaneously process data from multiple
streams, are widespread. For instance, in financial applications a tradingplatform chooses invest-
ments and allocates assets using information coming from multiple market newsfeeds. When the
learning tasks are unrelated, running different instances of the same underlying algorithm, one for
each task, is a sound and reasonable policy. However, in many circumstances data sources share
similar traits and are therefore related in some way. Unsurprisingly, this latter situation is quite com-
mon in real-world applications. In these cases the learning algorithm should be able to capitalize on
data relatedness.

In multitask classification an online linear classifier (such as the Perceptron algorithm) learns
from examples associated withK > 1 different binary classification tasks. Our goal is to design
online interacting algorithms that perform better than independent learnerswhenever the tasks are
related. We formalize task relatedness in different ways, and derive precise formalizations of the
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advantage resulting from such interaction. Our investigation considers twovariants of the online
multitask protocol: (1) at each time step the learner acts on a single adversarially chosen task; (2)
all tasks are simultaneously processed at each time step. Each setup allows for different approaches
to the multitask problem and caters for different real-world scenarios. For instance, one of the
advantages of the first approach is that, in most cases, the cost of running multitask algorithms has
a mild dependence on the numberK of tasks. The multitask classifiers we study here manage to
improve, under certain assumptions, the cumulative regret achieved by a natural baseline algorithm
through the information acquired and shared across different tasks.

Our analysis builds on ideas that have been developed in the context of statistical learning where
the starting point is a regularized empirical loss functional or Tikhonov functional. In that frame-
work the objective includes a co-regularization term in the form of a squared norm in some Hilbert
space of functions that favors those solutions (i.e., predictive functionsfor the K tasks) that lie
“close” to each other. In this respect, we study two main strategies. The first approach followed
here is to learnK linear functions parameterized byu⊤ = (u⊤1 , . . . ,u

⊤
K )∈RKd through the minimiza-

tion of an objective functional involving the sum of a loss term plus the regularization termu⊤Au,
whereA is a positive definite matrix enforcing certain relations among tasks. Following Evgeniou
et al. (2005), theK different learning problems are reduced to a single problem by choosinga suit-
able embedding of the input instances into a common Reproducing Kernel Hilbert Space (RKHS).
This reduction allows us to solve a multitask learning problem by running any kernel-based single-
task learning algorithm with a “multitask kernel” that accounts for the co-regularization term in the
corresponding objective functional. We build on this reduction to analyze the performance of the
Perceptron algorithm and some of its variants when run with a multitask kernel.

As described above, we also consider a different learning setup that prescribes the whole set of
K learning tasks to be worked on at the same time. Once again we adopt a regularization approach,
this time by adding a bias towards those solutions that lie on the same low dimensionalsubspace.
To devise an algorithm for this model, we leverage on the well-established theory of potential-based
online learners. We first define a natural extension of thep-norm Perceptron algorithm to a certain
class of matrix norms, and then provide a mistake bound analysis for the multitasklearning problem
depending on spectral relations among different tasks. Our analysis shows a factorK improvement
over the algorithm that runsK independent Perceptrons and predicts using their combined margin
(see Section 1.1). The above is possible as long as the the example vectors observed at each time
step are unrelated, while the sequences of multitask data are well predicted by a set of highly related
linear classifiers.

1.1 Main Contributions

The contribution of this paper to the current literature is twofold. First, we provide theoretical guar-
antees in the form of mistake bounds for various algorithms operating within theonline multitask
protocol. Second, we present various experiments showing that these algorithms perform well on
real problems.

Our theoretical results span across the two previously mentioned settings. In the adversarially
chosen task setting, we extend the ideas introduced by Evgeniou et al. (2005) to the online learning
setup, and present upper bounds which depend on task relatedness.On one hand, we show that
whenever the reference vectors associated with different tasks are related, we achieve an improve-
ment of a factor up toK over the baseline approach whereK online classifiers are run in parallel and
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tasks are processed in isolation. On the other hand, when tasks are unrelated our bounds become not
much worse than the one achieved by separately runningK classifiers. In this context, the notion
of relatedness among tasks follows from the specific choice of a matrix parameter that essentially
defines the so-called multitask kernel. We also provide some new insight on therole played by this
kernel when used as a plug-in black-box by the Perceptron or other Perceptron-like algorithms.

In the simultaneous task setting, we introduce and analyze a matrix-based multitask extension
of the p-norm Perceptron algorithm (Grove et al., 2001; Gentile, 2003) which allows us to obtain a
factorK improvement in a different learning setting, where the baseline, which is still the algorithm
that maintainsK independent classifiers, is supposed to outputK predictions per trial.

On the experimental side, we give evidence that our multitask algorithms provide a significant
advantage over common baselines. In particular, we show that on a text categorization problem,
where each task requires detecting the topic of a newsitem, a large multitask performance increase
is attainable whenever the target topics are related. Additional experiments on a spam data set
confirm the potential advantage of thep-norm Perceptron algorithm in a real-world setting.

This work is organized as follows. In Section 2 we introduce notation and formally define the
adversarially chosen taskprotocol. The multitask Perceptron algorithm is presented in Section 3
where we also discuss the role of the multitask feature map and show (Section 4) that it can be
used to turn online classifiers into multitask classifiers. We detail the matrix-based approach to the
simultaneous multitask learning framework in Section 5. Section 6 is devoted to the theoretical
analysis of a general potential-based algorithm for this setup. We conclude the paper with a number
of experiments establishing the empirical effectiveness of our algorithms (Section 7).

1.2 Related Work

The problem of learning from multiple tasks has been the subject of a numberof recently published
papers. In Evgeniou et al. (2005) a batch multitask learning problem is defined as a regularized
optimization problem and the notion of multitask kernel is introduced. More specifically, they con-
sider a regularized functional that encodes multitask relations over tasks,thus biasing the solution
of the problem towards functions that lie close to each other. Argyriou et al. (2007, 2008) build
on this formalization to simultaneously learn a multitask classifier and the underlyingspectral de-
pendencies among tasks. A similar model but under cluster-based assumptions is investigated in
Jacob et al. (2009). A different approach is discussed in Ando and Zhang (2005) where a structural
risk minimization method is presented and multitask relations are established by enforcing predic-
tive functions for the different tasks to belong to the same hypothesis set. Complexity results for
multitask learning under statistical assumptions are also given in Maurer (2006).

In the context of online learning, multitask problems have been studied in Abernethy et al.
(2007) within the learning with expert advice model. In this model the forecaster has access to a
fixed set of experts and is expected to make predictions forK different tasks. Regret bounds are
given under the assumption that the set of best experts for theK tasks is small, as a way to formalize
task similarity. Whereas these studies consider a multitask protocol in which a single task is acted
upon at each time step (what we call in this paper the adversarially chosen task protocol), the work
of Lugosi et al. (2009) investigates the problem where an action for each task must be chosen at
every step. The relatedness among tasks is captured by imposing restrictions on the joint action
chosen at each step.

2903



CAVALLANTI , CESA-BIANCHI AND GENTILE

Online linear multitask algorithms for the simultaneous task setting have been studiedin Dekel
et al. (2007), where the separate learning tasks are collectively dealt with through a common mul-
titask loss. Their approach, however, is fundamentally different from the one considered here. In
fact, using a common loss function has more the effect of prioritizing certain tasks over the others,
whereas our regularized approach hopes to benefit from the information provided by each task to
speed up the learning process for the other ones. Nonetheless, it is notdifficult to extend our anal-
ysis to consider a more sophisticated notion of multitask loss (see Remark 12 in Section 6.2), thus
effectively obtaining a shared loss regularized multitask algorithm.

Online matrix approaches to the multitask and the related multiview learning problemswere
considered in various works. Matrix versions of the EG algorithm and the Winnow algorithm (re-
lated to specific instances of the quasi-additive algorithms) have been proposed and analyzed in
Tsuda et al. (2005), Warmuth (2007), and Warmuth and Kuzmin (2006). When dealing with the
trace norm regularizer, their algorithms could be generalized to our simultaneous multitask frame-
work to obtain mistake bounds comparable to ours. However, unlike those papers, we do not have
learning rate tuning issues and, in addition, we directly handle general nonsquare task matrices.

Finally, Agarwal et al. (2008) consider multitask problems in the restricted expert setting, where
task relatedness is enforced by a group norm regularization. Their results are essentially incompa-
rable to ours.

2. The Adversarially Chosen Task Protocol: Preliminaries

The adversarially chosen task protocol works as follows. LetK be the number of binary classifi-
cation tasks indexed by 1, . . . ,K. Learning takes place in a sequential fashion: At each time step
t = 1,2, . . . the learner receives a task indexit ∈ {1, . . . ,K} and observes an instance vectorxt ∈ R

d

which plays the role of side information for the task indexit . Based on the pair
(
xt , it

)
it outputs a

binary prediction̂yt ∈ {−1,1} and then receives the correct labelyt ∈ {−1,1} for task indexit . So,
within this scheme, the learner works at each step on a single chosen task among theK tasks and
operates under the assumption that instances from different tasks are vectors of the same dimension.
No assumptions are made on the mechanism generating the sequences

(
x1,y1

)
,
(
x2,y2

)
, . . . of task

examples. Moreover, similarly to Abernethy et al. (2007), the sequence of task indicesi1, i2, . . . is
also generated in an adversarial manner. To simplify notation we introduce a“compound” descrip-
tion for the pair

(
xt , it

)
and denote byφt ∈ R

dK the vector

φ⊤t
def
=
(

0, . . . ,0︸ ︷︷ ︸
(it −1)d times

x⊤t 0, . . . ,0︸ ︷︷ ︸
(K− it)d times

)
. (1)

Within this protocol (studied in Sections 3 and 4) we useφt or
(
xt , it

)
interchangeably when referring

to a multitask instance. In the following we assume instance vectors are of (Euclidean) unit norm,
that is,‖xt‖= 1, so that‖φt‖= 1.

We measure the learner’s performance with respect to that of a (compound) reference predictor
that is allowed to use a different linear classifier, chosen in hindsight, foreach one of theK tasks.
To remain consistent with the notation used for multitask instances, we introducethe “compound”
reference task vectoru⊤ =

(
u⊤1 , . . . ,u

⊤
K

)
and define the hinge loss for the compound vectoru as

ℓt(u)
def
= max

{
0,1−yt u⊤φt

}
= max

{
0,1−yt u⊤it xt

}
.
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It is understood that the compound vectors are of dimensionKd. Our goal is then to compare the
learner’s mistakes count to the cumulative hinge loss

∑
t
ℓt(u) (2)

suffered by the compound reference task vectoru. This of course amounts to summing over time
stepst the losses incurred by reference task vectorsuit with respect to instance vectorsxit .

In this respect, we aim at designing algorithms that make fewer mistakes thanK independent
learners when the tasks are related, and do not perform much worse than those when the tasks are
completely unrelated. For instance, if we use Euclidean distance to measure task relatedness, we
say that theK tasks are related if there exist reference task vectorsu1, . . . ,uK ∈ R

d having small
pairwise distances

∥∥ui−u j
∥∥, and achieving a small cumulative hinge loss in the sense of (2). More

general notions of relatedness are investigated in the next sections.
Finally, we find it convenient at this point to introduce some matrix notation. We use Id to

refer to thed×d identity matrix but drop the subscript whenever it is clear from context. Given
a matrixM ∈ R

m×n we denote byMi, j the entry that lies in thei-th row, j-th column. Moreover,
given two matricesM ∈ R

m×n andN ∈ R
m×r we denote by[M,N] them× (n+ r) matrix obtained

by the horizontal concatenation ofM andN. The Kronecker or direct product between two matrices
M ∈Rm×n andN ∈Rq×r is the block matrixM⊗N of dimensionmq×nr whose block on rowi and
column j is theq× r matrixMi, jN.

3. The Multitask Perceptron Algorithm

We first introduce a simple multitask version of the Perceptron algorithm for theprotocol described
in the previous section. This algorithm keeps a weight vector for each taskand updates all weight
vectors at each mistake using the Perceptron rule with different learning rates. More precisely, let
wi,t be the weight vector associated with taski at time t. If we are forced (by the adversary) to
predict on taskit , and our prediction happens to be wrong, we updatewit ,t−1 through the standard
additive rulewit ,t = wit ,t−1+ηyt xt (whereη > 0 is a constant learning rate) but, at the same time,
we perform a “half-update” on the remainingK−1 Perceptrons, that is, we setw j,t = w j,t−1+

η
2yt xt

for each j 6= it . This rule is based on the simple observation that, in the presence of related tasks,
any update step that is good for one Perceptron should also be good forthe others. Clearly, this rule
keeps the weight vectorsw j,t , j = 1, . . . ,K, always close to each other.

The above algorithm is a special case of themultitask Perceptron algorithmdescribed below.
This more general algorithm updates each weight vectorw j,t through learning rates defined by a
K ×K interaction matrixA. It is A that encodes our beliefs about the learning tasks: different
choices of the interaction matrix result in different geometrical assumptions on the tasks.

The pseudocode for the multitask Perceptron algorithm using a generic interaction matrixA
is given in Figure 1. At the beginning of each time step, the counters stores the mistakes made
so far plus 1. The weights of theK Perceptrons are maintained in a compound vectorw⊤s =(
w⊤1,s, . . . ,w

⊤
K,s

)
, with w j,s ∈ R

d for all j. The algorithm predictsyt through the sign̂yt of the it-

th Perceptron’s marginw⊤s−1φt = w⊤it ,s−1xt . Then, if the prediction and the true label disagree, the

compound vector update rule isws = ws−1+
(
A⊗ Id

)−1φt . Since
(
A⊗ Id

)−1
= A−1⊗ Id, the above

update is equivalent to theK task updates

w j,s = w j,s−1+yt A−1
j,it xt j = 1, . . . ,K .
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Parameters:Positive definiteK×K interaction matrixA.
Initialization: w0 = 0∈ R

Kd, s= 1.
At each timet = 1,2, . . . do the following:

1. Observe task numberit ∈ {1, . . . ,K} and the corresponding
instance vectorxt ∈ R

d : ||xt ||= 1;

2. Build the associated multitask instanceφt ∈ R
Kd;

3. Predict labelyt ∈ {−1,+1} with ŷt = SGN
(
w⊤s−1φt

)
;

4. Get labelyt ∈ {−1,+1};

5. If ŷt 6= yt then update:

ws = ws−1+yt
(
A⊗ Id

)−1φt , s← s+1 .

Figure 1: The multitask Perceptron algorithm.

The algorithm is mistake-driven, hencews−1 is updated (ands is increased) only when̂yt 6= yt . In
the following we useA⊗ as a shorthand forA⊗ Id.

We now show that the algorithm in Figure 1 has the potential to make fewer mistakes thanK
independent learners when the tasks are related, and does not perform much worse than that when
the tasks are completely unrelated. The bound dependence on the task relatedness is encoded as a
quadratic form involving the compound reference task vectoru and the interaction matrixA.

We specify the online multitask problem by the sequence(φ1,y1),(φ2,y2), . . . ∈ R
dK×{−1,1}

of multitask examples.

Theorem 1 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1,
run with an interaction matrix A on any finite multitask sequence of examples(φ1,y1),(φ2,y2), . . . ∈
R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+ max
i=1,...,K

(A−1)i,i
(
u⊤A⊗u

)
+
√

max
i=1,...,K

(A−1)i,i
(
u⊤A⊗u

)
∑

t∈M
ℓt(u)

whereM is the set of mistaken trial indices.

Theorem 1 is readily proven by using the fact that the multitask Perceptron isa specific instance
of the kernel Perceptron algorithm, for example, Freund and Schapire (1999), using the so-called
linearmultitask kernel introduced in Evgeniou et al. (2005) (see also Herbster et al., 2005). This
kernel is defined as follows: for any positive definiteK×K interaction matrixA introduce theKd-
dimensional RKHSH = R

Kd with the inner product〈u,v〉H = u⊤A⊗v. Then define the kernel
feature mapψ : Rd×{1, . . . ,K}→H such thatψ(xt , it) = A−1

⊗ φt . The kernel used by the multitask
Perceptron is thus defined by

K
(
(xs, is),(xt , it)

)
=
〈
ψ(xs, is),ψ(xt , it)

〉
H
= φ⊤s A−1

⊗ φt . (3)
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Remark 2 Although the multitask kernel is appealing because it makes the definition of the mul-
titask Perceptron simple and intuitive, one easily sees that the RKHS formalism isnot neces-
sary here since the kernel is actually linear. In fact, by re-defining the feature mapping asψ :
R

d×{1, . . . ,K} → R
Kd, whereRKd is now endowed with the usual Euclidean product, and by let-

ting ψ(xt , it) = A−1/2
⊗ φt , one gets an equivalent formulation of the multitask Perceptron based on

A−1/2
⊗ rather than A−1

⊗ . In the rest of the paper we occasionally adopt this alternative linear kernel
formulation, in particular whenever it makes the definition of the algorithm andits analysis simpler.

Proof [Theorem 1] We use the following version of the kernel Perceptron bound (see, e.g., Cesa-
Bianchi et al., 2005),

m≤∑
t
ℓt(h)+‖h‖2H

(
max

t
‖ψ(xt , it)‖2H

)
+‖h‖H

√(
max

t
‖ψ(xt , it)‖2H

)
∑
t
ℓt(h)

whereh is any function in the RKHSH induced by the kernel. The proof is readily concluded by
observing that, for the kernel (3) we have

‖u‖2H = u⊤A⊗u and ‖ψ(xt , it)‖2H = φ⊤t A−1
⊗ φt = (A−1)it ,it

sinceφt singles out theit ’s block of matrixA−1
⊗ .

In the next three subsections we investigate the role of the quadratic formu⊤A⊗u and specialize
Theorem 1 to different interaction matrices.

3.1 Pairwise Distance Interaction Matrix

The first choice ofA we consider is the following simple update step (corresponding to the multitask
Perceptron example we made at the beginning of this section).

w j,s = w j,s−1+

{
2

K+1 yt xt if j = it ,
1

K+1 yt xt otherwise.

As it can be easily verified, this choice is given by

A=




K −1 . . . −1
−1 K . . . −1
. . . . . . . . . . . .
−1 . . . . . . K


 (4)

with

A−1 =
1

K+1




2 1 . . . 1
1 2 . . . 1
. . . . . . . . . . . .
1 . . . . . . 2


 .

We have the following result.
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Corollary 3 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix (4) on any finite multitask sequence of examples(φ1,y1),(φ2,y2), . . . ∈
R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+
2
(
u⊤A⊗u

)

K+1
+

√√√√2
(
u⊤A⊗u

)

K+1 ∑
t∈M

ℓt(u)

where

u⊤A⊗u=
K

∑
i=1

‖ui‖2+ ∑
1≤i< j≤K

∥∥ui−u j
∥∥2

.

In other words, running the Perceptron algorithm of Figure 1 with the interaction matrix (4) amounts
to using the Euclidean distance to measure task relatedness. Alternatively, we can say that the
regularization term of the regularized target functional favors task vectors u1, . . . ,uK ∈ R

d having
small pairwise distances

∥∥ui−u j
∥∥.

Note that when all tasks are equal, that is whenu1 = · · ·= uK , the bound of Corollary 3 becomes
the standard Perceptron mistake bound (see, e.g., Cesa-Bianchi et al., 2005). In the general case of
distinctui we have

2
(
u⊤A⊗u

)

K+1
=

2K
K+1

K

∑
i=1

‖ui‖2−
4

K+1 ∑
1≤i< j≤K

u⊤i u j .

The sum of squares∑K
i=1‖ui‖2 is the mistake bound one can prove when learningK independent

Perceptrons (under linear separability assumptions). On the other hand,highly correlated reference
task vectors (i.e., large inner productsu⊤i u j ) imply a large negative second term in the right-hand
side of the above expression.

3.2 A More General Interaction Matrix

In this section we slightly generalize the analysis of the previous section and consider an update rule
of the form

w j,s = w j,s−1+

{ b+K
(1+b)K yt xt if j = it ,

b
(1+b)K yt xt otherwise

whereb is a nonnegative parameter. The corresponding interaction matrix is givenby

A=
1
K




a −b . . . −b
−b a . . . −b
. . . . . . . . . . . .
−b . . . . . . a


 (5)

with a= K +b(K−1). It is immediate to see that the previous case (4) is recovered by choosing
b= K. The inverse of (5) is

A−1 =
1

(1+b)K




b+K b . . . b
b b+K . . . b
. . . . . . . . . . . .
b . . . . . . b+K


 .
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When (5) is used in the multitask Perceptron algorithm, Theorem 1 can be specialized to the fol-
lowing result.

Corollary 4 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix (5) on any finite multitask sequence of examples(φ1,y1),(φ2,y2), . . . ∈
R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+
(b+K)

(1+b)K

(
u⊤A⊗u

)
+

√
(b+K)

(1+b)K

(
u⊤A⊗u

)
∑

t∈M
ℓt(u)

where

u⊤A⊗u=
K

∑
i=1

‖ui‖2+bK VAR[u]

being VAR[u] = 1
K ∑K

i=1‖ui−u‖2 the “variance”, of the task vectors, andu the centroid1
K

(
u1 +

· · ·+uK
)
.

It is interesting to investigate how the above bound depends on the trade-off parameterb. The
optimal value ofb (requiring prior knowledge about the distribution ofu1, . . . ,uK) is

b= max



0,

√

(K−1)
‖u‖2

VAR[u]
−1



 .

Thusb grows large as the reference task vectorsui get close to their centroidu (i.e., as allui get
close to each other). Substituting this choice ofb gives

(b+K)

(1+b)K

(
u⊤A⊗u

)
=




‖u1‖2+ · · ·+‖uK‖2 if b= 0,(
‖u‖+

√
K−1

√
VAR[u]

)2
otherwise.

When the varianceVAR[u] is large (compared to the squared centroid norm‖u‖2), then the optimal
tuning ofb is zero and the interaction matrix becomes the identity matrix, which amounts to running
K independent Perceptron algorithms. On the other hand, when the optimal tuning of b is nonzero
we learnK reference vectors, achieving a mistake bound equal to that of learning asingle vector
whose length is‖u‖ plus

√
K−1 times the standard deviation

√
VAR[u].

At the other extreme, if the varianceVAR[u] is zero (namely, when all tasks coincide) then the
optimal b grows unbounded, and the quadratic term(b+K)

(1+b)K

(
u⊤A⊗u

)
tends to the average square

norm 1
K ∑K

i=1‖ui‖2. In this case the multitask algorithm becomes essentially equivalent to an al-
gorithm that, before learning starts, chooses one task at random and keeps referring all instance
vectorsxt to that task (somehow implementing the fact that now the information conveyed byit can
be disregarded).

3.3 Encoding Prior Knowledge

We could also pick the interaction matrixA so as to encode prior knowledge about tasks. For
instance, suppose we know that only certain pairs of tasks are potentially related. We represent this
knowledge in a standard way through an undirected graphG = (V,E), where two verticesi and j
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are connected by an edge if and only if we believe taski and taskj are related. A natural choice for
A is thenA= I +L, where theK×K matrixL is the Laplacian ofG, defined as

Li, j =





di if i = j,
−1 if (i, j) ∈ E,
0 otherwise.

Here we denoted bydi the degree (number of incoming edges) of nodei. If we now follow the proof
of Theorem 1, which holds for any positive definite matrixA, we obtain the following result.

Corollary 5 The number of mistakes m made by the multitask Perceptron algorithm in Figure 1, run
with the interaction matrix I+L on any finite multitask sequence of examples(φ1,y1),(φ2,y2), . . . ∈
R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+cGu⊤
(
I +L

)
⊗u+

√
cGu⊤

(
I +L

)
⊗u ∑

t∈M
ℓt(u)

where

u⊤
(
I +L

)
⊗u=

K

∑
i=1

‖ui‖2+ ∑
(i, j)∈E

∥∥ui−u j
∥∥2

(6)

and cG = maxi=1,...,K ∑K
j=1

v2
j,i

1+λ j
. Here0 = λ1 < λ2 ≤ ·· · ≤ λK are the eigenvalues of the positive

semidefinite matrix L, and vj,i denotes the i-th component1 of the eigenvector vj of L associated with
eigenvalueλ j .

Proof Following the proof of Theorem 1, we just need to bound

max
i=1,...,K

A−1
i,i = max

i=1,...,K
(I +L)−1

i,i .

If v1, . . . ,vK are the eigenvectors ofL, then

(I +L)−1 =
K

∑
j=1

v j v⊤j
1+λ j

which concludes the proof.

Ideally, we would like to havecG = O
(

1
K

)
. Clearly enough, ifG is the clique onK vertices we

expect to exactly recover the bound of Theorem 1. In fact, we can easily verify that the eigenvector
v1 associated with the zero eigenvalueλ1 is

(
K−1/2, . . . ,K−1/2

)
. Moreover, it is well known that

all the remaining eigenvalues are equal toK—see, for example, Hogben (2006). ThereforecG =
1
K +

(
1− 1

K

)
1

K+1 = 2
K+1. In the case of more general graphsG, we can boundcG in terms of the

smallest nonzero eigenvalueλ2,

cG≤
1
K
+

(
1− 1

K

)
1

1+λ2
.

The value ofλ2, known as the algebraic connectivity ofG, is 0 only when the graph is disconnected.
λ2 is known for certain families of graphs. For instance, ifG is a complete bipartite graph (i.e., if

1. Note that the orthonormality of the eigenvectors impliesv2
1,i + · · ·+v2

K,i = 1 for all i.
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tasks can be divided in two disjoint subsetsT1 andT2 such that every task inT1 is related to every task
in T2 and for bothi = 1,2 no two tasks inTi are related), then it is known thatλ2 = min

{
|T1|, |T2|

}
.

The advantage of using a graphG with significantly fewer edges than the clique is that the sum
of pairwise distances in (6) will contain less than

(K
2

)
terms. On the other hand, this reduction has

to be contrasted to a larger coefficientcG in front of u⊤
(
I +L

)
⊗u. This coefficient, in general, is

related to the total number of edges in the graph (observe that the trace ofL is exactly twice this
total number). The role of prior knowledge is thus to avoid the insertion inA of edges connecting
tasks that are hardly related, thus preventing the presence of large termsin the sumu⊤

(
I +L

)
⊗u.

4. Turning Perceptron-like Algorithms Into Multitask Class ifiers

We now show how to obtain multitask versions of well-known classifiers by using the multitask
kernel mapping detailed in Section 3.

4.1 The Multitask p-norm Perceptron Algorithm

We first consider thep-norm Perceptron algorithm of Grove et al. (2001) and Gentile (2003).As
before, when the tasks are all equal we want to recover the bound of the single-task algorithm, and
when the task vectors are different we want the mistake bound to increaseaccording to a function
that penalizes task diversity according to theirp-norm distance.

The algorithm resembles the Perceptron algorithm and maintains its state in the compoundpri-
mal weight vectorvs ∈ R

Kd wheres stores the mistakes made so for (plus one). What sets the
multitask p-norm Perceptronaside from the algorithm of Section 3 is that the prediction at time
t is computed, for an arbitrary positive definite interaction matrixA, as SGN

(
w⊤s−1A−1

⊗ φt

)
where

thedual weight vectorws−1 is a (one-to-one) transformation of the weight vectorvs−1, specifically
ws−1 = ∇1

2 ‖vs−1‖2p, with p≥ 2. If a mistake occurs at timet, vs−1 ∈ R
Kd is updated using the

multitask Perceptron rule,vs = vs−1+ ytA
−1
⊗ φt . We are now ready to state the mistake bound for

the the multitaskp-norm Perceptron algorithm. In this respect we focus on a specific choices ofp
andA.

Theorem 6 The number of mistakes m made by the p-norm multitask Perceptron, run with the
pairwise distance matrix (4) and p= 2lnmax{K,d}, on any finite multitask sequence of examples
(φ1,y1),(φ2,y2), . . . ∈ R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+H +
√

2H ∑
t∈M

ℓt(u)

where

H =
8e2 lnmax{K,d}

(K+1)2 X2
∞

(
K

∑
i=1

∥∥∥ui +∑
j 6=i

(
ui−u j

)∥∥∥
1

)2

and X∞ = maxt∈M ‖xt‖∞.

Proof Let vm be the primal weight vector after any numberm of mistakes. By Taylor-expanding
1
2 ‖vs‖2p aroundvs−1 for eachs= 1, . . . ,m, and using the factyt w⊤s−1A−1

⊗ φt ≤ 0 whenever a mistake
occurs at stept, we get

1
2
‖vm‖2p≤

m

∑
s=1

D(vs‖vs−1) (7)

2911



CAVALLANTI , CESA-BIANCHI AND GENTILE

whereD(vs‖vs−1) =
1
2

(
‖vs‖2p−‖vs−1‖2p

)
−yt w⊤s−1A−1

⊗ φt is the so-called Bregman divergence, that

is, the error term in the first-order Taylor expansion of1
2 ‖·‖

2
p around vectorvs−1, at vectorvs.

Fix anyu∈ R
Kd. Using the convex inequality for normsu⊤v≤ ‖u‖q‖v‖p whereq= p/(p−1)

is the dual coefficient ofp (so that‖·‖q is the dual norm of‖·‖p), and the fact that

u⊤A⊗vs = u⊤A⊗vs−1+ytu
⊤φt ≥ u⊤A⊗vs−1+1− ℓt(u),

one then obtains

‖vm‖p≥
u⊤A⊗vm

‖A⊗u‖q
≥ m−∑t∈M ℓt(u)

‖A⊗u‖q
. (8)

Combining (7) with (8) and solving formgives

m≤ ∑
t∈M

ℓt(u)+‖A⊗u‖q

√
2

m

∑
s=1

D(vs‖vs−1) . (9)

Following the analysis contained in, for example, Cesa-Bianchi and Lugosi (2006), one can show
that the Bregman term can be bounded as follows, forts = t,

D(vs‖vs−1)≤
p−1

2

∥∥A−1
⊗ φt

∥∥2
p =

p−1
2
‖xt‖2p

∥∥∥A−1
↓it

∥∥∥
2

p

whereA−1
↓it is theit-th column ofA−1.

We now focus our analysis on the choicep = 2lnmax{K,d} which gives mistake bounds in
the dual norms‖u‖1 and‖xt‖∞, and on the pairwise distance matrix (4). It is well known that for
p = 2lnd the mistake bound of the single-taskp-norm Perceptron is essentially equivalent to the
one of the zero-threshold Winnow algorithm of Littlestone (1989). We now see that this property is
preserved in the multitask extension. We have‖xt‖2p≤ e‖xt‖2∞ and

∥∥∥A−1
↓it

∥∥∥
2

p
≤ e

∥∥∥A−1
↓it

∥∥∥
2

∞
= e
(
A−1

it ,it

)2
=

4e
(K+1)2 .

As for the dual norm‖A⊗u‖q, we get

‖A⊗u‖2q≤ ‖A⊗u‖21 =
(

K

∑
i=1

∥∥∥ui +∑
j 6=i

(
ui−u j

)∥∥∥
1

)2

.

Substituting into (9) gives the desired result.

The rightmost factor in the expression forH in the statement of Theorem 6 reveals the way similarity
among tasks is quantified in this case. To gain some intuition, assume the task vectors ui are all
sparse (few nonzero coefficients). ThenH is small when the task vectorsui have a common pattern
of sparsity; that is, when the nonzero coordinates tend to be the same for each task vector. In the
extreme case when all task vectors are equal (and not necessarily sparse),H becomes

(
K

K+1

)2(
8e2 lnmax{K,d}

)(
max

t=1,...,n
‖xt‖∞

)2
‖u1‖21 . (10)

If K ≤ d this bound is equivalent (apart from constant factors) to the mistake bound for the single-
task zero-threshold Winnow algorithm of Littlestone (1989).
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Parameters:Positive definiteK×K interaction matrixA.
Initialization: S0 = /0, v0 = 0∈ R

Kd, s= 1.

At each timet = 1,2, . . . do the following:

1. Observe task numberit ∈ {1, . . . ,K} and the corresponding
instance vectorxt ∈ R

d : ||xt ||= 1;

2. Build the associated multitask instanceφt ∈ R
Kd

and computẽφt =
(
A⊗ Id

)−1/2φt ;

3. Predict labelyt ∈ {−1,+1} with ŷt = SGN
(
w⊤s−1φ̃t

)
,

wherews−1 =
(

I +Ss−1S⊤s−1+ φ̃t φ̃
⊤
t

)−1
vs−1;

4. Get labelyt ∈ {−1,1};

5. If ŷt 6= yt then update:

vs = vs−1+yt φ̃t , Ss =
[

Ss−1, φ̃t

]
, s← s+1 .

Figure 2: The second-order multitask Perceptron algorithm.

Remark 7 Note that for p= 2 our p-norm variant of the multitask Perceptron algorithm does not
reduce to the multitask Perceptron of Figure 1. In order to obtain the latter asa special case of the
former, we could use the fact that the multitask Perceptron algorithm is equivalent to the standard
2-norm Perceptron run on “multitask instances” A−1/2

⊗ φt—see Remark 2. One then obtains a proper
p-norm generalization of the multitask Perceptron algorithm by running the standard p-norm Per-
ceptron on such multitask instances. Unfortunately, this alternative route apparently prevents us
from obtaining a bound as good as the one proven in Theorem 6. For example, when p is chosen
as in Theorem 6 and all task vectors are equal, then multitask instances of the form A−1/2

⊗ φt yield a
bound K times worse than (10), which is obtained with instances of the form A−1

⊗ φt .

Finally, we should mention that an alternative definition of thep-norm Perceptron for a related
problem of predicting a labelled graph has been recently proposed in Herbster and Lever (2009).

4.2 The Multitask Second-order Perceptron Algorithm

We now turn to the second-order kernel Perceptron algorithm of Cesa-Bianchi et al. (2005). The
algorithm, described in Figure 2, maintains in its internal state a matrixS (initialized to the empty
matrix /0) and a multitask Perceptron weight vectorv (initialized to the zero vector). Just like in
Figure 1, we use the subscripts to denote the current number of mistakes plus one. The algorithm
computes a tentative (inverse) matrix

(
I +Ss−1S⊤s−1+ φ̃t φ̃

⊤
t

)−1
.
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Such a matrix is combined with the current Perceptron vectorvs−1 to predict the labelyt . If the pre-
diction ŷt and the labelyt disagree bothvs−1 andSs−1 get updated (no update takes place otherwise).
In particular, the new matrixSs is augmented by padding with the current vectorφ̃t . Since supports
are shared, the computational cost of an update is not significantly largerthan that for learning a
single-task (see Subsection 4.2.1).

Theorem 8 The number of mistakes m made by the multitask Second Order Perceptronalgo-
rithm in Figure 2, run with an interaction matrix A on any finite multitask sequenceof examples
(φ1,y1),(φ2,y2), . . . ∈ R

Kd×{−1,1} satisfies, for all u∈ R
Kd,

m≤ ∑
t∈M

ℓt(u)+

√√√√
(

u⊤A⊗u+ ∑
t∈M

(
u⊤it xt

)2

)
m

∑
j=1

ln(1+λ j)

whereM is the sequence of mistaken trial indices andλ1, . . . ,λm are the eigenvalues of the matrix
whose(s, t) entry is x⊤s A−1

is,it xt , with s, t ∈M .

Proof From the mistake bound for the kernel second-order Perceptron algorithm (Cesa-Bianchi
et al., 2005) we have, for allh in H ,

m≤ ∑
t∈M

ℓt(h)+

√√√√
(
‖h‖2H + ∑

t∈M
h(φt)

2

)
m

∑
i=1

ln(1+λi)

whereλ1, . . . ,λm are the eigenvalues of the kernel Gram matrix including only time steps inM .
Making the role ofA⊗ explicit in the previous expression yields

‖u‖2H = u⊤A⊗u

and 〈
u,ψ(xt , it)

〉2
H
=
(

u⊤A⊗A−1
⊗ φt

)2
=
(

u⊤it xt

)2
.

Finally, the kernel Gram matrix has elementsK
(
ψ(xs, is),ψ(xt , it)

)
= φ⊤s A−1

⊗ φt = x⊤s A−1
is,it xt , where

s, t ∈M . This concludes the proof.

Again, this bound should be compared to the one obtained when learningK independent tasks.
As in the Perceptron algorithm, we have the complexity termu⊤A⊗u. In this case, however, the
interaction matrixA also plays a role in the scale of the eigenvalues of the resulting multitask
Gram matrix. Roughly speaking, when the tasks are close andA is the pairwise distance matrix, we
essentially gain a factor

√
K from the fact thatu⊤A⊗u is close toK times the complexity of the single

task (according to the arguments in Section 3). On the other hand, the trace of the multitask Gram
matrix

[
φ⊤s A−1

⊗ φt

]
s,t∈M = [x⊤s A−1

is,it xt
]

s,t∈M is about the same as the trace of the single task matrix,
since theK times larger dimension of the multitask matrix is offset by the factor 1/K delivered
by A−1

⊗ in
[
φ⊤s A−1

⊗ φt

]
s,t∈M when compared to the single task Gram matrix

[
x⊤s xt

]
s,t∈M . So, in a

sense, the spectral quantity∑m
j=1 ln(1+λ j) is similar to the corresponding quantity for the single

task case. Putting together, unlike the first-order Perceptron, the gain factor achieved by a multitask
second-order perceptron over theK independent tasks bound is about

√
K.
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4.2.1 IMPLEMENTING THE MULTITASK SECOND-ORDERPERCEPTRONIN DUAL FORM

It is easy to see that the second-order multitask Perceptron can be run in dual form by maintaining
K classifiers that share the same set of support vectors. This allows an efficient implementation that
does not impose any significant overhead with respect to the corresponding single-task version.

Specifically, given some interaction matrixA the margin at timet is computed as (see Cesa-
Bianchi et al., 2005, Theorem 3.3)

w⊤s−1φ̃t = v⊤s−1

(
I +Ss−1S⊤s−1+ φ̃t φ̃

⊤
t

)−1
φ̃t

= y⊤s
(

I +S⊤s Ss

)−1
S⊤s φ̃t (11)

whereys is thes-dimensional vector whose firsts−1 components are the labelsyi where the algo-
rithm has made a mistake up to timet−1, and the last component is 0.

Note that replacingI +S⊤s Ss with I +S⊤s−1Ss−1 in (11) does not change the sign of the predic-

tion. The margin at timet can then be computed by calculating the scalar product betweenS⊤s φ̃t

andy⊤s
(
I +S⊤s−1Ss−1

)−1
. Now, each entry of the vectorS⊤s φ̃t is of the formA−1

j,it x
⊤
j xt , and thus com-

puting S⊤s φ̃t requiresO(s) inner products so that, overall, the prediction step requiresO(s) scalar
multiplications andO(s) inner products (independent of the number of tasksK).

On the other hand, the update step involves the computation of the vectory⊤s
(
I +S⊤s Ss

)−1
. For

the matrix update we can write

I +S⊤s Ss =

[
I +S⊤s−1Ss−1 S⊤s−1φ̃t

φ̃
⊤
t Ss−1 1+ φ̃

⊤
t φ̃t

]
.

Using standard facts about the inverse of partitioned matrices (see, e.g., Horn and Johnson, 1985,
Ch. 0), one can see that the inverse of matrixI + S⊤s Ss can be computed from the inverse of
I +S⊤s−1Ss−1 with O(s) extra inner products (again, independent ofK) andO(s2) additional scalar
multiplications.

5. The Simultaneous Multitask Protocol: Preliminaries

The multitask kernel-based regularization approach adopted in the previoussections is not the only
way to design algorithms for the multiple tasks scenario. As a different strategy, we now aim at mea-
suring tasks relatedness as a function of the dimension of the space spanned by the task reference
vectors. In matrix terms, this may be rephrased by saying that we hope to speed up the learning pro-
cess, or reduce the number of mistakes, whenever the matrix of reference vectors is spectrally sparse.
For reasons that will be clear in a moment, and in order to make the above a validand reasonable
goal for a multitask algorithm, we now investigate the problem ofsimultaneouslyproducing multiple
predictions after observing the corresponding (multiple) instance vectors. We therefore extend the
traditional online classification protocol to a fully simultaneous multitask environment where at each
time stept the learner observes exactlyK instance vectorsxi,t ∈ R

d, i = 1, . . . ,K. The learner then
outputsK predictionŝyi,t ∈ {−1,+1} and obtains the associated labelsyi,t ∈ {−1,+1}, i = 1, . . . ,K.
We still assume that theK example sequences are adversarially generated and that‖xi,t‖ = 1. We
call this setting thesimultaneous multitask setting.

2915



CAVALLANTI , CESA-BIANCHI AND GENTILE

Once again the underlying rationale here is that one should be able to improvethe performance
over the baseline by leveraging the additional information conveyed through multiple instance vec-
tors made available all at once, provided that the tasks to learn share commoncharacteristics. Theo-
retically, this amounts to postulating the existence ofK vectorsu1, . . . ,uK such thateachui is a good
linear classifier for the corresponding sequence(xi,1,yi,1),(xi,2,yi,2), . . . of examples. As before, the
natural baseline is the algorithm that simultaneously runK independent Perceptron algorithms, each
one observing its own sequence of examples and acting in a way that is oblivious to the instances
given as input to and the labels observed by its peers. Of course, we now assume that this baseline
outputsK predictions per trial. The expected performance of this algorithm is simplyK times the
one of a single Perceptron algorithm. An additional difference that sets theprotocol and the algo-
rithms discussed here apart from the ones considered in the previous sections is that the cumulative
count of mistakes is not only over time but also over tasks; that is, at each timestep more the one
mistake might occur sinceK > 1 predictions are output.

In the next section we show that simultaneous multitask learning algorithms can bedesigned
in such a way that the cumulative number of mistakes is, in certain relevant cases, provably better
than theK independent Perceptron algorithm. The cases where our algorithms outperform the latter
are exactly those when the overall information provided by the different example sequences are
related, that is, when the reference vectors associated with different tasks are “similar”, while the
instance vectors received during each time step are unrelated (and thus overall more informative).
These notions of similarity and unrelatedness among reference and instance vectors will be formally
defined later on.

5.1 Notation and Definitions

We denote by〈M,N〉 = TR
(
M⊤N

)
, for M,N ∈ R

d×K the Frobenious matrix inner product. Let
r =min{d,K} and define the functionσ :Rd×K→R

r such thatσ(M) =
(
σ1(M), . . . ,σr(M)

)
, where

σ1(M)≥ ·· · ≥ σr(M)≥ 0 are the singular values of a matrixM ∈Rd×K . In the following, we simply
write σi instead ofσi(M) whenever the matrix argument is clear from the context.

Following Horn and Johnson (1991) we say that a functionf : Rr → R is a symmetric gauge
function if it is an absolute norm onRr and is invariant under permutation of the components of
its argument. We consider matrix norms of the form‖·‖ : Rd×K → R such that‖·‖ = f ◦σ where
f is symmetric gauge function. A matrix norm is said unitarily (orthogonally, indeed, since we
only consider matrices with real entries) invariant if‖UAV‖ = ‖A‖ for any matrixA and for any
unitary (orthogonal) matricesU andV for which UAV is defined. It is well known that a matrix
norm is unitarily invariant if and only if it is a symmetric gauge function of the singular values of
its argument.

One important class of unitarily invariant norms is given by the Schattenp-norms,‖U‖sp

def
=

‖σ(U)‖p, where the right-hand expression involves a vector norm. Note that the Schatten 2-norm is
the Frobenius norm, while forp= 1 the Schattenp-norm becomes the trace norm‖U‖s1

= ‖σ(U)‖1,
which is a good proxy for the rank ofU , ‖σ(U)‖0.

Let M be a matrix of sized×K. We denote byVEC(M) the vector of sizeKd obtained by
stacking the columns ofM one underneath the other. Important relationships can be established
among the Kronecker product, theVEC operator and the trace operator. In particular, we have

VEC(MNO) = (O⊤⊗M)VEC(N) (12)
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for anyM,N,O for whichMNO is defined, and

VEC(M)⊤VEC(N) = TR(M⊤N) (13)

for any M,N of the same order. We denote byTK2 the K2×K2 commutation matrix such that
TK2VEC(M) = VEC(M⊤). We recall thatTK2 also satisfiesTK2(M⊗N) = (M⊗N)TK2 for anyM,N∈
R

d×K .
We rely on the notation introduced by Magnus and Neudecker (1999) to derive calculus rules

for functions defined over matrices. Given a differentiable functionF : Rm×p→ R
n×q, we define

the Jacobian ofF atM as the matrix∇F(M) ∈ R
nq×mp

∇F(X) =
∂VEC

(
F(M)

)

∂VEC(M)⊤
. (14)

It is easy to see that (14) generalizes the well-known definition of Jacobian for vector valued func-
tions of vector variables. The following rules, which hold for any matrixM ∈ RK×K , can be seen as
extensions of standard vector derivation formulas

∇TR(Mp) = pVEC(Mp−1)⊤ p= 1,2, . . . (15)

∇M⊤M = (IK2 +TK2)(IK⊗M⊤) . (16)

6. The Potential-based Simultaneous Multitask Classifier

As discussed in Section 5, a reasonable way to quantify the similarity among reference vectors, as
well as the unrelatedness among example vectors, is to arrange such vectors into matrices, and then
deal with special properties of these matrices. In order to focus on this concept, we lay out vectors
as columns ofd×K matrices and extend the dual norm analysis of Subsection 4.1 to matrices. The
idea is to design a classifier which is able to perform much better than theK independent Perceptron
baseline discussed in Section 5 whenever the set of reference vectorsui ∈Rd (arranged into ad×K
reference matrixU), have some matrix-specific, for example,spectral, properties.

Our potential-based matrix algorithm for classification shown in Figure 3 generalizes the classi-
cal potential-based algorithms operating on vectors to simultaneous multitask problems with matrix
examples. This family of potential-based algorithms has been introduced in the learning literature
by Kivinen and Warmuth (2001) and Grove et al. (2001), and by Nemirovski and Yudin (1978)
and Beck and Teboulle (2003) in the context of nonsmooth optimization. The algorithm maintains
a d×K matrix W. Initially, W0 is the zero matrix. Ifs− 1 updates have been made in the first
t−1 time steps, then theK predictions at timet areSGN

(
w⊤i,s−1xi,t

)
, i = 1, . . . ,K, where the vector

wi,s−1 ∈ R
d is thei-th column of the thed×K matrixWs andxi,t ∈ R

d is the instance vector asso-
ciated with thei-th task at timet. An update is performed if at least one mistake occurs. When the
s-th update occurs at timet thenWs is computed as

Ws = ∇
1
2
‖Vs‖2

where, in turn, the columns of thed×K matrix Vs are updated using the Perceptron rule,2 vi,s =
vi,s−1 + yi,t xi,t1{ŷi,t 6=yi,t} which, as in the basic Perceptron algorithm, is mistake driven. In other

2. Here and throughout this section,1{ŷi,t 6=yi,t} denotes the indicator function which is 1 if the label associated with the
i-th task is wrongly predicted at timet, and 0 otherwise.
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Parameters:Unitarily invariant norm‖·‖.
Initialization: V0 = [v0,0, . . . ,vK,0] = 0,W0 = [w0,0, . . . ,wK,0] = ∇1

2 ‖V0‖2, s= 1.

At each timet = 1,2, . . . do the following:

1. Get multitask instance vectorsx1,t , . . . ,xK,t ∈ R
d;

2. Predict labelsyi,t ∈ {−1,+1} with ŷi,t = SGN(w⊤i,s−1xi,t), i = 1, . . . ,K;

3. Get labelsyi,t ∈ {−1,1}, i = 1, . . . ,K;

4. If ŷi,t 6= yi,t for somei then update:

vi,s = vi,s−1+yi,txi,t1{ŷi,t 6=yi,t} i = 1, . . . ,K

Ws = ∇
1
2
‖Vs‖2

s← s+1 .

Figure 3: The potential-based matrix algorithm for the simultaneous multitask setting.

words, thei-th column inVs−1 is updated if and only if the label associated with thei-th task was
wrongly predicted. We say thatWs is the dual matrix weight associated with the primal matrix
weight Vs. So far we left the mapping fromVs to Ws partially unspecified since we did not say
anything other than it is the gradient of some unitarily invariant (squared) norm.

6.1 Analysis of Potential-based Matrix Classifiers

We now develop a general analysis of potential-based matrix algorithms for (simultaneous) multi-
task classification. Then, in Section 6.2 we specialize it to Schattenp-norms. The analysis proceeds
along the lines of the standard proof for potential-based algorithms. Before turning to the details,
we introduce a few shorthands. Let1i,t = 1{ŷi,t 6=yi,t}, and1t be theK-dimensional vector whosei-th
component is1i,t . Also, ei denotes thei-th vector of the standard basis forRK . Finally, we define
the matrixMt = ∑K

i=11i,t yi,txi,te⊤i whosei-th column is the example vectoryi,txi,t if the labelyi,t was
wrongly predicted at timet, or the null vector otherwise. It is easy to see that, by using this notation,
the update of the primal weight matrixV can be written asVs =Vs−1+Mt .

Let M be the set of trial indices where at least one mistake occurred over theK tasks, and set
m= |M |. We start by Taylor-expanding12 ‖Vs‖2 aroundVs−1 for eachs= 1, . . . ,mand obtain

1
2
‖Vm‖2≤

m

∑
s=1

D(Vs‖Vs−1) (17)
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whereD(Vs‖Vs−1) =
1
2

(
‖Vs‖2−‖Vs−1‖2

)
−〈Ws−1,Mt〉 is the matrix Bregman divergence associated

with ∇1
2 ‖·‖

2. The upper bound in (17) follows from

〈Ws−1,Mt〉= TR(W⊤s−1Mt) =
K

∑
i=1

1i,t yi,tw
⊤
s−1xi,t ≤ 0

the last inequality holding because1i,t is 1 if only if a mistake in the prediction for thei-th task
occurs at timet.

Fix anyd×K comparison matrixU and denote by‖·‖∗ the matrix dual norm. By the convex
inequality for matrix norms we have‖Vm‖‖U‖∗ ≥ 〈Vm,U〉, where‖U‖∗ = f ∗

(
σ(U)

)
and f ∗ is the

Legendre dual of functionf —see Lewis (1995, Theorem 2.4). From〈U,Vs〉= 〈U,Vs−1〉+ 〈U,Mt〉.
we obtain

‖Vm‖ ≥
〈U,Vm〉
‖U‖∗

≥ ∑t∈M ‖1t‖1−∑t∈M ℓ1t (U)

‖U‖∗
where

ℓ1t (U)
def
=

K

∑
i=1

1i,t
[
1−yi,t u⊤i xi,t

]
+
=

K

∑
i=1

1i,t ℓt(ui)

and‖1t‖1 counts the number of mistaken tasks at timet. Solving forµ= ∑t∈M ‖1t‖1 gives

µ≤ ∑
t∈M

ℓ1t (U)+‖U‖∗

√
2

m

∑
s=1

D(Vs‖Vs−1) . (18)

Equation (18) is our general starting point for analyzing potential-basedmatrix multitask algorithms.
In particular, the analysis reduces to bounding from above the Bregman term for the specific matrix
norm under consideration.

6.2 Specialization to Schattenp-norms

In this section we focus on Schattenp-norms, therefore measuring similarity (or dissimilarity) in
terms of spectral properties. This amounts to saying that a set of reference vectors are similar if they
span a low dimensional subspace. Along the same lines, we say that a set ofK example vectors are
dissimilar if their spanned subspace has dimension close toK. The rank of a matrix whose columns
are either the reference vectors or the example vectors exactly providesthis information. Here we
use certain functions of the singular values of a matrix as proxies for its rank. It is easy to see that
this leads to a kind of regularization that is precisely enforced through the use of unitarily-invariant
norms. In fact, unitarily-invariant matrix norms control the distribution of the singular values ofU ,
thus acting as spectral co-regularizers for the reference vectors—see, for example, Argyriou et al.
(2008) for recent developments on this subject. In different terms, by relying only on the singular
values (or on the magnitudes of principal components), unitarily invariant norms are a natural way
to determine and measure the most informative directions for a given set of vectors.

For these reasons we now specialize the potential-based matrix classifier ofFigure 3 to the
Schatten 2p-norm and set‖V‖= ‖V‖s2p

= ‖σ(V)‖2p , whereV is a genericd×K matrix, andp is a
positiveinteger(thus 2p is an even number≥ 2). Note that, in general,

‖V‖2s2p
= TR

(
(V⊤V)p)1/p

.
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We are now ready to state our main result of this section. The proof, along with surrounding
comments, can be found in the appendix.

Theorem 9 The overall number of mistakes µ made by the2p-norm matrix multitask Perceptron
(with p positive integer) run on finite sequences of examples(xi,1,y1,t),(xi,2, ,yi,2), · · · ∈ R

d×K ×
{−1,+1}, for i = 1, . . . ,K, satisfies, for all U∈ R

d×K ,

µ≤ ∑
t∈M

ℓ1t (U)+(2p−1)
(

M s2p ‖U‖s2q

)2
+M s2p ‖U‖s2q

√
(2p−1) ∑

t∈M
ℓ1t (U)

where

M s2p = max
t∈M

‖Mt‖s2p√
‖1t‖1

and‖U‖s2q
is the Schatten2q-norm of U, with2q= 2p

2p−1.

Remark 10 In order to verify that in certain cases the bound of Theorem 9 provides asignificant
improvement over the K independent Perceptron baseline, we focus onthe linearly separable case;
that is, when the sequences(xi,1,yi,1),(xi,2,yi,2), . . . are such that there exists a matrix U∈ R

d×K

whose columns ui achieve a margin of at least1 on each example: yi,tu⊤i xi,t ≥ 1 for all t = 1,2, . . .
and for all i= 1, . . . ,K. In this case the bound of Theorem 9 reduces to

µ≤ (2p−1)
(

M s2p ‖U‖s2q

)2
. (19)

It is easy to see that for p= q = 1 the 2p-norm matrix multitask Perceptron decomposes into K
independent Perceptrons, which is our baseline. On the other hand, similarly to the vector case,
a trace norm/spectral norm bound can be established when the parameter p is properly chosen.
Note first that for basic properties of norms‖U‖s2q

≤ ‖U‖s1
and‖M‖s2p

≤ r1/(2p) ‖M‖s∞
, with r =

min{d,K}. It now suffices to set p= ⌈ln r⌉ in order to rewrite (19) as

µ≤ (2lnr +1)e
(
M s∞ ‖U‖s1

)2

where U is now penalized with the trace norm and Mt is measured with the spectral norm‖·‖s∞
. If

the columns of U span a subspace of dimension≪ K, and the matrices of mistaken examples Mt

tend to have K nonzero singular values of roughly the same magnitude, then ‖U‖s1
≈ ‖U‖s2

while
M2

s∞ ≈M2
s2
/K. Hence this choice of p may lead to a factor K improvement over the boundachieved

by the independent Perceptron baseline. See also Remark 11 below. Note that in Theorem 9 (and in
the above argument) what matters the most is the quantification in terms of thespectral properties
of U via ‖U‖s2q

. The fact that p has to be a positive integer is not a big limitation here, since

2q= 2p
2p−1 can be made arbitrarily close to 1 anyway.

Remark 11 The bound of Theorem 9 is not in closed form, since the terms‖1t‖1 occur in both the
left-hand side (via µ) and in the right-hand side (viaM s2p). These terms play an essential role to
assess the potential advantage of the2p-norm matrix multitask Perceptron. In order to illustrate the
influence of‖1t‖1 on the bound, let us consider the two extreme cases‖1t‖1 = 1 for all t ∈M , and
‖1t‖1 = K for all t ∈M . In the former case, the right-hand side of (19) becomes(2p−1)‖U‖2s2q
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(sinceM s2p = 1), which isalwaysworse than the baseline case p= q = 1. In the latter case, the
bound becomes

(2p−1)

(
maxt∈M ‖Mt‖2s2p

)
‖U‖2s2q

K
which, according to the discussion in the previous remark, opens up the possibility for the factor K
improvement. This is precisely the reason why the spectral regularizationis not advantageous in
the adversarially chosen task framework described in Section 2. Since theK instance-label pairs
are the information obtained for each task at any given time step, it appears reasonable that a
multitask approach has a chance to improve when such information is abundant, as is the case
when‖1t‖1 = K, and, at the same time, the tasks to be learned are sufficiently similar. Forexample,
in the extreme case when the K tasks do actually coincide, it is as if we had to learn a single task,
but received K independent pieces of information per time step, rather than just one.

Remark 12 The2p-norm matrix multitask Perceptron algorithm updates the primal vector associ-
ated with a given task whenever an example for that task is wrongly predicted. Specifically, at time t
the mistake-driven update rule for the i-th task vector is defined as vi,s = vi,s−1+yi,t xi,t 1{ŷi,t 6=yi,t}. It
is now straightforward to generalize the above update mechanism to the shared loss framework of
Dekel et al. (2007), where the sharing is performed via a norm applied tothe vector of task losses.
Let ℓt(W) be the vector whose entries are the hinge losses incurred by the K columnsof W and
pick any vector norm‖·‖ . The goal is to bound the cumulative shared loss∑t ‖ℓt(W)‖. To do so,
introduce an additional parameter C> 0 and write the update as vi,s = vi,s−1+ yi,t xi,t τi,t , where
the vectorτt = [τ1,t , . . . ,τK,t ]

⊤ is such thatτt = argmaxτ:‖τ‖∗≤C τ⊤ℓt(Ws−1) and‖·‖ ∗ is the dual of
‖·‖ . Since each entry ofτt is dependent on all the K hinge losses suffered by the2p-norm matrix
multitask Perceptron algorithm at time t, the update now acts so as to favor certain tasks over the
others according to the shared loss induced by‖·‖ . By adapting our proof to the analysis given in
Dekel et al. (2007), it is not hard to show that

T

∑
t=1

‖ℓt(Wt−1)‖ ≤
T

∑
t=1

‖ℓt(U)‖+
‖U‖2S2q

2C
+

TM2
s2p

2

where, in analogy with our previous definitions,

M s2p = max
t=1,...,T

‖Mt‖s2p√
‖τt‖∗

and Mt =
K

∑
i=1

τi,t yi,t xi,t e⊤i .

Observe thatM s2p depends on C throughτt , thus preventing an easy optimization over C. More-
over, since the upper bound depends on dual Schatten2p-norms, the discussions in Remark 10 and
Remark 11 still apply, with the caveat that in order to haveM2

s∞ ≈M2
s2
/K it must beτ1,t ≈ ·· · ≈ τK,t .

6.2.1 IMPLEMENTATION IN DUAL FORM

As for the algorithms in previous sections, the 2p-norm matrix multitask Perceptron algorithm can
also be implemented in dual variables. SettingXt = [x1,t , . . . ,xK,t ], it suffices to observe that the
predictionŝyi,t = SGN

(
w⊤i,s−1xi,t

)
of the 2p-norm matrix Perceptron reduces to computing the sign

of the diagonal entries of the matrix(V⊤s−1Vs−1)
p−1V⊤s−1Xt—recall the expression for∇G calculated

in the proof of Theorem 9. Since matrixVs is updated additively, it is clear that bothV⊤s−1Vs−1
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andV⊤s−1Xt do depend on instance vectorsxi,t only through inner products. This allows us to turn
our 2p-norm matrix multitask Perceptron into a kernel-based algorithm, and repeat the analysis
given here using a standard RKHS formalism—see Warmuth (2009) for a more general treatment
of kernelizable matrix learning algorithms.

7. Experiments

We evaluated our multitask algorithms on several real-world data sets. Since we are more interested
in the multitask kernel for sequential learning problems rather than the natureof the underlying
classifiers, we restricted the experiments for the adversarially chosen task model to the multitask
Perceptron algorithm of Section 3. In particular, we compare the performance of the multitask
Perceptron algorithm with parameterb> 0 to that of the same algorithm run withb= 0, which is
our multitask baseline. Recall from Subsection 3.2 thatb= 0 amounts to running an independent
standard Perceptron on each task. We also evaluated the 2p-norm matrix multitask Perceptron
algorithm under a similar experimental setting, reporting the achieved performance for different
values of the parameterp. Finally, we provide experimental evidence of the effectiveness of the
2p-norm matrix multitask Perceptron algorithm when applied to a learning problem which requires
the simultaneous processing of a significant number of tasks.

In our initial experiments, we empirically evaluated the multitask kernel using a collection of
data sets derived from the first 160,000 newswire stories in the Reuters Corpus Volume 1 (RCV1, for
details see NIST, 2004). Since RCV1 is a hierarchical multiclass and multilabel data set, we could
not use it right away. In fact, in order to evaluate the performance of our multitask algorithms in the
presence of increasing levels of correlation among target tasks, we derived from RCV1 a collection
of data sets where each example is associated with one task among a set of predefined tasks. We
generated eight multitask data sets (D1 through D8) in such a way that tasks indifferent data sets
have different levels of correlation, from almost uncorrelated (D1) to completely overlapped (D8).
The number of tasks in each of the eight data sets was set to four.

Roughly speaking, we hand-crafted tasks by clustering categories from the original data set. We
started from non intersecting sets of categories, which represent nonrelated tasks, and from there we
progressively enlarged the intersection areas, thus obtaining tasks which get closer and closer. The
whole process involved several steps. We first defined tasks as sets of RCV1 categories (RCV1 is a
multilabel data set where labels are sets of hierarchically organized categories). In order to obtain
the four tasks in D1, we first chose four subsets of categories from theinitial set of all categories
in the RCV1 taxonomy in such a way that each subset is both made up of hierarchically related
categories and contains at least 15% of positive examples. More precisely, each of the four tasks in
D1 is made up of second-level and third-level categories from one of thefour main RCV1 sub-trees
(CORPORATE/INDUSTRIAL, ECONOMICS, GOVERNMENT/SOCIAL, MARKETS). Since categories
in different tasks belong todifferent sub-trees in the RCV1 taxonomy, and each task is composed
by categories from thesamesub-tree, the resulting four tasks in D1 describe very different but
consistent topics. Tasks in D2-D8 are generated as follows. First, task one is kept the same in all
the eight data sets. As for the other three tasks, we progressively added categories from the first
task and dropped some from their own set of categories. We repeated thisprocess seven times.
During the first three times (corresponding to data sets D2, D3, and D4) weaugmented task two to
four with topics from task one; during the last four times (corresponding todata sets D5-D8) we
progressively dropped their own initial categories. The whole processis illustrated in Figure 4. As a
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(a) (b)

(c) (d)

Figure 4: A sample of the task generation process given a taxonomy of 13 categories with three
main sub-hierarchies. Tasks are marked as T1, T2 and T3. (a) Uncorrelated tasks are
initially defined as sets of categories from different sub-hierarchies. (b and c) Partially
overlapped tasks are obtained by first augmenting T2 and T3 with the additionof cate-
gories from T1 (category c6 first, then categories c4 and c5), then (d)by shrinking both
T2 and T3 with the removal of their initial nodes (these are categories c9 andc13). The
shrinking step is repeated until T1, T2 and T3 do coincide.

result of the above construction, as we go from D1 to D8, tasks two, three, and four get both closer
to each other and to task one. The last set of four tasks (corresponding to data set D8) is made up of
four occurrences of the first task, that is, tasks are completely overlapped in D8.

Once the eight sets of four tasks have been chosen, we generated labels for the corresponding
multitask examples as follows. We went through the whole RCV1 data set (whose news example
are sorted in chronological order), and gathered examples four by four, where the first example is
associated with the first task, the second with the second task, and so on. Amultitask example,
defined as a set of four (instance, binary label) pairs, was then derived by replacing, for each of
the four RCV1 examples, the original RCV1 categories with−1 if the intersection between the
associated task and the categories was empty (i.e., if the example did not belongto any of the
RCV1 categories which are part of that task),+1 otherwise. Since we used 160,000 multilabel
and multiclass examples, this process ended up with eight multitask data sets of 40,000 (multitask)
examples each.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.159 0.198 0.215 0.212 0.208 0.203 0.195 0.175

10,001-20,000 0.116 0.158 0.167 0.170 0.167 0.164 0.152 0.134
20,001-30,000 0.104 0.141 0.158 0.155 0.150 0.147 0.138 0.122
30,001-40,000 0.085 0.118 0.125 0.125 0.119 0.113 0.105 0.091

Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.395 0.482 0.508 0.499 0.489 0.492 0.461 0.410

10,001-20,000 0.297 0.394 0.428 0.427 0.410 0.394 0.371 0.322
20,001-30,000 0.274 0.374 0.399 0.389 0.375 0.368 0.332 0.291
30,001-40,000 0.231 0.323 0.339 0.337 0.323 0.315 0.287 0.249

Table 1: Online training error rates made by the baselineb= 0 on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8. The taskit is chosen either
randomly (top) or adversarially (bottom).

We note that the tasks considered here are not linearly separable and, as result of the above
construction, different tasks in each data set may have different degrees of nonseparability. This
explains why the baseline error rates for data sets D1-D8 are different—see Tables 1 and 2.

Figure 5 shows the fraction of wrongly predicted examples during the onlinetraining of the
multitask Perceptron algorithm with interaction matrix (5), when the taskit is chosen either ran-
domly3 (left) or in an adversarial manner (right). The latter means thatit is selected so as the
resulting signed margin is smallest over the four tasks. This implies that in the first case each task
is invoked on average 10,000 times. Nothing can be said in hindsight about the task choices for the
adversarial criterion, since this choice is heavily dependent on the onlinebehavior of the classifiers
and the noise in the tasks at hand. In both cases we show to what extent theincurred cumulative
training error for different values of parameterb exceeds the one achieved by the multitask baseline
b = 0, depicted here as a straight horizontal line (a negative value means thatthe chosen value of
b achieves an error lower thanb= 0). Recall thatb= 0 amounts to running four independent Per-
ceptron algorithms, whileb= 4 corresponds to running the multitask Perceptron algorithm with the
interaction matrix (4). The actual fractions of training error mistakes achieved by the baselineb= 0
are reported in Table 1. In order to illustrate how the generalization capabilities of our algorithms
progress over time, four pairs of plots are reported, each one showing, from top to bottom, the frac-
tion of mistakes occurred in the example subsequences 1-10,000, 10,001-20,000, 20,001-30,000,
and 30,001-40,000, respectively.

Figure 5 confirms that multitask algorithms get more and more competitive as tasks get closer
(since tasks are uncorrelated in D1 and totally overlapped in D8). Unsurprisingly, this advantage is
higher as we increase the value ofb. In fact, Figure 5 clearly shows that the delta errors fromb= 0
decrease faster, when going from D1 to D8, as we increaseb. This amounts to saying that the more
we bias our algorithm towards a possible correlation the more we benefit from an actual correlation
among tasks. Moreover, it is worth observing that the (rather conservative) choiceb= 1 obtains an

3. In this case the results are averaged over 3 runs. The observed results were within a 0.002 interval of the plotted
values in all 3 runs.
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Figure 5: Online behavior of the multitask Perceptron algorithm. We report theextent to which
during a single pass over the entire data set the fraction of training mistakes made by
the multitask Perceptron algorithm (withb= 1,4,8,16) exceeds the one achieved by the
baselineb= 0, represented here as an horizontal line. On the x-axis are the multitask data
sets whose tasks have different levels of correlations, from low (D1) tohigh (D8). Task
indices are randomly chosen in the left plots and adversarially selected in theright ones.
The pair of plots on top reports the online training behavior on the first 10,000 (multitask)
examples, the second from top refers to the second 10,000 examples, and so on.
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Subsequences D1 D2 D3 D4 D5 D6 D7 D8
1-10,000 0.154 0.198 0.207 0.206 0.202 0.196 0.185 0.166

10,001-20,000 0.104 0.141 0.159 0.157 0.152 0.149 0.135 0.120
20,001-30,000 0.095 0.126 0.139 0.138 0.131 0.127 0.115 0.099
30,001-40,000 0.085 0.125 0.132 0.135 0.132 0.124 0.117 0.101

Table 2: Fractions of training errors made by the baselinep= 1 on consecutive sequences of mul-
titask examples after a single pass on the data sets D1-D8.

Parameters Training Error Test Error StdDev
P=1 19.0% 13.4% 1.7%
P=2 16.7% 10.9% 1.3%
P=3 16.4% 10.6% 1.6%
P=4 16.6% 9.7% 1.5%
P=5 17.1% 10.2% 1.9%

Table 3: Training errors recorded after a single pass over the spam data set, along with the cor-
responding test errors. The values are averaged over 40 repetitionsof a 10-fold cross-
validation scheme. The standard deviation for the test error is reported in parentheses. The
standard deviation for the training error is negligible and is therefore omitted.

overall better performance than the multitask baselineb= 0, with a higher cumulative error only on
the first data set.

We then evaluated the 2p-norm matrix multitask Perceptron algorithm on the same data set. In
this case, we dropped the task choice mechanism since the algorithm is designed to receive all the
four instance vectors and to output four predicted labels at each time step.We limited our exper-
iments to the first 10,000 multitask examples. This allows us to make the results achieved by the
2p-norm matrix multitask Perceptron algorithm somehow comparable (i.t.o. total number of binary
labels received) with the ones achieved by the multitask Perceptron algorithmunder the random task
selection model (the four plots on the left in Figure 5). In Figure 6 we report the (differential) frac-
tions of online training mistakes made by the algorithm on the subsequences 1-2,500, 2,501-5,000,
5,001-7,500 and 7,501-10,000, of multitask examples. The actual fractions of online training error
mistakes achieved by the baselinep= 1 are showed in Table 2. As expected, the more the tasks get
closer to each other the less is the number of wrongly predicted labels output by the 2p-norm matrix
multitask Perceptron algorithm and the larger is the gap from the baseline. In particular, it can be
observed that even in D1 the performance of the 2p-norm matrix multitask Perceptron algorithm is
no worse than the one achieved by the baseline. In fact, while our construction tends to guarantee
that tasks get closer as we move from D1 to D8 (recall how the tasks are defined in terms of subsets
of RCV1 categories), we do not really know in advance how dissimilar the tasks in D1 are, and the
performance of the 2p-norm matrix multitask Perceptron algorithm reveals that they are indeed not
so dissimilar.

As a further assessment, we evaluated the empirical performance of thep-norm matrix mul-
titask algorithm on the ECML/PKDD 2006 Discovery Challenge spam data set (for details, see
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Figure 6: Online behavior of the 2p-norm matrix multitask Perceptron algorithm. Again, we report
the extent to which during a single pass over the entire data set the fraction training
mistakes made by the 2p-norm matrix multitask Perceptron algorithm (withp= 2,3,4,5)
exceeds the one achieved by the baselinep = 1, represented here as an horizontal line.
On the x-axis are the multitask data sets whose tasks have different levels ofcorrelations,
from low (D1) to high (D8). The top plot reports the online training behavioron the first
2,500 (multitask) examples, the second from top refers to the second 2,500 examples,
and so on.
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ECML/PKDD, 2006). The data set includes 15 sub-data sets, each one containing 400 spam/ham
emails for 15 different users. Email messages are encoded by a standard bag-of-words vector rep-
resentation. Naturally enough, we associated each user with a differenttask. The experiments were
run using a 10-fold cross-validation scheme. Each run consists of a single training epoch followed
by a test phase. Since these data are not ordered chronologically as those in RCV1, we repeated
the 10-fold cross-validation process 40 times, preceding each repetition with independent shuffles
of the 15 data sets. Table 3 shows that the 2p-norm matrix multitask algorithm exploits underlying
latent relations and manages to achieve a significant decrease in both the training and test errors.
In particular, the best performance is achieved whenp is set to 4, which results in a test error of
9.7%, an improvement of more than 25% relative to the baselinep= 1, or nearly a 4.0% decrease
in absolute terms. Whereas these are average values, the advantage of the 2p-norm matrix multitask
algorithm is still significant even when the standard deviation is factored in. Moreover, in most
runs, the deviation from the average tended to be the on the same side for both p= 1 andp> 1. In
other words, if on a given fold thep-norm matrix multitask Perceptron algorithm withp> 1 made
a larger number of mistakes than its average, the same held true for the baseline. We stress that the
theoretical improvement of a factorK (in this caseK = 15), is within reach only if the tasks are
linearly separable and overlapped. In practice we should and could notexpect these conditions to
be generally met to their full extent. In particular, while we cannot state how exactly the different
spam classification tasks are spectrally related (since the task are not synthetically generated), it is
apparent that such relations do actually hold to a certain extent. In fact, byconsidering the specifics
of the learning problem, it is intuitively reasonable that the target spam/ham discriminant functions,
though changing from user to user, still share a significant number of common traits.

8. Conclusions and Open Problems

We have studied the problem of sequential multitask learning using two different approaches to
formalize the notion of task relatedness: via the Euclidean distance between task vectors, or via a
unitarily invariant norm applied to the matrix of task vectors. These two approaches naturally cor-
respond to two different online multitask protocols: one where a single task isselected at each time
step, and one where the learner operates simultaneously on all tasks at each time step. We believe
that both these protocols have their own merits, each one having its array ofpossible practical appli-
cations. Moreover, while the Schatten-p norm regularization assumption does not make sense in the
adversarially chosen task protocol, it is not difficult to adapt the multitask kernel-based algorithm
of Section 3 to the fully simultaneous protocol and derive a mistake bound analysis in the lines of
the one given in Section 6.

In our worst-case sequential prediction scenario, the best we can hope for i.t.o. prediction per-
formance is a factorK improvement over the baseline runningK independent classification algo-
rithms, this is what we essentially achieved in our analysis. We have complemented our theoretical
findings with experiments on real-world data sets showing that our algorithms are efficient and can
effectively take advantage of latent task relatedness.

We conclude by mentioning a few directions along which our results could be extended.

1. In Section 3.2 it might be interesting to devise methods for dynamically adaptingthe b pa-
rameter as new data are revealed.
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2. In Section 3.3 we have shown a simple adaptation to the case when the graphof tasks (i.e.,
interaction matrixA) is known ahead of time. Is it possible to achieve meaningful bounds
when the graph is hidden, and can only be progressively inferred through the choices ofit?

3. Our multitask regularization techniques rely on the fact that different tasks need to be em-
bedded, either naturally or through some sensible preprocessing, in the samed-dimensional
space. It would be interesting to devise a multitask algorithm that does not impose such a
constraint.

4. Finally, we believe it would also be interesting to provelower bounds on the number of
mistakes as a function of task relatedness.
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Appendix A.

The following trace inequality, which can be seen as a kind of Holder’s inequality applied to non-
square matrices, is our main technical tool in the proof of Theorem 9.

Lemma 13 Let A, B be positive semidefinite matrices, of size d×d and K×K respectively, with
the same nonzero eigenvalues. Let X be an arbitrary real matrix of sized×K. Then, for any pair
on nonnegative exponents l,g≥ 0, we have

TR(X⊤Al XBg)≤
(

TR(X⊤X)p)1/p(
TR A(l+g)q)1/q

where1/p+1/q= 1, p≥ 1.

Proof We first consider the casel ≤ g. By the Cauchy-Schwartz and Holder’s inequalities applied
to traces (Magnus and Neudecker, 1999, Chapter 11) we have

TR(X⊤Al XBg) = TR
(
B(g−l)/2X⊤Al XB(g+l)/2) (20)

≤ TR
(
X⊤A2l XBg−l)1/2

TR
(
X⊤XBg+l)1/2

≤ TR
(
X⊤A2l XBg−l)1/2

Tp
(
X⊤X

)1/2
Tq
(
Bg+l)1/2

where we used the shorthandTr(Z) = (TRZr)1/r . In the case whenl > g we can simply swap the
matricesX⊤Al andXBg and reduce to the previous case.

We now recursively apply the above argument to the left-hand side of (20). Recalling that
Tq(A) = Tq(B) andTp(X⊤X) = Tp(XX⊤), aftern steps we obtain

TR
(
X⊤Al XBg)≤

(
TR(X⊤Al ′XBg′)

)1/2n

Tp
(
X⊤X

)∑n
i=1(1/2)i

Tq
(
Bg+l)∑n

i=1(1/2)i
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for some pair of exponentsl ′,g′ ≥ 0 such thatl ′+g′ = l +g. Since for any such pairl ′,g′, we have
TR(X⊤Al ′XAg′)< ∞, we can take the limit asn→ ∞. Recalling that∑∞

i=1(1/2)i = 1 completes the
proof.

We are now ready to prove Theorem 9.
Proof [Theorem 9] We set

G(V) =
1
2
‖V‖2s2p

=
1
2

TR
(
(V⊤V)p)1/p

.

SinceG(V) is twice4 continuously differentiable, by the mean-value theorem we can write

D(Vs‖Vs−1) =
1
2
(VECMt)

⊤HG(ξ)VEC(Mt) (21)

whereHG denotes the Hessian matrix of (matrix) functionG and ξ is some matrix on the line
connectingVs−1 to Vs. We start by computing the first derivative,

∇G(V) =
1
2

∇TR
(
(V⊤V)p)1/p

=
1

2p
TR
(
(V⊤V)p)1/p−1∇TR

(
(V⊤V)p) . (22)

Then, by applying the chain rule to∇
(

TR(V⊤V)p
)

and using (15) and (16) we obtain

∇TR
(
(V⊤V)p) = pVEC

(
(V⊤V)p−1)⊤(IK2 +TK2)(IK⊗V⊤)

= pVEC
(
(V⊤V)p−1)⊤(IK⊗V⊤)

+ p
(

TK2VEC
(
(V⊤V)p−1))⊤(IK⊗V⊤)

(sinceV⊤V andTK2 are symmetric)

= 2p
(
(IK⊗V)VEC(V⊤V)p−1)⊤

= 2pVEC
(
V(V⊤V)p−1)⊤ (23)

the last equation following from (12). We now substitute (23) back into (22)and obtain

∇G(V) = c(V)VEC(D)⊤

where we set for brevityD = VBp−1 andc(V) = TR(Bp)1/p−1 with B = V⊤V. Taking the second
derivativeHG = ∇2G gives

HG(V) = VEC(D)∇c(V)+c(V)∇D .

Recalling the definition ofc(V) and using (15) it is easy to see thatVEC(D)∇c(V) is theKd×Kd
matrix

(1− p)TR
(
Bp)1/p−2

VEC(D)VEC(D)⊤. (24)

Sincep≥ 1 this matrix is negative semidefinite, and we can disregard it when bounding from the
above the quadratic form (21). Thus we continue by considering only thesecond termc(V)∇(D)
of the Hessian matrix. We have

∇D =
(
Bp−1⊗ Id

)
+(IK⊗V)∇Bp−1

4. In factG is C∞ everywhere but (possibly) in zero, sinceTR
(
(V⊤V)p

)
is just a polynomial function of the entries of

V. MoreoverTR
(
(V⊤V)p

)
= 0 if and only ifV is the zero matrix.
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where

∇(Bp−1) =

(
p−2

∑
ℓ=0

Bℓ⊗Bp−2−ℓ
)
(IK2 +TK2)

(
IK⊗V⊤

)
.

Putting together

(21) ≤ c(V)

2
VEC(Mt)

⊤(Bp−1⊗ Id)VEC(Mt)

+
c(V)

2
VEC(Mt)

⊤(IK⊗V)Σ×

×(IK2 +TK2)
(

IK⊗V⊤
)

VEC(Mt) (25)

where we used the shorthandΣ = ∑p−2
ℓ=0 Bℓ⊗Bp−2−ℓ. We now bound the two terms in the right-hand

side of (25). Using again (12) combined with (13) we can write

c(V)

2
VEC(Mt)

⊤(Bp−1⊗ Id)VEC(Mt) =
c(V)

2
TR(M⊤t XtB

p−1)≤ 1
2

TR
(
(M⊤t Mt)

p)1/p

independent ofV. The majorization follows from Holder’s inequality applied to the positive semidef-
inite matricesM⊤t Mt andBp−1 (Magnus and Neudecker, 1999, Chapter 11). Moreover, it is easy to
see that the symmetric matricesΣ andTK2 commute, thereby sharing the same eigenspace, in fact

TK2Σ =
p−2

∑
ℓ=0

TK2

(
Bℓ⊗Bp−2−ℓ)=

p−2

∑
ℓ=0

(
Bp−2−ℓ⊗Bℓ

)
TK2 = Σ TK2 .

Hence,Σ(IK2 +TK2)4 2Σ, and we can bound from above the second term in (25) by

c(V)VEC(Mt)
⊤

p−2

∑
ℓ=0

Bℓ⊗Ap−1−ℓVEC(Mt) (26)

where we setA=VV⊤. Again, (12) and (13) allow us to rewrite this quadratic form as the sum of
traces

c(V)
p−2

∑
ℓ=0

TR(M⊤t Ap−1−ℓMtB
ℓ) .

SinceA andB have the same nonzero eigenvalues, we can apply Lemma 13 to each term andput
together as in (25). After simplifying we get

(21)≤ 1
2
(2p−1)TR

(
(M⊤t Mt)

p)1/p
=

1
2
(2p−1)||Mt ||2s2p

.

Substituting back into (18), and recalling that‖U‖∗ = ‖U‖s2q
in the case of Schatten norms, yields

µ ≤ ∑
t∈M

ℓ1t (U)+‖U‖s2q

√
(2p−1) ∑

t∈M
‖Mt‖2s2p

≤ ∑
t∈M

ℓ1t (U)+‖U‖s2q

√√√√
(2p−1)max

t∈M

‖Mt‖2s2p

‖1t‖1
µ .
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Solving the inequality forµ, and overapproximating via
√

a+b≤√a+
√

b we now obtain

µ≤ ∑
t∈M

ℓ1t (U)+(2p−1)
(

M s2p ‖U‖s2q

)2
+M s2p ‖U‖s2q

√
(2p−1) ∑

t∈M
ℓ1t (U)

thereby concluding the proof.

The core of the above analysis is an upper bound on the second-orderterm of the Taylor expansion
of the Schattenp-norm aroundVs−1. Our proof of this bound is based on a direct matrix analysis.
A more general bound has independently been derived in Juditsky and Nemirovski (2009, Proposi-
tion 3.1) and used in Kakade et al. (2009), where the unitarily invariant norms of our analysis are
replaced by general convex functions.
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