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Abstract

In this work we propose new ensemble methods for the hierarchical classification of gene
functions. Our methods exploit the hierarchical relationships between the classes in differ-
ent ways: each ensemble node is trained “locally”, according to its position in the hierarchy;
moreover, in the evaluation phase the set of predicted annotations is built so to minimize
a global loss function defined over the hierarchy. We also address the problem of spar-
sity of annotations by introducing a cost-sensitive parameter that allows to control the
precision-recall trade-off. Experiments with the model organism S. cerevisiae, using the
FunCat taxonomy and seven biomolecular data sets, reveal a significant advantage of our
techniques over “flat” and cost-insensitive hierarchical ensembles.

Keywords: Hierarchical classification, Gene function prediction, Bayesian ensembles,
Cost-sensitive classification, FunCat taxonomy.

1. Introduction

“In silico” gene function prediction can generate hypotheses to drive the biological discovery
and validation of gene functions. Indeed, “in vitro” methods are costly in time and money,
and automatic prediction methods can support the biologist in understanding the role of a
protein or of a biological process, or in annotating a new genome at high level of accuracy,
or more in general in solving problems of functional genomics.

Gene function prediction is a classification problem with distinctive features, which in-
clude: (a) a large number of classes with multiple functional annotations for each gene —
i.e., a multiclass multilabel classification problem; (b) hierarchical relationships between
classes governed by the “true path rule” (The Gene Ontology Consortium, 2000); (c) un-
balance between positive and negative examples for most classes (sparse multilabels); (d)
uncertainty of labels and incompleteness of annotations; (e) availability and need of inte-
gration of multiple sources of data.

This paper focuses on the three first items, proposing an ensemble approach for the hi-
erarchical cost-sensitive classification of gene functions at genome and ontology-wide level.
Indeed, in this context “flat” methods may introduce large inconsistencies in parent-child re-
lationships between classes, and a hierarchical approach may correct “flat” predictions in or-
der to improve the accuracy and the consistency of the overall annotations of genes (Obozin-
ski et al., 2008). We propose a hierarchical bottom-up Bayesian cost-sensitive ensemble that

c©2010 Nicolò Cesa-Bianchi and Giorgio Valentini.



Hierarchical cost-sensitive algorithms

on the one hand respects the consistency of the taxonomy, and on the other hand exploits
the hierarchical relationships between the classes. Our approach takes into account the
sparsity of annotations in order to improve the precision and the recall of the predictions.
We also propose a simple variant of the hierarchical top-down algorithm that optimizes the
decision threshold for maximizing the F-score.

Different lines of research have been proposed for the hierarchical prediction of gene
functions, ranging from structured-output methods, based on the joint kernelization of both
input variables and output labels (Sokolov and Ben-Hur, 2008; Astikainen et al., 2008), to
ensemble methods, where different classifiers are trained to learn each class and then com-
bined to take into account the hierarchical relationships between functional classes (Obozin-
ski et al., 2008; Guan et al., 2008; Jiang et al., 2008). Our work follows this second line
of research. Our main contribution is the introduction of a global cost-sensitive approach
and the adaptation of a Bayesian bottom-up method to the hierarchical prediction of gene
functions using the FunCat taxonomy (Ruepp et al., 2004).

Notation and terminology. We identify the N functional classes of the FunCat taxon-
omy with the nodes i = 1, . . . , N of a tree T . The root of T is a dummy class with index 0,
which every gene belongs to, that we added to facilitate the processing. The FunCat mul-

tilabel of a gene is the nonempty subset of {1, . . . , N} corresponding to all FunCat classes
that can be associated with the gene. We denote this subset using the incidence vector
v = (v1, . . . , vN ) ∈ {0, 1}N . The multilabel of a gene is built starting from the set of terms
occurring in the gene’s FunCat annotation. As these terms correspond to the most specific
classes in T , we add to them all the nodes on paths from these most specific nodes to the
root. This “transitive closure” operation ensures that the resulting multilabel satisfies the
true path rule. Conversely, we say that a multilabel v ∈ {0, 1}N respects T if and only
if v is the union of one or more paths in T , where each path starts from a root but need
not terminate on a leaf. All the hierarchical algorithms considered in this paper generate
multilabels that respect T . Finally, given a set of d features, we represent a gene with the
normalized (unit norm) vector x ∈ R

d of its feature values.

2. Methods

The hbayes ensemble method (Cesa-Bianchi et al., 2005, 2006) is a general technique for
solving hierarchical classification problems on generic taxonomies. The method consists in
training a calibrated classifier at each node of the taxonomy. In principle any algorithm
whose classifications are obtained by thresholding a real prediction p̂, e.g., ŷ = sgn(p̂),
can be used as base learner. In this work we use support vector machines with Platt
calibration. The real-valued outputs p̂i(x) of the calibrated classifier for node i on input
x are viewed as estimates of the probabilities pi(x) = P

(
Vi = 1 | Vpar(i) = 1, x

)
, where

V = (V1, . . . , VN ) ∈ {0, 1}N is the vector random variable modeling the multilabel of a gene
x and par(i) is the unique parent of node i in T . The distribution of the random boolean
vector V is assumed to be

P
(
V = v

)
=

N∏

i=1

P
(
Vi = vi | Vpar(i) = 1, x

)
for all v ∈ {0, 1}N
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where, in order to enforce that only multilabels V that respect T have nonzero probability,
we impose that P

(
Vi = 1 | Vpar(i) = 0, x

)
= 0 for all nodes i = 1, . . . , N and all x. This

implies that the base learner at node i is only trained on the subset of the training set
including all examples (x,v) such that vpar(i) = 1.

In the evaluation phase, hbayes predicts the Bayes-optimal multilabel ŷ ∈ {0, 1}N for
a gene x based on the estimates p̂i(x) for i = 1, . . . , N . Namely,

ŷ = argmin
y∈{0,1}n

E
[
ℓH(y,V ) | x

]
(1)

where the expectation is w.r.t. the distribution of V . Here ℓH(y,V ) denotes the H-
loss (Cesa-Bianchi et al., 2005, 2006), measuring a notion of discrepancy between the mul-
tilabels y and V . The main intuition behind the H-loss is simple: if a parent class has

been predicted wrongly, then errors in its descendants should not be taken into account.
Given fixed cost coefficients c1, . . . , cN > 0, ℓH(ŷ,v) is computed as follows: all paths in
the taxonomy T from the root 0 down to each leaf are examined and, whenever a node
i ∈ {1, . . . , N} is encountered such that ŷi 6= vi, then ci is added to the loss, while all the
other loss contributions from the subtree rooted at i are discarded.

Let c−i = c+
i = ci/2 be the costs respectively associated to a false negative (FN) and a

false positive (FP) mistake. Let {A } be the indicator function of event A. Given x and
the probabilities pi = pi(x) for i = 1, . . . , N , the hbayes prediction rule can be formulated
as follows.

hbayes prediction rule: Initially, set the labels of each node i to

ŷi = argmin
y∈{0,1}



c−i pi(1 − y) + c+
i (1 − pi)y + pi{y = 1}

∑

j∈child(i)

Hj(ŷ)



 (2)

where
Hj(ŷ) = c−j pj(1 − ŷj) + c+

j (1 − pj)ŷj + pj{ŷj = 1}
∑

k∈child(j)

Hk(ŷ) (3)

is recursively defined over the nodes j in the subtree rooted at i with each ŷj set according
to (2). Then, if ŷi is set to zero, set all nodes in the subtree rooted at i to zero as well.

As shown in (Cesa-Bianchi et al., 2006), ŷ can be computed for a given x via a simple
bottom-up message-passing procedure whose only parameters are the probabilities pi. Un-
like standard top-down hierarchical methods —see the description of htd at the end of this
section, each ŷi also depends on the classification of its child nodes. In particular, if all
child nodes k of i have pk close to a half, then the Bayes-optimal label of i tends to be 0
irrespective of the value of pi. Vice versa, if i’s children all have pk close to either 0 or 1,
then the Bayes-optimal label of i is based on pi only, ignoring the children —see also (6).

The following theorem by Cesa-Bianchi et al. (2005), whose proof we include here for
completeness, shows that assignments ŷ given by (1) and the hbayes prediction rule are
indeed equivalent.

Theorem 1 For any tree T and all unit-norm x ∈ R
d, the multilabel generated according

to the hbayes prediction rule is the Bayes-optimal classification of x for the H-loss.
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Proof Let ŷ be the multilabel assigned by hbayes and y∗ be any multilabel minimizing
the expected H-loss. Omitting the indexing on x, we can write

E ℓH(ŷ,V ) =

N∑

i=1

(
c−i pi(1 − ŷi) + c+

i (1 − pi)ŷi

) ∏

j∈anc(i)

pj {ŷj = 1}

where anc(i) is the set of nodes j > 0 that are ancestors of i. Note that we may decompose
the expected H-loss as

E ℓH(ŷ,V ) =
∑

i∈root(T )

H ′
i(ŷ)

where root(T ) are the children of the dummy root node 0, and H ′
i(ŷ) is recursively defined

as
H ′

i(ŷ) =
(
c−i pi(1 − ŷi) + c+

i (1 − pi)ŷi

) ∏

j∈anc(i)

pj {ŷj = 1} +
∑

k∈child(i)

H ′
k(ŷ) . (4)

Pick a node i. If i is a leaf, then the sum in the right-hand side of (4) disappears and
y∗i = {pi ≥ 1/2} —recall c−i = c+

i . As this is also the minimizer of Hi(ŷ) = c−i pi(1 − ŷi) +
c+
i (1 − pi)ŷi, we get that ŷi = y∗i .

Now let i be an internal node and inductively assume ŷj = ŷ∗j for all j ∈ subtree(i). By
expanding a term H ′

k(ŷ) of the sum in the right-hand side of (4) we get

H ′
k(ŷ) =

(
c−k pk(1 − ŷk) + c+

k (1 − pk)ŷk

)
pi {ŷi = 1}

∏

j∈anc(i)

pj {ŷj = 1} +
∑

m∈child(k)

H ′
m(ŷ) .

Note that the factor
∏

j∈anc(i) pj {ŷj = 1} occurs in both terms in the right-hand side of (4).
Hence y∗i does not depend on this factor, thus instead of (4) we can equivalently minimize

Hi(ŷ) = ci (pi(1 − ŷi) + (1 − pi)ŷi) + pi{ŷi = 1}
∑

k∈child(i)

Hk(ŷ) (5)

where Hk(ŷ) is defined as in (3). Now observe that ŷi minimizing (5) is equivalent to the
assignment produced by hbayes.

To conclude the proof note that setting y∗j = 0 for all nodes j ∈ subtree(i) whenever
y∗i = 0 minimizes the H-loss, and this is exactly what the hbayes prediction rule does.

We now introduce a simple cost-sensitive variant, hbayes-cs, of hbayes, which is suit-
able for learning datasets whose multilabels are sparse. This variant introduces a parameter
α that is used to trade-off the cost of false positive (FP) and false negative (FN) mistakes.
We parametrize the relative costs of FP and FN by introducing a factor α ≥ 0 such that
c−i = αc+

i while keeping c+
i + c−i = 2ci. Then (2) can be rewritten as

ŷi = 1 ⇐⇒ pi



2ci −
∑

j∈child(i)

Hj



 ≥
2ci

1 + α
. (6)

This is the rule used by hbayes-cs in our experiments.
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Given a set of trained base learners providing estimates p̂1, . . . , p̂N , we compare the
quality of the multilabels computed by hbayes-cs with that of htd-cs. This is a cost-
sensitive version of the basic top-down hierarchical ensemble method htd whose predictions
are computed in a top-down fashion (i.e., assigning ŷi before the label of any j is the subtree
rooted at i) using the rule ŷi =

{
p̂i(x) ≥ 1

2

}
× {ŷpar(i) = 1} for i = 1, . . . , N (we assume

that the guessed label ŷ0 of the root of T is always 1). The variant htd-cs introduces a
single cost sensitive parameter τ > 0 which replaces the threshold 1

2 . The resulting rule for
htd-cs is then ŷi = {p̂i(x) ≥ τ} × {ŷpar(i) = 1}.

Note that both methods hbayes-cs and htd-cs use the same estimates p̂i. The only
difference is in the way the classifiers are defined in terms of these estimates.

3. Experimental results

We predicted the functions of genes of the unicellular eukaryote S. cerevisiae at genome
and ontology-wide level using the FunCat taxonomy (Ruepp et al., 2004). The FunCat
provides an universal set of gene functional classes available for all organisms: it consists of
28 main functional categories (or branches) that cover general fields like cellular transport,
metabolism and cellular communication/signal transduction. These main functional classes
are divided into a set of subclasses with up to six levels of increasing specificity, according
to a tree-like structure that accounts for different functional characteristics of genes and
gene products. In the FunCat taxonomy genes may belong at the same time to multiple
functional classes, since several classes are subclasses of more general ones, and because a
gene may participate to different biological processes and may perform different biological
functions.

3.1 Experimental set-up

In our experiments we used 7 biomolecular data sets, whose characteristics are summarized
in Table 1.

Table 1: Data sets

Data set Description # of genes # of features # of classes

Pfam-1 protein domain binary data from Pfam 3529 4950 211
Pfam-2 protein domain log E data from Pfam 3529 5724 211
Phylo phylogenetic data 2445 24 187
Expr gene expression data 4532 250 230
PPI-BG PPI data from BioGRID 4531 5367 232
PPI-VM PPI data from von Mering experiments 2338 2559 177
SP-sim sequence pairwise similarity data 3527 6349 211

Pfam-1 data are represented as binary vectors: each feature registers the presence or
absence of 4,950 protein domains obtained from the Pfam (Protein families) database (Finn
et al., 2008). Moreover, we also used an enriched representation of Pfam domains (Pfam-
2) by replacing the binary scoring with log E-values obtained with the HMMER software
toolkit (Eddy, 1998). The features of the phylogenetic data (Phylo) are the negative loga-
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rithm of the lowest E-value reported by BLAST version 2.0 in a search against a complete
genome in 24 organisms (Pavlidis et al., 2002). The “Expr” data set merges the experiments
of (Spellman et al., 1998) about gene expression measures relative to 77 conditions with the
transcriptional responses of yeast to environmental stress (173 conditions) by (Gasch et al.,
2000). Protein-protein interaction data (PPI-BG) have been downloaded from the BioGRID

database, that collects PPI data from both high-throughput studies and conventional fo-
cused studies (Stark et al., 2006). Data are binary: they represent the presence or absence
of protein-protein interactions. We used also another data set of protein-protein interac-
tions (PPI-VM) that collects binary protein-protein interaction data from yeast two-hybrid
assay, mass-spectrometry of purified complexes, correlated mRNA expression and genetic
interactions (von Mering et al., 2002). These data are binary too. The “SP-sim” data
set contains pairwise similarities between yeast genes represented by Smith and Waterman
log-E values between all pairs of yeast sequences (Lanckriet et al., 2004b).

In order to get a not too small set of positive examples for training, for each data
set we selected only the FunCat-annotated genes and the classes with at least 20 positive
examples. As negative examples we selected for each node/class all genes not annotated
to that node/class, but annotated to its parent class. From the data sets we also removed
uninformative features (e.g., features with the same value for all the available examples).

We used gaussian SVMs with probabilistic output (Lin et al., 2007) as base learners.
Given a set p̂1, . . . , p̂N of trained estimates, we compared on these estimates the results
of htd-cs and hbayes-cs ensembles with htd (the cost-insensitive version of htd-cs,
obtained by setting τ = 1/2) and flat (each classifier outputs its prediction disregarding
the taxonomy). The decision threshold τ for htd-cs and the cost factor α for hbayes-cs

have been set by internal cross-validation of the F-measure with training data. We compared
the different ensemble methods using external 5-fold cross-validation (thus without using
test set data to tune the hyper-parameters).

3.2 Per-class F-score results

For the first set of experiments we used the classical F-score to aggregate precision and
recall for each class of the hierarchy. Figure 1 shows the distribution, across all the classes
of the taxonomy and the data sets, of the normalized differences

FBayes−Fens

max(FBayes,Fens)
between the

F-measure of hbayes-cs and the F-measure of each one of the other ensemble methods.
The shape of the distribution offers a synthetic visual clue of the comparative performances
of the ensembles: values larger than 0 denote better results for hbayes-cs. In Figure 1.(a)
we can observe that hbayes-cs largely outperforms flat, since most of the values are
cumulated on the right part of the distribution. The comparison with htd, Figure 1.(b),
shows that hbayes-cs on average improves on htd, while essentially a tie is observed with
htd-cs —Figure 1.(c). Indeed the average F-measure across classes and data sets is 0.13
with flat ensembles, 0.18 with htd and 0.22 and 0.23, respectively, with hbayes-cs and
htd-cs ensembles.

3.3 Hierarchical F-score results

In order to better capture the hierarchical and sparse nature of the gene function prediction
problem we also applied the hierarchical F-measure, expressing in a synthetic way the
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Figure 1: Histograms of the distribution of the normalized differences between F-measures
across FunCat classes and data sets. (a) hbayes-cs vs. flat ensembles; (b)
hbayes-cs vs. htd ensembles; (c) hbayes-cs vs. htd-cs ensembles.

effectiveness of the structured hierarchical prediction (Verspoor et al., 2006). Given a general
taxonomy T representing the graph of the functional classes, for a given gene or gene product
x consider the graph P (x) ⊂ T of the predicted classes and the graph C(x) of the correct
classes associated to x, and let be l(P ) the set of the leaves (nodes without children) of the
graph P . For a leaf f ∈ P (x) and c ∈ C(x), let be ↑ f and ↑ c the set of their ancestors
that belong, respectively, to P (x) and C(x). It is easy to see that the Hierarchical Precision
(HP), Hierarchical Recall (HR) and Hierarchical F-score (HF), originally introduced for the
DAGs of the GO (Verspoor et al., 2006), can be adapted to the tree-structure of the FunCat
taxonomy in the following way:

HP =
1

|l(P (x))|

∑

f∈l(P (x))

|C(x) ∩ ↑f |

| ↑f |
HR =

1

|l(C(x))|

∑

c∈l(C(x))

| ↑c ∩ P (x)|

| ↑c|

HF =
2 · HP · HR

HP + HR
(7)

Viewing a multilabel as a set of paths, hierarchical precision measures the average fraction of
each predicted path that is covered by some true path for that gene. Conversely, hierarchical
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recall measures the average fraction of each true path that is covered by some predicted
path for that gene.

Table 2: Upper table: Hierarchical F-measure comparison between htd, htd-cs, and
hbayes-cs ensembles. Lower table: win-tie-loss between the different hierarchical
methods according to the 5-fold cross-validated paired t-test at 0.01 significance
level.

Methods Data sets

Pfam-1 Pfam-2 Phylo Expr PPI-BG PPI-VM SP-sim Average
htd 0.3771 0.0089 0.2547 0.2270 0.1521 0.4169 0.3370 0.2533
htd-cs 0.4248 0.2039 0.3008 0.2572 0.3075 0.4593 0.4224 0.3394
hbayes-cs 0.4518 0.2030 0.2682 0.2555 0.2920 0.4329 0.4542 0.3368

win-tie-loss

Methods htd-cs htd

hbayes-cs 2-4-1 6-1-0
htd-cs - 7-0-0

Table 2 shows that the proposed hierarchical cost-sensitive ensembles outperform the
cost-insensitive htd approach. In particular, win-tie-loss summary results (according to the
5-fold cross-validated paired t-test (Dietterich, 1998) at 0.01 significance level) show that the
hierarchical F-scores achieved by hbayes-cs and htd-cs are significantly higher than those
obtained by htd ensembles, while ties prevail in the comparison between hbayes-cs and
htd-cs (more precisely 2 wins, 4 ties and 1 loss in favour of hbayes-cs, Table 2, right-hand
side). flat ensembles results with the hierarchical F-measure are not shown because they
are significantly worse than those obtained with any other hierarchical method evaluated
in these experiments.

3.4 Performance on the most specific classes

At first, in order to characterize the behaviour of the different ensemble methods with
respect to the overall structure of the FunCat taxonomy, we performed an analysis of the
performance of the algorithms at different levels of the hierarchy. Figure 2 shows the
per-level F-measure results with Pfam-1 protein domain data. We can observe that flat

ensembles tend to have the highest recall at each level, htd the highest precision, while
hbayes-cs and htd-cs tend to stay in the middle with respect to both the recall and
precision, thus achieving the best F-measure at each level. The hierarchical methods show
a precision and recall (and consequently F-score) that decrease with the distance from the
root. Flat ensembles, even if achieve relatively good recall results, show a precision too
low to be useful in practical applications for genome-wide gene function prediction. Note
that the accuracy is very high at all levels of the hierarchy (at least for the hierarchical
methods), but this is not significant considering the high unbalance between positive and
negative examples.

As a second step, to understand whether the proposed hierarchical methods are able
to correctly classify the most specific classes of the hierarchy, that is the terms that better
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Figure 2: Averages of various performance scores at different levels of the FunCat taxonomy
on Pfam-1 data of flat, htd, htd-cs and hbayes-cs ensembles. 0 represents
nodes with distance 0 from the root, i.e. root nodes; 1, 2, 3 and 4 represent nodes
at a given distance from the root.

characterize the functions of a given gene/gene product, we performed an analysis of the
performance with respect to the F-score, precision and recall achieved at the leaves and at
nodes at a given distance from the leaves. More precisely, we analyzed the average precision,
recall, and F-score of nodes at a given distance from any leaf. For distance of a node from any
leaf we mean the length of the longest path from the node to a leaf belonging to the subtree
rooted at the node itself. Figure 4 shows the results obtained with the Pfam-1 data set. The
Pfam-1 data set includes 211 classes (Figure 3), with 124 leaf nodes/classes, 45 nodes with
distance 1 from a leaf, and 25, 12 and 5 nodes with distance respectively equal to 2, 3 and
4 from any leaf node. The value 0 in abscissa corresponds to the nodes at distance 0, that
is the leaves of the FunCat tree. With hierarchical methods, precision, recall and F-score
increase with the distance from leaves. htd ensembles show the largest precision, and flat

the largest recall, while both htd-cs and hbayes-cs are in between and achieve the largest
F-score at any distance from the leaves, with a slightly better precision for hbayes-cs and
a slightly better recall for htd-cs. These results show that in any case both htd-cs and
hbayes-cs improve the prediction performance on the most specific classes with respect to
both htd and flat ensembles. No significant differences in performances can be observed
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Figure 3: The FunCat hierarchy for the protein domain data (Pfam-1 data set).

between htd-cs and hbayes-cs. A similar trend can be observed also with the other data
sets (data not shown).

3.5 Tuning precision and recall with a single global parameter

The precision/recall characteristics of hbayes-cs ensemble can be tuned via a single global
parameter, the cost factor α = c−i /c+

i (Sect. 2). By setting α = 1 we obtain the original
version of the hierarchical Bayesian ensemble and by incrementing α we introduce progres-
sively lower costs for positive predictions, thus encouraging the ensemble to make positive
predictions. Indeed, by incrementing the cost factor, the recall of the ensemble tends to
increase (Figure 5). The behaviour of the precision is more complex: it tends to increase
and then to decrease after achieving a maximum. Quite interestingly, the maximum of the
hierarchical F-measure is achieved for values of α between 2 and 5 not only for the two data
sets reported in Figure 5, but also for all the considered data sets (data not shown).

3.6 Automatic setting of the parameter α at each node

In Section 3.5 we showed that by appropriately tuning the global parameter α we can obtain
hbayes-cs ensembles with different precision/recall characteristics. In principle, we could
appropriately choose the α parameter at each node, but this leads to a complex optimization
problem. Considering that α represents a factor to balance the misclassification cost between
positive and negative examples, we could simply choose a cost factor αi for each node i to
explicitly take into account the unbalance between the number of positive n+

i and negative
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Figure 4: Averages of various performance scores for nodes at different distances from the
closest leaf node. A value of 0 represents leaf nodes.

n−
i examples:

αi =
n−

i

n+
i

⇒ c+
i =

2

(
n−

i

n+
i

) + 1
ci =

2n+
i

n−
i + n+

i

ci (8)

The decision rule (6) at each node becomes:

ŷi = 1 ⇐⇒ pi



2ci −
∑

j∈child(i)

Hj



 ≥
2ci

1 + αi

=
2cin

+
i

n−
i + n+

i

. (9)

The number of positive n+
i and negative n−

i examples can be estimated from the training
data.

We compared this simple heuristic with the tuning of α as a single global parameter by
internal cross-validation, and with the heuristic variant αi = max

{
n−

i /n+
i , 3

}
. This second

heuristic aims to improve the detection of positive examples also for classes where we have
an unbalance in favour of positive examples in the training set. Indeed, the constraint
that only examples (x,v) such that vpar(i) = 1 are included in the training set for node i
(Section 2) may induce for some classes a number of positive examples comparable or also
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Figure 5: Hierarchical precision, recall and F-measure as a function of the cost modula-
tor factor in hbayes-cs ensembles for the following data sets: protein domain
data (Pfam-1); pairwise sequence similarity data (SP-sim); gene expression data
(Expr); protein-protein interaction data (PPI-BG). Horizontal lines refer to hier-
archical precision, recall and F-score of htd ensembles.

larger than that of negatives, thus resulting in too low values for the corresponding values
of αi.

Table 3 shows the results of the comparison of these variants of hbayes-cs. CV stands
for hbayes-cs whose global α values has been selected by internal cross-validation, auto
(automatic setting of α) for the heuristic per-node setting of αi = n−

i /n+
i , and auto3

(automatic setting of α constrained to be larger or equal to 3 for each node). The results
show that the automatic tuning of αi values constrained to be larger or equal to 3 (auto3)
leads to results comparable with those obtained by tuning α through cross-validation (CV ).
The application of the Wilcoxon signed-ranks test (Demsar, 2006) (p-value=0.53) confirms
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Table 3: Compared performances (Hierarchical F-score) of hbayes-cs ensembles with pa-
rameter α set by cross-validation (CV ), and by heuristic per-node settings (auto
and auto3).

hbayes-cs Data sets

methods Pfam-1 Pfam-2 Phylo Expr PPI-BG PPI-VM SP-sim Average
CV 0.4518 0.2030 0.2682 0.2555 0.2920 0.4329 0.4542 0.3368
auto 0.4070 0.0163 0.1966 0.1566 0.2142 0.3998 0.4234 0.2591
auto3 0.4410 0.2067 0.2590 0.2410 0.3058 0.4442 0.4583 0.3365

that there is no significant difference between auto3 and CV . The heuristic of setting
αi = n−

i /n+
i for each node (auto) is reasonable with some data sets (e.g., with SP-sim),

but fails with other data sets, since in some cases it cannot detect positive examples for
very unbalanced classes when less informative data are used (see, e.g., results of auto with
Pfam-2, Table 3).

3.7 Discussion

The improvement in performance of hbayes-cs w.r.t. to htd ensembles has a twofold
explanation: the bottom-up approach permits the uncertainty in the decisions of the lower-
level classifiers to be propagated across the network, and the cost sensitive setting allows
to favor positive or negative decisions according to the value of cost factor.

In all cases, a hierarchical approach (cost-sensitive or not) tends to achieve significantly
higher precision than a flat approach, while cost-sensitive hierarchical methods are able to
obtain a better recall at each level of the hierarchy, without a consistent loss in precision
w.r.t. htd methods —Fig 2. For all the hierarchical algorithms we note a degradation of
both precision and recall (and as a consequence of the F-measure) by descending the levels
of the trees (Figure 2). This fact could be at least in part due to the lack of annotations
at the lowest levels of the hierarchy, where we may have several genes with unannotated
specific functions.

hbayes-cs shows better performances than htd also w.r.t. the most specific classes,
that better characterize the functions of the genes (Figure 4). Despite the fact that the
overall performances of hbayes-cs and htd-cs are comparable, we can note that hbayes-

cs achieves a better precision. This is of paramount importance in real applications, when
we need to reduce the costs of the biological validation of new gene functions discovered
through computational methods.

Another advantage of hbayes-cs vs. htd-cs consists in the automatic tuning of the
factor α at each node avoiding internal cross-validation (Sect. 3.6). For htd-cs, instead,
the setting of the threshold τ requires an expensive internal cross-validation.

From Table 2 we observe that with certain data sets htd-cs outperforms hbayes-cs

(Phylo data set), while the opposite is true with other data sets (e.g. Pfam-1 and SP-sim).
We do not have a clear explanation of this fact, and this could be the subject of future
investigations.
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Finally, it is worth noting that the accuracy is high at each level (at least with hierar-
chical ensemble methods), but these results are not significant due to the large unbalance
between positive and negative genes for each functional class.

4. Conclusions

The experimental results show that the prediction of gene functions needs a hierarchical
approach, confirming previous recently published findings (Guan et al., 2008; Obozinski
et al., 2008). Our proposed hierarchical methods, by exploiting the hierarchical relationships
between classes, significantly improve on “flat” methods. Moreover, by introducing a cost-
sensitive parameter, we are able to increase the hierarchical F-score with respect to the cost-
insensitive version htd. We observed that the precision/recall characteristics of hbayes-cs

can be tuned by modulating a single global parameter, the cost factor, according to the
experimental needs. On the other hand, on our data sets the Bayesian ensemble hbayes-cs

did not exhibit a significant advantage over the simpler cost-sensitive top-down ensemble
htd-cs (see Figure 1 and Table 2). We conjecture this might be due to the excessive noise
in the annotations at lower levels of the hierarchy. It remains an open problem to devise
ensemble methods whose hierarchical performance is consistently better than top-down
approaches even on highly noisy data sets.

In our experiments we used only one type of data for each classification task, but it is easy
to use state-of-the-art data integration methods to significantly improve the performance of
our methods. Indeed, for each node/class of the tree we may substitute the classifier trained
on a specific type of biomolecular data with a classifier trained on concatenated vectors of
different data (Guan et al., 2008), or trained on a (weighted) sum of kernels (Lanckriet
et al., 2004a), or with an ensemble of learners each trained on a different type of data (Re
and Valentini, 2010). This is the subject of our planned future research.
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