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Abstract. We analyze algorithms that predict a binary value by combining the predictions of several
prediction strategies, called experts. Our analysis is for worst-case situations, i.e., we make no
assumptions about the way the sequence of bits to be predicted is generated. We measure the
performance of the algorithm by the difference between the expected number of mistakes it makes on
the bit sequence and the expected number of mistakes made by the best expert on this sequence,
where the expectation is taken with respect to the randomization in the predictions. We show that the
minimum achievable difference is on the order of the square root of the number of mistakes of the
best expert, and we give efficient algorithms that achieve this. Our upper and lower bounds have
matching leading constants in most cases. We then show how this leads to certain kinds of pattern
recognition/learning algorithms with performance bounds that improve on the best results currently
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known in this context. We also compare our analysis to the case in which log loss is used instead of
the expected number of mistakes.

Categories and Subject Descriptors: I.2.1 [Artificial Intelligence]: Applications and Expert Systems;
I.2.2 [Artificial Intelligence]: Automatic Programming–automatic analysis of algorithms; I.2.6 [Artifi-
cial Intelligence]: Learning–knowledge acquisition

General Terms: Algorithms

1. Introduction

A central problem in statistics and machine learning is the problem of predicting
future events based on past observations. In computer science literature in
particular, special attention has been given to the case in which the events are
simple binary outcomes (e.g., [Haussler et al. 1994]). For example, in predicting
today’s weather, we may choose to consider only the possible outcomes 0 and 1,
where 1 indicates that it rains today, and 0 indicates that it does not. In this
paper, we show that some simple prediction algorithms are optimal for this task
in a sense that is closely related to the definitions of universal forecasting,
prediction, and data compression that have been explored in the information
theory literature. We then give applications of these results to the theory of
pattern recognition [Vapnik 1982] and PAC learning [Valiant 1984].

We take the extreme position, as advocated by Dawid and Vovk in the theory
of prequential probability [Dawid 1984; 1991; 1996; Vovk 1993], Rissanen in his
theory of stochastic complexity [Rissanen 1978; 1986; Rissanen and Langdon Jr.
1981; Yamanishi 1995], and Cover, Lempel and Ziv, Feder and others in the
theory of universal prediction and data compression of individual sequences,1

that no assumptions whatsoever can be made about the actual sequence y 5
y1, . . . , y, of outcomes that is observed; the analysis is done in the worst case
over all possible binary outcome sequences. Of course, no method of prediction
can do better than random guessing in the worst case, so a naive worst-case
analysis is fruitless. To illustrate an alternative approach in the vein of universal
prediction, consider the following scenario.

Let us suppose that on each morning t you must predict whether or not it will
rain that day (i.e., the value of yt), but before making your prediction you are
allowed to hear the predictions of a (fixed) finite set % 5 {%1, . . . , %N} of
experts. On the morning of day t, each expert has access to the weather outcomes
y1, . . . , yt21 of the previous t 2 1 days, and possibly to the values of other
weather measurements x1, . . . , xt21 made on those days, as well as today’s
measurements xt. The measurements x1, . . . , xt will be called instances. Based
on this data, each expert returns a real number p between 0 and 1 that can be
interpreted as his/her estimate of the probability that it will rain that day. After
hearing the predictions of the experts, you also choose a number p [ [0, 1] as
your estimate of the probability of rain. Later in the day, nature sets the value of
yt to either 1 or 0 by either raining or not raining. In the evening, you and the
experts are scored. A person receives the loss up 2 y u for making prediction p [
[0, 1] when the actual outcome is y [ {0, 1}. To see why this is a reasonable

1See, for example, Feder et al. [1992], Merhav and Feder [1993], Cover [1965], Cover and Shanar
[1977], Hannan [1957], Vovk [1993], and Chung [1994].
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measure of loss,2 imagine that instead of returning p [ [0, 1] you tossed a
biased coin and predicted outcome 1 with probability p and outcome 0 with
probability 1 2 p. Then up 2 y u is the probability that your prediction is
incorrect when the actual outcome is y.

Imagine that the above prediction game is played for , days. Let us fix the
instance sequence x1, . . . , x,, since it plays only a minor role here, and vary only
the outcome sequence y 5 y1, . . . , y,. During the , days, you accumulate a total
loss L(y) 5 t51

, u ŷ t 2 ytu, where ŷ t [ [0, 1] is your prediction at time t. Each
of the experts also accumulates a total loss based on his/her predictions. Your
goal is to try to predict as well as the best expert, no matter what outcome sequence
y is produced by nature.3 Specifically, if we let L%(y) denote the minimum total
loss of any expert on the particular sequence y, then your goal is to minimize the
maximum of the difference L(y) 2 L%(y) over all possible binary sequences y of
length ,. Since most outcome sequences will look totally random to you, you still
won’t be able to do better than random guessing on most sequences. However,
since most sequences will also look totally random to all the experts (as long as
there aren’t too many experts), you may still hope to do almost as well as the best
expert in most cases. The difficult sequences are the ones that have some
structure that is exploited by one of the experts. To do well on these sequences
you must quickly zero in on the fact that one of the experts is doing well, and
match his/her performance, perhaps by mimicking his/her predictions.

Through a game-theoretic analysis, we find that for any finite set of experts
and any prespecified sequence length ,, there is a strategy that minimizes the
maximum of the difference L(y) 2 L%(y) over all possible binary outcome
sequences y of length ,. While this min/max strategy can be implemented in some
cases, it is not practical in general. However, we define an algorithm, called P for
“Predict”, that is simple and efficient, and performs essentially as well as the
min/max strategy. Actually P is a family of algorithms that is related to the
algorithm studied by Vovk [1990] and the Bayesian, Gibbs, and “weighted
majority” methods studied by a number of authors,4 as well as the method
developed by Feder et al. [1992]. We show that P performs quite well in the
sense defined above so that, for example, given any finite set % of weather
forecasting experts, P is guaranteed not to perform much worse than the best
expert in %, no matter what the actual weather turns out to be. The algorithm P
is completely generic in that it makes no use of the side information provided by
the instances x1, . . . , x,. Thus, it would also do almost as well as the Wall Street
expert with the best inside information when predicting whether the stock market
will rise or fall.

2An alternate logarithmic loss function, often considered in the literature, is discussed briefly in
Section 8.
3This approach is also related to that taken in recent work on the competitive ratio of on-line
algorithms, and in particular to work on combining on-line algorithms to obtain the best competitive
ratio [Fiat et al. 1991a; 1991b; 1994], except that we look at the difference in performance rather than
the ratio.
4See, for example, Littlestone and Warmuth [1994], Littlestone et al. [1995], Haussler et al. [1994],
Sompolinsky et al. [1992], Seung et al. [1992], Haussler and Barron [1992], and Hembold and
Warmuth [1995].
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In particular, letting LP(y) denote the total loss of algorithm P on the
sequence y and L%(y) the loss of the best expert on y as above, we show
(Theorem 4.5.1) that for all binary5 outcome sequences y of length ,,

LP~y! 2 L%~y! # Î,ln~ u% u 1 1!

2
1

log2~ u% u 1 1!

2
,

and that no algorithm can improve the multiplicative constant of the square-root
term for u%u, , 3 `, where u%u is the number of experts.

Previous work has shown how to construct an algorithm A such that the ratio
LA(y)/L%(y) approaches 1 in the limit [Vovk 1990; Littlestone and Warmuth
1994; Feder et al. 1992]. In fact, Vovk [1990] described an algorithm with the
same bound as the one we give in Theorem 4.2.1 for the algorithm P. This
theorem leaves a parameter to be tuned. Vovk gives an implicit form of the
optimum choice of the parameter. We arrive at an explicit form that allows us to
prove nearly optimal bounds on LA(y) 2 L%(y). To our knowledge, our results
give the first precise bounds on this difference.

It turns out that these bounds also give a tight lower bound on the expectation
of the minimal L1 distance between a random binary string uniformly chosen
from {0, 1}, and a set of N points in [0, 1],. This answer to a basic combinatorial
question may be of independent interest.

The remainder of this paper is organized as follows: In Section 3, we
characterize exactly the performance of the best possible prediction strategy
using a min/max analysis. Section 4 describes the algorithm P and shows that it
achieves the optimal bound given above. In Section 4.4, we show that, if the loss
L%(y) of the best expert is given to the algorithm a priori, then P can be tuned so
that

LP~y! 2 L%~y! # ÎL%~y! lnu% u 1
log2 u% u

2
.

In Section 4.6, we show that even when no knowledge of L%(y) is available, one
can use a doubling trick to obtain a bound on LP(y) 2 L%(y) that is only a small
constant factor larger than the above bound. This algorithm can nearly match the
performance of the best expert on all prefixes of an infinite sequence y.

Finally, in Section 5, we show how the results we have obtained can be applied
in another machine learning context. We describe a pattern recognition problem
in which examples ( x1, y1), . . . , ( xt21, yt21) are drawn independently at
random from some arbitrary distribution on the set of all possible labeled
instances and the goal is to find a function that will predict the binary label yt of
the next random example ( xt, yt) correctly. Performance is measured relative to
the best binary-valued function in a given class of functions, called the compari-
son class. This kind of relative performance measure is called regret in statistics.
General solutions to this regret formulation of the pattern recognition problem
have been developed by Vapnik [1982], Birge and Massart [1993], and others.
This problem can also be described as a special variant of the probably approxi-

5The algorithm has recently been extended to the case when the outcomes are in the interval [0, 1]
with the performance bounds as in the binary case [Haussler et al. 1995].
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mately correct (PAC) learning model [Valiant 1984] in which nothing is assumed
about the “target concept” that generates the examples other than independence
between examples (sometimes referred to as agnostic learning [Kearns et al.
1994]), and in which the learning algorithm is not required to return a hypothesis
in any specific form. Using the prediction strategy P, we develop an algorithm
that solves this pattern recognition problem and derive distribution-independent
bounds for the performance of this algorithm. These bounds improve by constant
factors some of the (more general) bounds obtained by Vapnik [1982] and
Talagrand [1994] on the performance of an empirical loss minimization algo-
rithm.

The results presented in this paper contribute to an ongoing program in
information theory and statistics to minimize the number of assumptions placed
on the actual mechanism generating the observations through the development
of robust procedures and strengthened worst-case analysis. In investigating this
area, we have been struck by the fact that many of the standard-style statistical
results that we have found most useful, such as the bounds given by Vapnik, have
worst-case counterparts that are much stronger than we had expected would be
possible. We believe that if these results can be extended to more general loss
functions and learning/prediction scenarios, with corresponding optimal estima-
tion of constants and rates, this worst-case viewpoint may ultimately provide a
fruitful alternative foundation for the statistical theory of learning and predic-
tion.

2. An Overview of the Prediction Problem

In this section, we define the problem of predicting binary sequences and give an
overview of our results on this problem.

We refer to the binary sequence to be predicted as the outcome sequence, and
we denote it by y 5 y1, . . . , yt, . . . , y,, where t is the index of a typical time
step or trial, yt [ {0, 1}, and , is the length of the sequence. We denote by yt

the prefix of length t of y, that is, yt 5 y1, . . . , yt.
We denote the set of experts by % 5 {%1, . . . , %N}, where N is the number

of experts. The prediction of expert % i at time t is denoted by j i,t [ [0, 1] and
the prediction of the algorithm at time t is denoted by ŷ t [ [0, 1].

A prediction algorithm is an algorithm that at time t 5 1, . . . , ,, receives as
input a vector of expert predictions ^j1,t, . . . , jN,t&, as well as the predictions
made by the experts in the past (i.e., ^j1,1, . . . , jN,1&, . . . , ^j1,t21, . . . ,
jN,t21&), the sequence of past outcomes (i.e., yt21), and the predictions made by
the algorithm in the past (i.e., ŷ1

. . . ŷ t21). The prediction algorithm maps these
inputs into its current prediction ŷ t.

The loss of prediction algorithm A on a sequence of trials with respect to a
sequence of outcomes y (and set of experts) is defined to be the sum t51

, u ŷ t2ytu
which is denoted LA(y). Note that the set of experts will always be understood
from context so we can suppress the dependence of LA(y) on %. Similarly, the
loss of expert % i with respect to y is defined to be t51

, uj i,t 2 ytu and is denoted
L% i

(y). Finally, the loss of the best expert is denoted by L%(y); thus, L%(y) 5
mini51, . . . ,N L% i

(y).
Our goal is to find algorithms whose loss LA(y) is not much larger than L%(y).

Moreover, our ultimate goal is to prove bounds that hold uniformly for all
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outcome sequences and expert predictions, and that assume little or no prior
knowledge on the part of the prediction algorithm.

This problem can be viewed as a game in which the predictor plays against an
adversary who generates both the experts’ predictions and the outcomes. We
assume that both players can observe all of the actions made by the other player
up to the current point of time, as well as its own past actions. The game consists
of , time steps, and both sides know , before the game begins. We now describe
the binary sequence prediction game. At each time step, t 5 1 . . . ,, the game
proceeds as follows:

—The adversary chooses the experts’ predictions, j i,t [ [0, 1], for 1 # i # N.
—The predictor generates its prediction ŷ t [ [0, 1].
—The adversary chooses the outcome yt [ {0, 1}.

The goal of the predictor in this game is to minimize its net loss: LA(y)–L%(y).
The goal of the adversary is to maximize this value.6 The min/max value for this
game, is the worst case net loss of the optimal prediction strategy. We will denote
this min/max value by VN,,.

In the following section, we give the optimal min/max strategy for the predictor
and for the adversary in this game. This analysis gives a simple recursive equation
for VN,,. Unfortunately, we don’t have a closed form expression that solves this
equation. However, using results obtained in Sections 3 and 4, we can show that

VN,, 5 ~1 1 o~1!! Î, ln N

2
,

where o(1) 3 0 as N, , 3 `.
In Section 3.1, we analyze the optimal prediction algorithm for a case in which

the adversary is somewhat restricted. Using this restriction of the game we find
an explicit closed form expression that lower bounds VN,,. The adversary is
restricted in that the predictions of the experts are functions only of the trial
number. In other words, each expert is a fixed sequence of , numbers in [0, 1].
We call these static experts. We also assume that these sequences are known to
the predictor in advance. We derive the exact min/max solution for this restricted
game for any choice of the sequences. We obtain our explicit lower bound by
analyzing the case in which the N expert sequences are chosen using independent
coin flips.

In Section 4, we present a family of prediction algorithms for the general
prediction game. The basic algorithm, which we call P has a real-valued
parameter, b, which controls its behavior. This parameter plays a similar role to
the “learning rate” parameter used in gradient based learning algorithms
[Haykin 1994]. Different choices of b guarantee different performance bounds
for the algorithm. The optimal choice of b is of critical importance and occupies
much of the discussion in Sections 4.4 – 4.6 and also later in Section 5.4.

6Formally, an expert in this context is a function of the form % i : ([0, 1] 3 {0, 1})* 3 [0, 1]. The
interpretation here is that % i maps a finite sequence (( ŷ1, y1), . . . , ( ŷ t21, yt21)) of prediction/
outcome pairs to a new expert prediction j i,t. (Note that each % i function can compute the value of
the other % j functions, and thus the experts’ predictions can depend on the predictions made by
experts in the past, as well as the current time t.)
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We analyze three variants of the algorithm, each of which chooses b in a
different way, according to the type of knowledge available to the predictor. The
first variant chooses b when the predictor knows only an upper bound on the loss
of the best expert. The second variant chooses b in a situation where the
predictor knows only the length , of the game. The third variant handles the case
where the predictor knows nothing at all in advance. Using the analysis of the
second case, we get an upper bound for VN,, that asymptotically matches the
lower bound from Section 3.1.

3. An Optimal Prediction Strategy

We now give the optimal prediction algorithm for the binary sequence prediction
problem. This algorithm is based on the optimal min/max solution of the binary
sequence prediction game described in the previous section, guaranteeing that it
has the best possible worst-case performance. However, the algorithm is compu-
tationally expensive.

The following function plays a major role in the construction and analysis of
the optimal prediction strategy. Let R1 denote the nonnegative reals, and N

denote the nonnegative integers. We define the function v : (R1)N 3 N 3 R1

inductively as follows:

v~M, 0! 5 min
1#i#N

~Mi! (1)

v~M, r! 5 min
Z[@0,1#N

v~M 1 Z , r 2 1! 1 v~M 1 1 2 Z , r 2 1!

2
(2)

where the 1 in the expression M 1 1 2 Z denotes the vector of N 1’s, and Mi is
the ith component of vector M. Clearly, this function is well defined and can, in
principle, be calculated for any given M and r. We will discuss the complexity of
this computation after the proof of Theorem 3.2.

The parameters of the function v are interpreted as follows: The integer r
denotes the number of remaining trials, that is, the number of sequence bits that
remain to be predicted. The past loss incurred by the expert % i when there are r
remaining trials will be denoted Mi

r, and Mr will denote the vector ^M1
r , . . . ,

MN
r &. It is the quantity v(Mr, r) that will be important in our analysis. In some

sense, v(Mr, r) is measuring the anticipated loss of the best expert on the entire
sequence of trials.

In order to show that our prediction strategy generates predictions that are in
the range [0, 1], we will need the following lemma, which shows that the function
v(M, r) obeys a Lipschitz condition:

LEMMA 3.1. For any r [ N and any X, Y [ (R1)N

uv~X, r! 2 v~Y, r! u # iX 2 Yi`,

where iX 2 Yi` 5 maxiuXi 2 Yiu.

PROOF. The proof is by induction on r:
If r 5 0, let i0 be an index that minimizes {Xi} and j0 be an index that

minimizes {Yi}. Then
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v~X, 0! 2 v~Y, 0! 5 Xi0
2 Yj0

# Xj0
2 Yj0

# iX 2 Yi`.

Now suppose r . 0 and let us assume that the lemma holds for r 2 1. Let Z0
[ [0, 1]N be a vector that minimizes

v~Y, r! 5 min
Z[@0,1#N

v~Y 1 Z , r 2 1! 1 v~Y 1 1 2 Z , r 2 1!

2
.

We get:

v~X, r! 2 v~Y, r!

5 min
Z[@0,1#N

v~X 1 Z, r 2 1! 1 v~X 1 1 2 Z , r 2 1!

2

2 min
Z[@0,1#N

v~Y 1 Z, r 2 1! 1 v~Y 1 1 2 Z , r 2 1!

2

#
v~X 1 Z0, r 2 1! 1 v~X 1 1 2 Z0, r 2 1!

2

2
v~Y 1 Z0, r 2 1! 1 v~Y 1 1 2 Z0, r 2 1!

2

5
v~X 1 Z0, r 2 1! 2 v~Y 1 Z0, r 2 1!

2

1
v~X 1 1 2 Z0, r 2 1! 2 v~Y 1 1 2 Z0, r 2 1!

2

#
i~X 1 Z0! 2 ~Y 1 Z0!i`

2
1

i~X 1 1 2 Z0! 2 ~Y 1 1 2 Z0!i`

2
5 iX 2 Yi`

where the last inequality follows from our inductive hypothesis. e

We now define the prediction strategy MM and then prove a theorem showing
that this is the optimal prediction strategy. The prediction strategy (see Figure 1)
works as follows: On trial t, let r 5 , 2 t 1 1 be the number of bits that remain
to be predicted, Mr be the vector representing the loss of each of the experts on
the sequence seen so far, and Zr be the vector of current expert predictions, that
is, Zr 5 ^j1,t, . . . , jN,t&. The prediction strategy sets its prediction to be

ŷ t 5
v~Mr 1 Zr, r 2 1! 2 v~Mr 1 1 2 Zr, r 2 1! 1 1

2
. (3)

As i(Mr 1 Zr) 2 (Mr 1 1 2 Zr)i` # 1, we get from Lemma 3.1 that 0 # ŷ t #
1; thus, this prediction formula always generates legitimate predictions.
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The following theorem, the main result of this section, characterizes the loss of
this strategy exactly in terms of the function v, and shows moreover that this
strategy is the best possible.

THEOREM 3.2. Let MM be the prediction strategy described above. Then for any
set of experts % and for any outcome sequence y, the loss of MM is bounded by

LMM~y! 2 L%~y! #
,

2
2 v~0, ,! ,

where , is the number of prediction trials, N is the number of experts, and 0 is a
vector of N zeros.

Moreover, MM is optimal in the sense that, for every prediction strategy A, there
exists a set of experts % and an outcome sequence y for which

LA~y! 2 L%~y! $
,

2
2 v~0, ,! .

Hence VN,, 5 ,/2 2 v(0, ,).

PROOF. The first part of the theorem is proved using induction on the
number r of remaining trials. As above, let Mr be an N dimensional vector that
describes the losses of each of the N experts on the first , 2 r trials (so r trials
remain) and let l r denote the loss incurred by MM on these first , 2 r trials.
Then our inductive hypothesis is a bound on the net loss of MM at the end of the
game, namely,

LMM~y! 2 L%~y! # l r 1
r

2
2 v~Mr, r! . (4)

Algorithm MM

1. Initialize:

Y t :5 1 {current trial number}
Y r :5 , {number of remaining trials}
Y M , :5 0 {current cumulative loss vector}

2. While t # ,, repeat:

Y Receive the predictions of the N experts, Z r 5 ^j1,t, . . . , jN,t&.
Y Compute and output prediction

ŷ t 5
n~Mr 1 Zr, r 2 1! 2 v~Mr 1 1 2 Zr, r 2 1! 1 1

2

where v is defined by Eq. (1) and (2).

Y Receive the correct outcome y t

Y Mi
r21 :5 Mi

r 1 uyt 2 ji,tu for i 5 1, . . . , N.
Y t :5 t 1 1
Y r :5 r 2 1

FIG. 1. Description of algorithm MM.
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It is clear that if we choose r 5 , we get the statement of the theorem, since M,

5 0. We now present the inductive proof of the claim.
For r 5 0, the claim follows directly from the definitions since v(M0, 0) is

equal to the loss of the best expert at the end of the game, r/ 2 5 0, and l0 is the
loss of MM.

For r . 0, let Zr 5 ^j1,t, . . . , jN,t& denote the predictions given by the
experts at trial t 5 , 2 r 1 1 (i.e., when there are r future outcomes to predict).
Using the inductive assumption for r 2 1 and Eq. (3) we can calculate the loss of
MM at the end of the game; for the two possible values of the next outcome yt

we get that the net loss is bounded by the same quantity which agrees with the
claim for r remaining trials.

If yt 5 0, then the loss of MM up to the next step is l r21 5 l r 1 ŷ , and the
loss of the experts is Mr21 5 Mr 1 Zr. Using the inductive assumption we get
that the net loss at the end of the game will be at most

l r21 1
r 2 1

2
2 v~Mr21, r 2 1!

5 l r 1
v~Mr 1 Zr, r 2 1! 2 v~Mr 1 1 2 Zr, r 2 1! 1 1

2

1
r 2 1

2
2 v~Mr 1 Zr, r 2 1!

5 l r 1
r

2
2

v~Mr 1 Zr, r 2 1! 1 v~Mr 1 1 2 Zr, r 2 1!

2
.

Similarly, if yt 5 1, then the loss of MM at the next step is l r21 5 l r 1 1 2 ŷ ,
and the loss of the experts is Mr21 5 Mr 1 1 2 Zr, and we get that the net loss
at the end of the game will be at most

l r21 1
r 2 1

2
2 v~Mr21, r 2 1!

5 l r 1 1 2
v~Mr 1 Zr, r 2 1! 2 v~Mr 1 1 2 Zr, r 2 1! 1 1

2

1
r 2 1

2
2 v~Mr 1 1 2 Zr, r 2 1!

5 l r 1
r

2
2

v~Mr 1 Zr, r 2 1! 1 v~Mr 1 1 2 Zr, r 2 1!

2
.

Thus, for either value of yt [ {0, 1}, we have that

LMM~y! 2 L%~y!

# Sl r 1
r

2
2

v~Mr 1 Zr, r 2 1! 1 v~Mr 1 1 2 Zr, r 2 1!

2 D
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# max
Z[@0,1#N

Sl r 1
r

2
2

v~Mr 1 Z , r 2 1! 1 v~Mr 1 1 2 Z , r 2 1!

2 D
5 l r 1

r

2
2 min

Z[@0,1#N

v~Mr 1 Z , r 2 1! 1 v~Mr 1 1 2 Z , r 2 1!

2

5 l r 1
r

2
2 v~Mr, r! . (5)

This completes the induction, and the proof of the first part of the theorem.
The proof of the lower bound proceeds similarly. Let A be any prediction

strategy, let r be the number of trials remaining, let Mr be the vector describing
the loss of each expert up to the current trial when r trials remain, and let l r be
the loss incurred by A up to this current trial. The natural adversarial choice for
the experts’ predictions on the current trial t is any vector Zr 5 ^j1,t, . . . , jN,t&
which minimizes the right-hand side of Eq. (2) (the definition of v(Mr, r)). If ŷ t

is A’s prediction, then the adversary chooses the outcome yt that maximizes A’s
loss on the trial, u ŷ t 2 ytu.

We prove by induction on r that this adversary forces the net loss of any
algorithm to be at least

LA~y! 2 L%~y! $ l r 1
r

2
2 v~Mr, r! .

As above, equality holds when r 5 0.
For the inductive step, let t be the trial number when r trials remain. Recall

that l r21 is either l r 1 ŷ t or l r 1 1 2 ŷ t and that Mr21 is either Mr 1 Zr or Mr

1 1 2 Zr depending on the value of yt. Thus, by the inductive hypothesis and
the definition of the adversary

LA~y! 2 L%~y!

$ maxHl r 1 ŷ t 1
r 2 1

2
2 v~Mr 1 Zr, r 2 1! , l r 1 1 2 ŷ t 1

r 2 1

2

2 v~Mr 1 1 2 Zr, r 2 1!J
$

1

2Sl r 1 ŷ t 1
r 2 1

2
2 v~Mr 1 Zr, r 2 1! 1 l r 1 1 2 ŷ t 1

r 2 1

2

2 v(Mr 1 1 2 Zr, r 2 1)D
5 l r 1

r

2
2

v~Mr 1 Zr, r 2 1! 1 v~Mr 1 1 2 Zr, r 2 1!

2
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5 l r 1
r

2
2 v~Mr, r! .

This completes the induction. Choosing r 5 , gives the stated lower bound. e

We have thus proven that the prediction strategy MM, described above,
achieves the optimal bounds on the net-loss of any prediction strategy. However,
in order to use this strategy as a prediction algorithm we need to describe how to
calculate the values v(M, r). At first, this calculation might seem forbiddingly
complex, as it involves minimizing a recursively defined function over all choices
of Z in the continuous domain [0, 1] N. Fortunately, as we now show, the
minimal value is always achieved at one of the corner points of the cube Z [
{0, 1}N, so that the minimization search space is finite, albeit exponential. We
prove this claim using the following lemma:

LEMMA 3.3. For any fixed 0 # r # ,, the function v(M, r) is concave, that is, for
any 0 # a # 1, and for any X, Y [ (R1)N:

v~aX 1 ~1 2 a!Y, r! $ av~X , r! 1 ~1 2 a!v~Y, r! .

PROOF. As usual, we prove the lemma by induction on r.
For r 5 0, suppose i0 is the index that minimizes

v~aX 1 ~1 2 a!Y, 0! 5 min
1#i#N

~axi 1 ~1 2 a! yi! .

Then the convex combination of v(X, 0) and v(Y, 0) can be bounded as follows:

a min
1#i#N

~ xi! 1 ~1 2 a! min
1#i#N

~ yi! # axi0
1 ~1 2 a! yi0

5 v~aX 1 ~1 2 a!Y, 0! .

For r . 0, let Z0 [ [0, 1]N be a choice of the argument that minimizes

v~aX 1 ~1 2 a!Y, r!

5 min
Z[@0,1#N

v~aX 1 ~1 2 a!Y 1 Z , r 2 1! 1 v~aX 1 ~1 2 a!Y 1 1 2 Z , r 2 1!

2

Then we get

v~aX 1 ~1 2 a!Y , r!

5
v~aX 1 ~1 2 a!Y 1 Z0, r 2 1! 1 v~aX 1 ~1 2 a!Y 1 1 2 Z0, r 2 1!

2

5
v~a~X 1 Z0! 1 ~1 2 a!~Y 1 Z0! , r 2 1! 1 v~a~X 1 1 2 Z0! 1 ~1 2 a!~Y 1 1 2 Z0! , r 2 1!

2
.

Using the induction assumption we can bound each of the two terms and get
that
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v~aX 1 ~1 2 a!Y, r!

$
av~X 1 Z0, r 2 1! 1 ~1 2 a!v~Y 1 Z0, r 2 1!

2

1
av~X 1 1 2 Z0, r 2 1! 1 ~1 2 a!v~Y 1 1 2 Z0, r 2 1!

2

5 a
v~X 1 Z0, r 2 1! 1 v~X 1 1 2 Z0, r 2 1!

2

1 ~1 2 a!
v~Y 1 Z0, r 2 1! 1 v~Y 1 1 2 Z0, r 2 1!

2

$ a min
Z[@0,1#N

v~X 1 Z , r 2 1! 1 v~X 1 1 2 Z , r 2 1!

2

1 ~1 2 a! min
Z[@0,1#N

v~Y 1 Z , r 2 1! 1 v~Y 1 1 2 Z , r 2 1!

2

5 av~X, r! 1 ~1 2 a!v~Y, r! . e

If we fix M and view the function

~v~M 1 Z, r 2 1! 1 v~M 1 1 2 Z , r 2 1!!

2

as a function of Z, we see that it is simply a positive constant times the sum of
two concave functions and thus it also is concave. Therefore, the minimal value
of this function over the closed cube Z [ [0, 1]N is achieved in one of the
corners of the cube.

This means that the function v(M, r) can be computed recursively by
minimizing over the 2N (Boolean) choices of the experts’ predictions. Each of
these choices involves two recursive calls and the recursion has to be done to
depth r. Therefore, a total of 2 r(N 1 1) recursive calls are made, requiring time
O(N2r(N 1 1)).

Dynamic programming leads to a better algorithm for calculating v(M, r).
However, it is still exponential in N. An interesting question is whether v(M, r)
can be computed efficiently.

To summarize this section, we have described an optimal prediction algorithm
and given a recursive formula which defines its worst case loss, and thereby
obtained a recursive formula for VN,,. We do not have a closed-form equation
for VN,,. However, we can always calculate it exactly in finite time (see Figure 5
for the values of VN,, for some small ranges of N and ,). Moreover, the following
section provides a simple adversarial strategy that generates a lower bound on
the optimal net loss VN,, and Section 4 provides a simple prediction algorithm
that generates an upper bound on VN,,. As we will see, these two bounds are
quite tight.

3.1. PREDICTION USING STATIC EXPERTS. The strategy described above can be
refined to handle certain special cases. As an example of this technique, we show
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in this section how to handle the case that all the experts are static in the sense
that their predictions do not depend either on the observed outcomes or on the
learner’s predictions.7 That is, each expert can be viewed formally as a function
% i : {1, . . . , ,} 3 [0, 1] with the interpretation that the prediction at time t is
j i,t 5 % i(t). We assume further that the learner knows this function and thus can
compute the future predictions of all the experts. Thus, the adversary must
choose the static experts at the beginning of the game and reveal this choice to
the learning algorithm. The adversary still chooses each outcome yt on-line as
before. The resulting game is called the binary sequence prediction game with
static experts and its min/max value is denoted VN,,

(static).
Since this game is easier for the minimizing player (the predictor) than the

general game, it is clear that VN,,
(static) # VN,,. When N 5 2, the values of the two

games are the same for all ,. However, a calculation shows that V3,4
(static) , V3,4

with strict inequality, so the general sequence prediction game is actually harder
in the worst case than the same game with static experts. The actual values are
V3,4

(static) 5 1 and V3,4 5 17
16.

We give below a characterization of the optimal prediction and adversarial
strategies for the binary sequence prediction game with static experts. In fact we
go further and analyze the game explicitly for every possible choice of the static
experts. The resulting min/max values have a simple geometric interpretation.
For real vectors x and y of length ,, let ix 2 yi1 5 t51

, uxt 2 ytu. Let % 5
{%1, . . . , %N} be a set of N static experts. For any expert % i, its loss on the bit
sequence y is t51

, u% i(t) 2 ytu 5 i% i 2 yi1, viewing % i as a vector in [0, 1],.
Thus L%(y) 5 mini i% i 2 yi1. We define the average covering radius of %,
denoted R(%), as the average l1 distance from a bit sequence y to the nearest
expert in %, that is

R~%! 5 EyL%~y! 5 Ey min
i

i% i 2 yi1,

where Ey denotes expectation over a uniformly random choice of y [ {0, 1},.
We will use the following convexity result, an analog of Lemma 3.3.

LEMMA 3.1.1. Let % 5 {%i} and ^ 5 {^i} be two sets of N vectors in [0, 1],

and let 0 # a # 1. Then

R~a% 1 ~1 2 a!^! $ aR~%! 1 ~1 2 a! R~^! ,

where a% 1 (1 2 a)^ is the set of N vectors {a%i 1 (1 2 a)^i}.

PROOF

R~a% 1 ~1 2 a!^! 5 Ey min
i

O
t

ua% i,t 1 ~1 2 a!^ i,t 2 ytu

5 Ey min
i

O
t

~ ua% i,t 2 aytu 1 u~1 2 a!^ i,t 2 ~1 2 a! ytu!

7In an earlier version of this paper [Cesa-Bianchi et al. 1993], we incorrectly claimed that the same
analysis also applied to all simulatable experts, that is, experts whose predictions can be calculated as
a function only of the preceding outcomes.
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5 Ey min
i

~ai% i 2 yi1 1 ~1 2 a!i^ i 2 yi1!

$ Ey~a min
i

i% i 2 yi1 1 ~1 2 a! min
i

i^ i 2 yi1!

5 aR~%! 1 ~1 2 a! R~^! ,

where the second equality follows from a case analysis of yt 5 0 and yt 5 1,
combined with the fact that % i,t, ^ i,t [ [0, 1]. e

THEOREM 3.1.2. Let % be a set of static experts whose current and future
predictions are accessible to the prediction algorithm. Then there exists a prediction
strategy MS such that for every sequence y, we have

LMS~y! 2 L%~y! 5
,

2
2 R~%! .

Moreover, MS is optimal in the sense that for every prediction strategy A, there exists
a sequence y such that

LA~y! 2 L%~y! $
,

2
2 R~%! .

Hence

VN,,
~static! 5

,

2
2 min

%

R~%! ,

where the minimum is over all sets % of N vectors in {0, 1},.

PROOF. For any prediction strategy A, the expected value of LA 2 L% with
respect to a uniformly random choice of y [ {0, 1}, is simply ,/ 2 2 R(%) since
we expect any algorithm to have loss ,/2 on an entirely random sequence, and
R(%) is the expected loss of the best expert in %. Thus, there must be some
sequence y for which LA(y) 2 L%(y) is at least as great as this expectation; this
proves the second part of the theorem.

The first part of the theorem can be proved using the technique in Section 3
with only minor modifications, which we sketch briefly. First, the function v is
redefined to take account of the fact that the experts’ predictions are prespeci-
fied. As the predictions of the experts correspond to vectors in [0, 1],, we can
think about them as rows in an , 3 N matrix. We can calculate the average
covering radius by considering one column (i.e., game iteration) at a time. That
is, we define the new function ṽ as follows:

ṽ~M, 0! 5 min
i

Mi

ṽ~M, r! 5
ṽ~M 1 Zr, r 2 1! 1 ṽ~M 1 1 2 Zr, r 2 1!

2

where Zr 5 ^j1,t, . . . , jN,t& is the experts’ predictions at trial t 5 , 2 r 1 1.
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The (re)proof of Lemma 3.1 for ṽ is similar, except that we no longer minimize
over Z [ [0, 1]N, and in the case that r . 0, Z0 is replaced by Zr.

The new prediction strategy MS computes its prediction at time t 5 , 2 r 1
1 as before with the obvious changes:

ŷ t 5
ṽ~Mr 1 Zr, r 2 1! 2 ṽ~Mr 1 1 2 Zr, r 2 1! 1 1

2
.

The induction argument given in the first part of the proof of Theorem 3.2 holds
with little modification. The function v is obviously replaced by ṽ, and the
inductive hypothesis given by Eq. (4) is modified so that equality holds for every
outcome sequence:

LMS~y! 2 L%~y! 5 l r 1
r

2
2 ṽ~Mr, r! .

Also, Eq. (5) becomes the equality:

LMS~y! 2 L%~y! 5 Sl r 1
r

2
2

ṽ~Mr 1 Zr, r 2 1! 1 ṽ~Mr 1 1 2 Zr, r 2 1!

2 D
5 l r 1

r

2
2 ṽ~Mr, r! .

By expanding ṽ(0, ,) according to the recursive definition, we find that

ṽ~0, ,! 5
1

2, O
y[$0, 1%,

ṽS O
r51

,

~Zr~1 2 y,2r11! 1 ~1 2 Zr! y,2r11! , 0D
5

1

2, O
y[$0, 1%,

ṽ~^i% i 2 yi1& i51· · ·N, 0!

5
1

2, O
y[$0, 1%,

min
i

i% i 2 yi1

5 Eymin
i

i% i 2 yi1 5 R~%! .

Finally, it follows directly from the first two statements of the theorem that

VN,,
~static! 5

,

2
2 inf

%

R~%! ,

where the infimum is over all sets % of N vectors in [0, 1],. However, in light of
Lemma 3.1.1, R(%) must be minimized by some extremal %, that is, by % #
{0, 1},. The last statement of the theorem follows. e

Theorem 3.1.2 tells us how to compute the worst-case performance of the best
possible algorithm for any set of static experts. As an example of its usefulness,
suppose that % consists of only two experts, one that always predicts 0, and the
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other always predicting 1. In this case Theorem 3.1.2 implies that the loss of the
optimal algorithm MS is worse than the loss of the best expert by the following
amount:

,

2
2 22, O

i50

, S ,

i D min$i, , 2 i% , Î ,

2p
.

This result was previously proved by Cover [1965]; we obtain it as a special case.
Strategy MS makes each prediction in terms of the expected loss of the best

expert on the remaining trials (where the expectation is taken over the uniformly
random choice of outcomes for these trials). This is why we need the experts to
be static. In general, we do not know how to efficiently compute this expectation
exactly. However, the expectation can be estimated by sampling a polynomial
number of randomly chosen future outcome sequences. Thus, there exists an
efficient randomized variation of MS that is arbitrarily close to optimal.

3.2. AN ASYMPTOTIC LOWER BOUND ON VN,,. We now use Theorem 3.1.1 to
give an asymptotic lower bound on the performance of any prediction algorithm.
To do this, we need to show that there are sets % of N vectors in {0, 1}, with
small R(%). We do this with a random construction, using the following lemma:

LEMMA 3.2.1. For each ,, N $ 1, let S,,1, . . . , S,,N be N independent random
variables, where S,,i is the number of heads in , independent tosses of a fair coin.

Let A,,N 5 min1#i#N{S,,i}. Then

lim inf
N3`

lim inf
,3`

~,/ 2! 2 E~ A,,N!

Î~,/ 2!ln N
$ 1.

PROOF. See Appendix A. e

From this we get

COROLLARY 3.2.2. For all N, ,, let RN,, 5 min% R(%), where the minimum is
over all % # {0, 1}, of cardinality N. Then

lim inf
N3`

lim inf
,3`

,/ 2 2 RN,,

Î~,/ 2!ln N
$ 1.

PROOF. Clearly

min
%

R~%! # E~R~%!! 5 E~ A,,N! ,

where the expectation is over the independent random choice of N binary vectors
in %, and A,,N is as defined in Lemma 3.2.1. Hence, the result follows directly
from that lemma. e

Finally, we obtain
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THEOREM 3.2.3

lim inf
N3`

lim inf
,3`

VN,,

Î~,/ 2! ln N
$ lim inf

N3`

lim inf
,3`

VN,,
~static!

Î~,/ 2! ln N
$ 1.

PROOF. Follows Corollary 3.2.2, Theorem 3.1.2, and the fact that VN,, $
VN,,

(static). e

Hence, for any e . 0, there exist sufficiently large N and , such that

VN,, $ ~1 2 e! Î~,/ 2! ln N.

4. Some Simple Prediction Algorithms

In this section, we present a parameterized prediction algorithm P for combining
the predictions of a set of experts. Unlike the optimal strategy outlined in
Section 3, algorithm P can be implemented efficiently. The analysis of P will give
an upper bound for the min/max value VN,, that asymptotically matches the
lower bound derived in the previous section.

4.1. THE ALGORITHM P. The prediction algorithm P is given in Figure 2. It
works by maintaining a (nonnegative) weight for each expert. The weight of
expert i at time t is denoted wi,t. At each time t, the algorithm receives the
experts’ predictions, j1,t, . . . , jN,t, and computes their weighted average, rt.

Algorithm P(b)

1. All initial weights {w1,1, . . . ,wN,1} are set to 1.

2. At each time t, for t 5 1 to `, the algorithm receives the predictions of the N experts, j1,t, . . . , jN,t,
and computes its prediction ŷt as follows:

Y Compute

rt:5
Oi51

N wi,t ji,t

Oi51
N wi,t

Y Output prediction ŷt 5 Fb(rt).

3. After the correct outcome yt is observed, the weight vector is updated in the following way.

Y For each i 5 1 to N, wi,t11 5 wi,t Ub(uj i,t 2 ytu).

Definition of Fb(r) and Ub(q).

There is some flexibility in defining the functions Fb(r) and Ub(q) used in the algorithm. Any
functions Fb(r) and Ub(q) such that

1 1
ln((12r)b1r)

2 ln(2/(11b))
# Fb(r) #

2ln(12r1rb)

2 ln(2/(11b))
, (6)

for all 0 # r #1, and

bq # Ub~q! # 1 2 ~1 2 b!q, (7)

for all 0 # q # 1, will achieve the performance bounds established below.

FIG. 2. Description of algorithm P(b), with parameter 0 # b , 1.
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Algorithm P then makes a prediction that is some function of this weighted
average. Then P receives the correct value yt and slashes the weight of each
expert i by a multiplicative factor depending on how well that expert predicts, as
measured by uj i,t 2 ytu. The worse the prediction of the expert, the more that
expert’s weight is reduced.

Algorithm P takes one parameter, a real number b [ [0, 1) which controls how
quickly the weights of poorly predicting experts drop. For small b, the algorithm
quickly slashes the weights of poorly predicting experts and starts paying
attention only to the better predictors. For b closer to 1, the weights will drop
slowly, and the algorithm will pay attention to a wider range of predictors for a
longer time. The best value for b depends on the circumstances. Later, we derive
good choices of b for different types of prior knowledge the algorithm may have.

There are two places where the algorithm can choose to use any real value
within an allowed range. We have represented these choices by the functions Fb

and Ub, with ranges given by Eqs. (6) and (7), respectively, in Figure 2. These
are called the prediction and update functions, respectively. In terms of our
analysis, the exact choice for these functions is not important, as long as they lie
in the allowed range. In fact, different choices could be made at different times.
The following lemma shows that these ranges are nonempty.

LEMMA 4.1.1. For any 0 # b , 1 and 0 # a # 1,

(1) 1 1
ln~~1 2 a!b 1 a!

2 ln 2/~1 1 b!
#

2 ln~1 2 a 1 ab!

2 ln 2/~1 1 b!

(2) ba # 1 2 a(1 2 b).

PROOF. We begin by proving part (1). The inequality can be rewritten as

1 1
ln@~b 2 ab 1 a!~1 2 a 1 ab!#

2 ln 2/~1 1 b!
# 0.

Since 0 # b , 1, this is in turn equivalent to

ln@~b 2 ab 1 a!~1 2 a 1 ab!# # 2 ln
1 1 b

2
.

Exponentiating both sides yields

~b 2 ab 1 a!~1 2 a 1 ab! # S 1 1 b

2 D 2

which holds since xy # (( x 1 y)/ 2)2 for all real x and y (here we take x 5 b 2
ab 1 a and y 5 1 2 a 1 ab).

To prove part (2), notice that f(a) 5 ba is convex since it has nonnegative
second derivative for all b . 0. Thus, by definition of convex function,

f~ax0 1 ~1 2 a! x1! # af~ x0! 1 ~1 2 a! f~ x1!

for all x0, x1 and all 0 # a # 1. The proof is then concluded by choosing x0 5 0,
x1 5 1, and a 5 1 2 a. e
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4.2. THE PERFORMANCE OF ALGORITHM P(b). Algorithm P’s performance is
summarized by the following theorem, which generalizes a similar result of Vovk
[1990].

THEOREM 4.2.1. For any 0 # b , 1, for any set % of N experts, and for any
binary sequence y of length ,, the loss of P(b) satisfies

LP~b!~y! #
ln N 2 L%~y! ln b

2 ln 2/~1 1 b!
.

The proof of the theorem is based on the following lemma.

LEMMA 4.2.2

LP~b!~y! #
1

2 ln 2/~1 1 b!
ln S O i51

N wi,1

O i51
N wi,,11

D .

PROOF. We will show that for 1 # t # ,,

u ŷ t 2 ytu #
1

2 ln 2/~1 1 b!
ln S O i51

N wi,t

O i51
N wi,t11

D . (8)

The lemma then follows from summing the above inequality for t 5 1, . . . , ,.
We first lower bound the numerator of the right-hand-side of the above
inequality:

lnS O i51
N wi,t

O i51
N wi,t11

D 5 2lnS O i51
N wi,tUb~ uj i,t 2 ytu!

O i51
N wi,t

D
$ 2lnS O i51

N wi,t~1 2 ~1 2 b! uj i,t 2 ytu!

O i51
N wi,t

D
5 2ln~1 2 ~1 2 b! urt 2 ytu! ,

where the inequality follows from Eq. (7), and the last equality is verified by a
case analysis using the fact that yt [ {0, 1}. Thus, Eq. (8) is implied by

u ŷ t 2 ytu # 2
ln~1 2 ~1 2 b! urt 2 ytu!

2 ln 2/~1 1 b!
.

The above splits into two inequalities since yt is either 0 or 1. These two
inequalities are the same as the two inequalities of (6) which we assumed for the
prediction function. e

PROOF OF THEOREM 4.2.1. All initial weights equal 1 and thus
i51
N wi,1 5 N. Let j be an expert with minimum total loss on y, that is,
t51
, uj j,t 2 ytu 5 L%(y). Since, by Eq. (7), Ub(q) $ bq, we have that

O
i51

N

wi,,11 $ wj,,11 5 wj,1 P
t51

,

Ub~ uj j,t 2 ytu!
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$ P
t51

,

b uj j,t2ytu 5 bL%~y! ,

The theorem now follows from Lemma 4.2.2. e

4.3. DISCUSSION OF THE ALGORITHM. Although our algorithm allows any
update function Ub(q) between the exponential bq (used by Vovk in his related
work [Vovk 1990]) and the linear function 1 2 (1 2 b)q that upper bounds it, it
turns out that the linear update has a nice Bayesian interpretation, and thus in
some sense may be preferable.

To get this Bayesian interpretation, we view each expert as a probability
distribution on bit sequences of length ,, and pretend that the actual sequence y
5 y1, . . . , y, is generated by picking an expert uniformly at random and then
generating a bit sequence of length , at random according to the distribution
defined by that expert. The probability distribution for the ith expert is defined
as follows: For any y1, . . . , yt21, if the expert’s estimate of the probability that yt

5 1 given y1, . . . , yt21 is j i,t, then the actual probability that yt is 1 given
y1, . . . , yt21 is defined to be

pi,t 5 h 1 ~1 2 2h!j i,t, (9)

where h 5 b/(1 1 b). It is easy to see that pi,t is just the probability that yt is 1 if
originally yt is set to 1 with probability j i,t and 0 with probability 1 2 j i,t, and
then the value of yt is flipped with independent probability h. Hence, the value h
can be interpreted as a “subjective” noise rate between 0 and 1/2. Under this
interpretation, we easily obtain the following result:

THEOREM 4.3.1. When the update function Ub of the algorithm P(b) has the
form

Ub~q! 5 1 2 ~1 2 b!q ,

then the (normalized) weight wi,t/( j51
N wj,t) is the posterior probability that the

outcome sequence is being generated from the distribution defined in (9) above for
the ith expert given the previous outcomes y1, . . . , yt21, assuming that all N expert
distributions are a priori equally likely to be generating the sequence.

PROOF. Initially wi,1 5 1 for all i, hence the normalized initial weights are
the uniform prior distribution, as required. It suffices to show that for each time
t $ 1, the ratio of successive weights wi,t11/wi,t is proportional to the ratio
P(i uy1, . . . , yt)/P(i uy1, . . . , yt21) of successive posterior probabilities (with the
same constant of proportionality for all i), where P(i uy1, . . . , yt) denotes the
posterior probability that the sequence is being generated from the distribution
of the ith expert given y1, . . . , yt. However, using Bayes rule

P~i uy1, . . . , yt!

P~i uy1, . . . , yt21!
}

P~ y1, . . . , ytui!

P~ y1, . . . , yt21ui!

5 H pi,t

12pi,t

if yt51

if yt 5 0

,
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where pi,t is as defined in (9) above, and P( y1, . . . , ytui) denotes the probability
of y1, . . . , yt under the distribution defined above for the ith expert. Using Eq.
(9) with the substitution h 5 b/(1 1 b), this implies that

P~i uy1, . . . , yt!

P~i uy1, . . . , yt21!
} Hb 1 ~1 2 b!j i,t

1 2 ~1 2 b!j i,t

if yt 5 1
if yt 5 0

5 1 2 ~1 2 b! uj i,t 2 ytu.

As this is precisely the factor by which the weights are updated after seeing yt,
this is the ratio of successive weights wi,t11/wi,t. e

Since the weights are posterior probabilities on the experts, the weighted
average rt of the expert’s predictions, computed by the algorithm P, also has a
Bayesian interpretation: it is simply the posterior probability that yt 5 1 given
y1, . . . , yt21. The only aspect of the algorithm that does not have a Bayesian
interpretation is the prediction function Fb(r). A Bayes method would predict 1
whenever the posterior probability rt is greater than 1/2 and predict 0 otherwise,
in order to minimize the posterior expectation of the loss u ŷ t 2 ytu. Thus, a Bayes
method would use a step function at 1/2 for the prediction function Fb(r).
However, as is clear from Figure 3, this function lies outside the allowable range
for Fb(r), and this is no accident. The Bayes method does not perform well in the
worst case for this prediction problem, as was shown in Helmbold and Warmuth
[1995] and Feder et al. [1992]. Hence, we must deviate from the Bayes method at
this step. This leads to the requirements we have specified for the prediction
function Fb(r).

FIG. 3. This figure shows the upper (high) and lower (low) bounds on the possible values of the
prediction function Fb for b 5 0 (Inequality (6)). Also shown are two possible choices for Fb, a
piecewise linear function (lin) given in (10), and the function that has been suggested by Vovk’s work
(vovk) given in (11).
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One function that satisfies the requirements for Fb is the piecewise linear
function8

Fb~r! 5 5 0
1/ 2 2 ~1 2 2r!/4c
1

if r # 1/ 2 2 c
if 1/ 2 2 c # r # 1/ 2 1 c
if r $ 1/ 2 1 c

(10)

where

c 5
~1 1 b!ln~2/~1 1 b!!

2~1 2 b!
.

Another possible choice for Fb is suggested by Vovk’s work9 [Vovk 1990]

Fb~r! 5
ln~1 2 r 1 rb!

ln~1 2 r 1 rb! 1 ln~~1 2 r!b 1 r!
. (11)

Figure 3 contains a plot of these functions when b 5 0, along with the upper
and lower bounds on Fb given in Inequality (6). Recall that b 5 0 corresponds to
the case when there is no noise. In that case 2 ln(1 2 r) is the information gain
when the outcome is zero and 2ln(r) is the information gain when the outcome
is one. Furthermore, the prediction function (11) is the normalized information
gain when the outcome is zero. See Helmbold and Warmuth [1995] for a more
detailed discussion. As the noise increases, b 3 1 and all four curves converge to
the identity function.

Finally, we note that the parameterized bound given in Theorem 4.2.1 on the
performance of algorithm P was first proved by Vovk [1990] for his version of Fb

and the exponential update. Also, Littlestone and Warmuth [1994] prove a
bound for their algorithm WMC, which has the same form as the bound of
Theorem 4.2.1, except the denominator 2 ln 2/(1 1 b) is replaced by the smaller
function 1 2 b. Their algorithm uses the prediction function Fb(rt) 5 rt and
works for the more general setting when the outcome yt can be in the interval
[0, 1] as opposed to being binary. For the noise-free case (b 5 0), their algorithm
becomes the Gibbs algorithm (see discussion in Helmbold and Warmuth [1995]).
The bound of Theorem 4.2.1 (with denominator 2 ln (2/(1 1 b))) was recently
also obtained by Kivinen and Warmuth [1994] for the case when the outcomes
are in [0, 1]. Curiously enough, the denominator of ln (2/(1 1 b)) is obtained by
the Weighted Majority algorithm of Littlestone and Warmuth [1994], which
assumes that the outcomes are binary and predicts binary as well (see Cesa-

8A similar piecewise linear function was suggested by Feder et al. [1992] in a related context.
9Vovk’s algorithm generates its prediction according to the prediction function

ŷ t 5
ln O i51

N wi,tb
j i,t

ln O i51
N wi,tb

j i,t 1 ln O i51
N wi,tb

12j i,t
,

where the weights are normalized so that they sum to one. Note that this function depends on the
experts’ predictions in a more complicated way than just through the weighted average rt. Hence, it
need not satisfy our Inequality (6). However, when the experts’ predictions are all in {0, 1}, then
Vovk’s prediction function is equivalent to the one described in Eq. (11).

449How to Use Expert Advice



Bianchi et al. [1996] for a detailed treatment of the case when the outcomes are
binary).

4.4. PERFORMANCE FOR BOUNDED L%. So far, we have ignored the issue of
how b is chosen. In this section, we show how b can be chosen when there is a
known bound K on the loss of the best expert. When L%(y) is replaced by K, the
upper bound from Theorem 4.2.1 can be written

L~b! 5
ln N 2 K ln b

2 ln 2/~1 1 b!
.

It has been shown by Vovk and others [Vovk 1990; Cesa-Bianchi et al. 1996] that
L* 5 inf{L(b) : 0 # b , 1} is the unique value of L satisfying

L 5
log2 N

2
1 L z HS K

2LD ,

where H( p) is the binary entropy, 2p log2( p) 2 (1 2 p) log2(1 2 p). This
minimum is achieved when b 5 K/(2L* 2 K). However, it is difficult to
explicitly solve for L* and the corresponding b. A recent paper by Cesa-Bianchi
et al. [1996] shows how binary search can be used to choose a value for b that
yields the bound L*. In this paper, we give an explicit choice of b as a function
of log(N)/K, which approximately minimizes

ln N 2 K ln b

2 ln ~2/~1 1 b!!

and leads to good closed-form bounds (see Figure 4).
We will use the following function in our choice of b.

g~ z! 5
1

1 1 2z 1 z2/ln 2
. (12)

We give g(`) its natural value of 0. The key property of this function is the
following inequality.

LEMMA 4.4.1. For any z . 0 or z 5 `,

z2 2 ln g~ z!

2 ln ~2/~1 1 g~ z!!!
# 1 1 z 1

z2

2 ln 2
.

PROOF. See Appendix B. e

Another simple inequality that we need in the proof is given in the following
lemma.

LEMMA 4.4.2. For all 0 , b , 1

2 ln~b!

2 ln 2/~1 1 b!
$ 1.
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PROOF. Since b , 1, the lemma is equivalent to ln(b) # ln ((1 1 b)/2)2,
which follows from the trivial inequality

b # S 1 1 b

2 D 2

. e

Using the function g to make our choice of b we can obtain the following
bound.

THEOREM 4.4.3. Pick any positive integer N and nonnegative real K. If

b 5 gS Îln N

K
D

for the g defined in Eq. (12), then for any set % of N experts and for any sequence y
such that L%(y) # K we have

LP~b!~y! 2 L%~y! # ÎK ln N 1
log2 N

2
.

FIG. 4. This figure describes the bounds obtained by algorithm P(b) when an upper bound on L% is
given. The horizontal axis corresponds to the known upper bound and the vertical axis to LP(b) 2
L%. The number of experts is assumed to be 10. The thin straight lines correspond to the upper
bounds achieved by choosing b to be one of 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. The
continuous curve corresponds to the bound achieved when b is chosen as in Theorem 4.4.3, and the
dotted curve corresponds to the upper bound given in the theorem.
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PROOF. The proof is trivial when N 5 1, since the algorithm makes the same
predictions as the single expert. For the remainder of the proof, we assume that
N $ 2, so

b 5 gS Îln N

K
D

is strictly less than 1. From Theorem 4.2.1, we know that for any choice of b [
[0, 1)

LP~b!~y! #
ln N 2 L%~y! ln b

2 ln 2/~1 1 b!
. (13)

We rewrite (13) as

LP~b!~y! # L%~y! 1
ln N

2 ln 2/~1 1 b!
1 L%~y!S 2ln b

2 ln 2/~1 1 b!
2 1D .

From Lemma 4.4.2, we know that

2
ln~b!

2 ln~2/~1 1 b!!
$ 1,

and from the conditions of the theorem we know that L%(y) # K. Based on
these we get that

LP~b!~y! # L%~y! 1
ln N

2 ln ~2/~1 1 b!!
1 KS 2ln b

2 ln ~2/~1 1 b!!
2 1D

5 L%~y! 1 KS z2 2 ln b

2 ln ~2/~1 1 b!!
2 1D ,

where

z 5 Îln N

K
.

Since b was chosen to be g( z), we use the inequality of Lemma 4.4.1 to obtain

LP~b!~y! # L%~y! 1 ÎK ln N 1
log2 N

2
,

completing the proof. e

To get a feel for the bound given in Theorem 4.4.3, it may be helpful to
consider the average per-trial loss guaranteed by the bound. Letting a 5 K/,, we
get:
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LP~b!~y!

,
#

L%~y!

,
1 Îa ln N

,
1

log2 N

2,
.

Thus, for large ,, the average loss of P approaches that of the best expert. The
rate of convergence of the average loss depends on a: for “small” a, the rate of
convergence is roughly O(1/,) (for large , and N fixed); for fairly large a (say
Q(1), so that K is linear in ,), the middle term dominates, giving a slower
convergence rate of O(1/=,).

4.5. PERFORMANCE FOR KNOWN SEQUENCE LENGTH. As a corollary of Theo-
rem 4.4.3, we can devise a choice for b that will guarantee a bound on the
difference between the loss of the algorithm and the loss of the best expert for
the case where ,, the length of the sequence to be predicted, is given to the
algorithm in advance. Theorem 3.2.3 shows that this guaranteed difference is
very close to optimal.

THEOREM 4.5.1. Let b 5 g(=2 ln(N 1 1)/,). Then for any set % of N experts,
and for any sequence y of length , there is a prediction algorithm P9(b) such that

LP*~b!~y! 2 L%~y! # Î, ln~N 1 1!

2
1

log2~N 1 1!

2
.

PROOF. As the length of the sequence is ,, the largest possible loss is ,;
however, this bound can be easily decreased to ,/2. To do so, we add to the N
experts of P a single new expert whose predictions are the inverse of the
predictions of the first expert, that is jN11,t 5 1 2 j1,t. We denote the
algorithm that uses the expanded pool of experts by P9. It is easy to see that for
any y, either L%1

# ,/ 2 or L%N11
# ,/ 2. Thus, for the increased pool of

experts we have L% # ,/ 2 and from Theorem 4.4.3 we get the statement of the
theorem. e

We remark that while the bound stated in Theorem 4.5.1 holds for all ,, there
is a slightly better bound on P*(b) for the given choice of b when , 3 ` (and N
remains fixed):

LP*~b!~%!2L%~y! # Î, ln~N 1 1!

2
1 S 1

2
1 o~1!D ln N.

This can be proved by a Taylor expansion of the bound given in Theorem 4.2.1.
Combining Theorem 3.2.3 and Theorem 4.5.1, we see that P*(b)’s performance

is very close to optimal for sufficiently large N and ,, and we thereby obtain an
upper bound on the min/max value VN,, of the general binary sequence
prediction game defined in Section 3.

THEOREM 4.5.2. For all N, ,,

VN,, # Î, ln~N 1 1!

2
1

log2~N 1 1!

2

and
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lim
N3`

lim
,3`

VN,,

Î~,/ 2!ln N
5 lim

N3`

lim
,3`

VN,,
~static!

Î~,/ 2!ln N
5 1.

PROOF. The first statement follows from Theorem 4.5.1, and the second
follows from this and Theorem 3.2.3. e

We have thus shown that the ratio between VN,, and LP9(b)(y) 2 L%(y)
converges to 1 as , and N grow. While this is a rather strict notion of optimality,
there is still a gap between the upper and lower bounds and it is interesting to
consider the actual numbers to see where improvement might be possible. We
give such comparisons in Figures 5, 6, and 7. These comparisons indicate that the
lower bound is very close to the min/max value even for small values of N and ,.
The space for improvement is mostly in the upper bounds, that is, in improving
the prediction algorithm or its analysis.

As a final note, we also get from Theorem 4.5.1 an interesting geometric
corollary concerning the average covering radius of a set of binary vectors. Recall
that we defined the average covering radius of % # {0, 1}, by

R~%! 5 Eymini i% i 2 yi1,

where Ey denotes expectation over a uniformly random choice of y [ {0, 1},,
and for all N, ,, we defined RN,, 5 min% R(%), where the minimum is over all
% # {0, 1}, of cardinality N.

FIG. 5. This figure describes the relationship between the upper bounds guaranteed by P9(b) when
the length of the sequence is given to the algorithm as input and the corresponding min/max values.
The min/max values are scaled so that they can all be compared to the same upper bound. The
horizontal axis corresponds to the length of the sequence divided by ln(N), where N is the number of
experts, and the vertical axis corresponds to (LP9(b) 2 ,/2)/ln(N). The two thick-line curves
correspond to the upper bounds given by the algorithm as in Figure 4. The four piece-wise linear
graphs correspond to the min/max values for N 5 2, 3, 4, 5 and , 5 1, . . . , 15.

454 N. CESA-BIANCHI ET AL.



COROLLARY 4.5.3. For all N, ,,

RN,, $
,

2
2 Î, ln~N 1 1!

2
2

log2~N 1 1!

2

FIG. 6. This figure describes the relationship between the min/max value for N 5 4 (the piece-wise
linear graph) and the lower bound achieved by randomly selected static experts (the cross marks).
Three different random choices are given for each selected sequence length in order to provide an
estimate of the spread of this statistical lower bound.

FIG. 7. This figure describes the relationship between randomly generated lower bounds and the
upper bounds for longer sequences. The cross, square, circle and diamond marks correspond to the
lower bounds for N 5 2, 4, 8, 16, respectively.
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and

lim
N3`

lim
,3`

~,/ 2! 2 RN,,

Î~,/ 2! ln N
5 1

PROOF. Follows from Theorems 4.5.2 and 3.1.2, since VN,,
(static) # VN,,. e

4.6. PREDICTION WITHOUT PRIOR KNOWLEDGE. In the previous sections,
we showed how to tune b so that P(b) (or, more precisely, its slight variant
P9(b) performs well when either a bound on the loss of the best expert or the
length , of the sequence is known to the algorithm. Here, we present a
version of the algorithm, algorithm P*, that uses neither the length of the
sequence nor the loss of the best expert. Algorithm P* repeatedly guesses
different loss bounds until it guesses a bound greater than the remaining loss
of the best expert. The gap between this algorithm’s loss and the loss of the
best expert is only a factor of (roughly) 4 greater than the gap when the loss
of the best expert is known.

Algorithm P* (see Figure 8) takes two parameters, a and c, which control how
it guesses loss bounds. We show later that one reasonable choice for these
parameters is a 5 2 and c 5 ((1 1 =5)/ 2)2.

At the start of each iteration z of the outer loop, a bound kz on the best
expert’s remaining loss is guessed. Algorithm P* resets the experts’ weights to
1 and uses algorithm P( g(=(ln N)/kz)) (for the function g defined in Eq.
(12)) to generate predictions. If the bound kz is correct, then the remaining
loss will be no greater than a value bz calculated using Theorem 4.4.3. If the
total loss incurred by algorithm P during the iteration exceeds bz, then the
guessed bound on the loss of the best expert is incorrect10 and algorithm P*
increases the guessed bound by a factor of c and proceeds to the next
iteration of the outer loop. Note that the first iteration is iteration number
zero ( z 5 0).

Before analyzing algorithm P*, we state a few simple facts that will be needed.
First, from the description of the algorithm,

10The bounds of this section also hold if instead we use the following stopping criterion: “Until the
loss of the best expert in this loop exceeds kz.”

Algorithm P*(a, c):

Parameters a . 0 and c . 1 are constants. Hgood choices are a 5 2 and c 5 S1 1 Î5

2 D2J
for z :5 0 to ` do {z is the loop iteration counter}

k2 :5 a2cz ln N; {guess a bound on best expert’s loss}

bz :5 kz 1 =kz ln N 1
log2N

2
{loss bound if guess correct}

Reset the weight of each expert to 1.
repeat

run P(g(=ln(N)/kz)) to generate a prediction
until the total loss in this loop exceeds bz.

FIG. 8. Description of Algorithm P*.
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bz 5 kz 1 Îkz ln N 1
log2 N

2

5 kz 1 acz/ 2 ln N 1
1

2
log2 N

5 kz 1 S acz/ 2 1
1

2 ln 2D ln N. (14)

Also, since at most one unit of loss is incurred by any prediction, the loss
incurred by algorithm P* during any iteration number z of the outer loop is at
most bz 1 1.

LEMMA 4.6.1. If algorithm P* exits iteration number z of the outer loop, then,
for all %i [ %, the loss incurred by %i while algorithm P* is executing iteration
number z of the outer loop is greater than kz.

PROOF. If some expert incurs loss at most kz during loop iteration number z,
then algorithm P has loss at most bz during this iteration (by Theorem 4.4.3) and
iteration number z is not exited. e

Let yz be the subsequence of outcomes seen during iteration number z of the
outer loop. The loss of an expert % i while algorithm P* is executing iteration
number z may not be the same as L% i

(yz). This is because the experts can be
algorithms whose state changes based on the outcomes seen. Expert % i may
make different predictions on yz after having seen the outcomes in previous loop
iterations than it would make on yz without having seen the other outcomes. It is
important that we reset only the weights of the experts that are maintained by P
and not the internal states of the experts before calling algorithm P as we want to
compare the loss of P* with L%(y).

LEMMA 4.6.2. Pick any a . 0 and c . 1. If “last” is the number of the last loop
iteration entered by P*(a, c) on some sequence y, then

last # logcS 1 1
L%~y!~c 2 1!

a2 ln N D .

PROOF. If last 5 0, then the lemma trivially holds, so we continue under the
assumption that last $ 1. If iteration number z of the outer loop is exited when
algorithm P* runs on sequence y then

L%~y! . O
j50

z

kj 5 O
j50

z

a2cj ln N 5 a2 (ln N)
cz11 2 1

c 2 1
.

Since last $ 1 and iteration number last is entered, iteration number last 2 1 is
exited. Thus,

L%~y! $ a2 (ln N)
clast 2 1

c 2 1
.
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Solving for last yields the desired result. e

The above lemma shows that algorithm P* executes the outer loop a finite
number of times whenever the loss of the best expert is bounded. Thus, our
bounds on algorithm P* hold even for infinite sequences, as long as the loss of
the best expert is finite over the infinite sequence.

We now return to bounding the total loss of algorithm P*.

THEOREM 4.6.3. Let % be a set of N experts, y be any sequence, and f be the
golden ratio (1 1 =5)/2. If L%(y) is finite, then for all

a $
2~f 2 1!

~2 2 Îf! ln N
,

the difference LP*(y) 2 L%(y) is at most

S f3/ 2

f 2 1
1

0.805Îf

4a~ln 2!~ln f!
1

0.805Îf

2a~ln N!~ln f!
D ÎL%~y! ln N 1 Sa 1

1

2 ln 2D ln N,

when algorithm P* uses parameters c 5 f2 and a.

PROOF. In Appendix C. e

COROLLARY 4.6.4. If N $ 7 and algorithm P* uses parameters c 5 f2 and a 5
2, then for any sequence y,

LP*~y! 2 L%~y! # 4 ÎL%~y! ln N 1 2.8 ln N.

Note that the parameter a allows one to trade off (in a limited way) between
the constant in front of the ln N term and the constant in front of the
=L%(y) ln N term. Furthermore, the constant multiplying the (more important)
=L%(y) ln N term can be made arbitrarily close to f3/2/(f 2 1) ' 10/3 by
choosing the constant a sufficiently large.

Since the algorithm P* is not given the length of the sequence y, the bound of
Theorem 4.6.3 holds for all prefixes y of any infinite sequence y*. Different
experts might have minimum loss for different prefixes of y*, but the loss of P* is
always close to the best expert on each prefix.

5. Applications to the Pattern Recognition Problem

Up until this point we discussed the problem of predicting binary sequences,
where the predictions made by the experts are functions of past predictions and
outcomes. We turn now to an application of these results to the general pattern
recognition problem as was described in the introduction.

Our goal is to approximate a stochastic mapping from an instance space X to
labels {0, 1}. The algorithm observes a set of examples of the stochastic mapping
and produces a hypothesis, a rule for predicting the labels of new instances. The
goal of the learning algorithm is to produce a hypothesis whose error (i.e.,
probability of mistake) is not much worse than the error of the best function in
some known class * of functions called the comparison or touchstone class
[Kearns et al. 1994]. Outside of the pattern recognition literature, this type of
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problem might be called by many names, such as L1 regression with a regret
formulation of the loss function (in typical statistics literature, see, for example,
Birge and Massart [1993]), or, as mentioned in the introduction, the agnostic
version of PAC learning [Kearns et al. 1994]. The terminology we use here is that
from the PAC learning literature.

More formally, let D be a probability distribution on X 3 {0, 1}.11 We
assume a sequence s 5 ( x1, y1), . . . , ( x,, y,) of training examples is drawn from
the product distribution D,, that is, each example is drawn independently
according to D. A learning algorithm A, which does not know the distribution D,
takes these training examples as input and outputs a hypothesis h 5 A(s) that
maps from X into [0, 1]. The error of the hypothesis h is defined by erD(h) 5
E( x,y);Duh( x) 2 y u, where E( x,y);D denotes the expectation over ( x, y) drawn
randomly according to D.

The learning algorithm is given a priori a comparison class * consisting of a set
of mappings from X into {0, 1}. The functions in the comparison class play a role
similar to that played by the experts above. However, while the experts defined in
Section 4 are arbitrary prediction strategies, the comparison class contains only
fixed functions that do not depend on past predictions and outcomes. Also, we
restrict these functions to output either 0 or 1 and not real numbers in the range
[0, 1]. On the other hand, the comparison class may be infinite, while the set of
experts in Section 4 is assumed to be finite.

Let

erD~*! 5 inf
h[*

erD~h!

be the error of the best function in * for the particular distribution D. The goal
of the learning algorithm is to, on average, produce a hypothesis that is almost as
good as the best function in the comparison class * for examples generated by
the (unknown) distribution D. That is, the learning algorithm attempts to
minimize12 the regret

Es;D,~erD~ A~s!!! 2 erD~*! . (15)

Bounds on this regret for certain types of learning algorithms can be obtained
from the work of Vapnik [1982] and Birge and Massart [1993]. The basic idea of
their learning algorithms is to predict according to the single hypothesis that
suffers the minimal loss over the sample of instances presented to the learner.
Vapnik calls this empirical risk minimization. In this paper, we obtain better
performance bounds by using an algorithm that combines the predictions of all
the experts, weighted according to their performance on the sample.

We now sketch how the techniques developed in Section 4 for the sequence
prediction problem can be applied to the pattern recognition problem. Suppose
that s 5 ( x1, y1), . . . , ( x,, y,) is the sequence of random labeled examples

11When X is uncountable, appropriate assumptions are made to ensure measurability in what follows.
12Typically, in the PAC learning literature, tail bounds are also given that bound the probability that
the hypothesis returned is significantly worse than the best hypothesis in *. Our current methods do
not provide these, but standard “confidence boosting” methods can be applied on top of them to
achieve good tail bounds [Haussler et al. 1991; Littlestone 1989]. More direct methods are given by
Littlestone and Warmuth [1994].
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presented to the learning algorithm, and let x be an instance whose label is to be
predicted. The natural way of using a sequence prediction algorithm, such as the
algorithm P, in this context is to simulate it on the sequence s, and then obtain its
prediction on the new instance x. Here we regard as experts the set of all
possible labelings of the instances x1, . . . , x,, x that agree with some function in
the comparison class *. Although the cardinality of * may be infinite, the
number of possible binary labelings of the sequence that agree with some
function in * is always finite, and in fact, is polynomial in , if the VC dimension
of * is finite (see Blumer et al. [1989] or Vapnik [1982] for a definition of the
VC dimension and its relation to this kind of learning problem).

Unfortunately, we do not know how to analyze an algorithm of this type, since
the bounds that we have for our sequence prediction algorithms hold only for the
cumulative loss over the entire sequence, and not the loss at any particular time
step. To handle this difficulty, we define a more complicated scheme that uses
the sequence prediction algorithm in a more elaborate way. Instead of placing
the unlabeled example at the end of the sequence, we insert it in all possible
positions in the sequence s and take the average of the predictions so obtained.
More precisely, for every choice of index i 5 0, . . . , ,, we insert the unlabeled
example between examples i and i 1 1, producing the sequence ( x1, y1), . . . ,
( xi, yi), ( x, ?), ( xi11, yi11), . . . , ( x,, y,). We simulate our prediction
algorithm P on each of these sequences to obtain , 1 1 predictions of x’s label
and output their average. A simple argument, which will be given in Section 5.2,
bounds the expected error of this learning algorithm. Similar methods were
previously used by Helmbold and Warmuth [1995].

Before using algorithm P as the sequence prediction algorithm, we need to
choose the parameter b. We analyze two methods for tuning b in this context.
The first method is to tune b according to the length of the sample, using the
results of Section 4.5. These results are described in Section 5.2. The drawback of
this method is that the dependence of the regret of the learning algorithm on the
sample size , is of order O(1/=,) even if the loss of the best function in * is
very small. By using a much more sophisticated choice of b we can improve the
upper bound on the regret to O(1/,) when erD(*) is small. These results are
described in Section 5.3.

5.1. FURTHER DEFINITIONS. Before stating our results, we need to make a
few further definitions. Our first definition deals with the issue of optimizing the
error on the training examples (called empirical error) versus optimizing erD, the
error with respect to the underlying distribution D. This is often referred to as
the problem of over-fitting. Let

er̂,,D~*! 5 Es;D, inf
h[*

1

,
O
t51

,

uh~ xt! 2 ytu.

Thus, er,,D (*) is the expected empirical error of the hypothesis in * that does
best on a random set s 5 ( x1, y1), . . . , ( x,, y,) of , training examples drawn
independently according to the distribution D. The quantity

er,,D
D ~*! 5 erD~*! 2 er̂,,D~*!
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will be called the expected over-fit for , training examples. It is clear that this
quantity is nonnegative for any ,, D, and *, since

erD~*! 5 inf
h[*

erD~h!

5 inf
h[*

Es;D,

1

,
O
t51

,

uh~ xt! 2 ytu

$ Es;D, inf
h[*

1

,
O
t51

,

uh~ xt! 2 ytu

5 er̂,,D~*! .

In other words, the expected empirical error of the best hypothesis on the
training examples is always smaller than the expected error of the asymptotically
best hypothesis on a set of random “test” examples.

We also will need a formal notation for the set of all label sequences that
agree with some function in *. For any comparison class * and sequence x 5
x1, . . . , x,, let us define

* ux 5 $~h~ x1! , . . . , h~ x,!! : h [ *% .

We call *ux the restriction of * to x.

5.2. THE BASIC BOUND

THEOREM 5.2.1. For any instance space X and any comparison class * on X,
there exists a learning algorithm A such that for all , and all distributions D on X 3
{0, 1}

Es;D,~erD~A(s!!) 2 erD~*! #
ExÎln~ u* uxu 1 1!

Î2~, 1 1!

1
Ex~log2~ u* uxu 1 1!!

2~, 1 1!
2 er,11,D

D ~*! ,

where Ex denotes expectation over x 5 x1, . . . , x,11, each xt drawn independently at
random according to the marginal of D on X.

PROOF. We define the learning algorithm A by describing its hypothesis, h.
Given the sequence of examples s 5 ( x1, y1), . . . , ( x,, y,), and instance x, we
define h( x) as follows: First, for each 1 # t # , 1 1, let x(t) 5 x1, . . . , xt21, x,
xt, . . . , x, and let %(t) 5 * ux(t). Thus, there is an expert in %(t) for each possible
labeling of x(t) that agrees with some function in the comparison class *. Note
that the experts in %(t) are the same as the experts in %(t11) except that the
predictions on trials t and t 1 1 are swapped due to the different placement of x.
Let N 5 u%(t)u and b 5 g(=2 ln(N 1 1)/(, 1 1 )). For each 1 # t # , 1 1
let ŷ t denote the prediction of the sequence prediction algorithm P*(b) defined in
Section 4.5 after seeing outcomes y1, . . . , yt21, and the first t predictions of the
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experts in %(t). The value of the function h 5 A(s) on input x is defined by the
average of the ŷ t’s, that is, h( x) 5 1/(, 1 1) t51

,11 ŷ t.
To show that this strategy A has the desired performance, first note that

Es;D,~erD~ A~s!!! 5 Es;D,,~ x,y!;DuA~s!~ x! 2 y u

5 Es;D,,~ x,y!;DU S 1

, 1 1
O
t51

,11

ŷ tD 2 yU ,

where ŷ t is as defined in the previous paragraph, and s 5 ( x1, y1), . . . , ( x,, y,).
Because u(1/n t51

n pt) 2 c u 5 1/n t51
n upt 2 c u for c [ {0, 1} and 0 # pt

# 1, it follows that

Es;D,~erD~ A~s!!! 5 Es;D,,~ x,y!;D

1

, 1 1
O
t51

,11

u ŷ t 2 y u (16)

5
1

, 1 1
O
t51

,11

Es;D,,~ x,y!;Du ŷ t 2 y u

5
1

, 1 1
O
t51

,11

E ~x,y!;D,11u ŷ9t 2 ytu, (17)

where, in analogy with the definition of ŷ t, we define ŷ9t as the prediction of P*(b)
after observing the outcomes y1, . . . , yt21 and the first t predictions of the
experts in *ux, where x 5 x1, . . . , x,11, and b 5 g(=2 ln( u* uxu 1 1)/(, 1 1 )).

Let LP9(b)(x, y) 5 t51
,11 u ŷ9t 2 ytu, the total loss of the prediction strategy P*(b)

for instances x 5 x1, . . . , x,11 and outcomes y 5 y1, . . . , y,11, assuming the
set of experts is *ux. It follows from the above that

Es;D,~erD~ A~s!!! 5
1

, 1 1
E ~x,y!;D,11LP*~b!~x,y! . (18)

Furthermore, it is clear that for all ,

er̂,,D~*! 5 E ~x,y!;D,

1

,
inf
h[*

O
t51

,

uh~ xt! 2 ytu (19)

5 E ~x,y!;D,

1

,
L* ux

~x,y! ,

where L* ux
(x, y) is the total loss of the best expert in *ux on the outcome

sequence y.
It follows from Eqs. (18) and (19) and the definition of expected over-fit that

Es;D,~erD~ A~s!!! 2 erD~*!

5 Es;D,~erD~ A~s!!! 2 er̂,11,D~*! 2 ~erD~*! 2 er̂,11,D~*!
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5
1

, 1 1
E ~x,y!;D,11LP9~b!~x,y! 2

1

, 1 1
E ~x,y!;D,11L* ux

~x,y! 2 er,11,D
D ~*!

5
1

, 1 1
E ~x,y!;D,11~LP*~b!~x,y! 2 L* ux

~x,y!! 2 er,11,D
D ~*! .

By Theorem 4.5.1., for any x and y of length , 1 1,

LP*~b!~x,y! 2 L* ux
~x,y! # Î~, 1 1!ln~ u* uxu 1 1!

2
1

log2~ u* uxu 1 1!

2
.

The result follows. e

It is easy to see that the constant in the leading term of the bound in Theorem
5.2.1 is the best possible. The argument is similar to the lower bound argument
we used for prediction strategies. We assume that the distribution D is such that
for a random example ( x, y), the value y is 1 with probability 1/2 and 0 with
probability 1/2, independent of x. Hence, every hypothesis h has erD(h) 5 1/ 2.
This implies that Es;D, (erD( A(s))) 2 erD(*) 5 0 for any comparison class *
and algorithm A.

Now assume in addition that X is a large finite set and the marginal of D on X
has a uniform distribution. Let us choose each of the N functions h1, . . . , hN to
be included in the comparison class * at random by letting hi( x) 5 1 with
probability 1/2 and hi( x) 5 0 with probability 1/2 independently for each i, 1 #
i # N, and each instance x [ X. Then Lemma 3.2.1 implies that for any fixed
sample size , 1 1, in the limit of large X, the expectation (with respect to
the random choice of *) of the expected over-fit er,11,D

D (*) is
(1 1 o(1)) =ln N/=2,. This is because in this limit all the x1, . . . , x,11 are
distinct with probability one, and the values uhi( xt) 2 ytu are distributed like
independent coin flips for 1 # i # N and 1 # t # , 1 1. It follows that there
exists a sequence of comparison classes * such that the expected over-fit er,11,D

D

(*) is (1 1 O(1)) =ln N/=2,.
The expected over-fit appears with a minus sign on the right-hand side of the

bound in Theorem 5.2.1. Hence, for this bound to be nonnegative, as required in
this case, the constant in the first term on the right-hand side must be at least
(1 1 o(1))/=2. This shows that this constant cannot be improved in general.

5.3. REFINED RESULT. The result of the previous theorem can be improved
by a more sophisticated choice of b.

THEOREM 5.3.1. For any instance space X and any comparison class * on X,
there exists a learning algorithm A such that for all , and all distributions D on X 3
{0, 1}

Es;D,~erD~ A~s!!! 2 erD~*!

#
Îer̂,11,D~*!~ ÎT 1 1!

Î, 1 1
1

T/ln 2 1 3 ÎT 1 1

, 1 1
2 er,11,D

D ~*! (20)
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#
ÎerD~*! ~ ÎT 1 1!

Î, 1 1
1

T/ln 2 1 3 ÎT 1 1

, 1 1
2 er,11,D

D ~*! , (21)

where T 5 Ex ln u*uxu.

The proof of this theorem is given in the next section. Our first attempt to
prove it followed the proof of the previous theorem with the different choice b 5
g(=(ln N)/K), where K is the best upper bound that can be obtained on the
total loss of the best expert in %(t). Then, in the last step, Theorem 4.4.3 is used
instead of Theorem 4.5.1. Since we know all the predictions of the experts and all
the outcomes but the one for the instance x, we can estimate the total loss of the
best expert to within 1, and choose b accordingly. It remains an open problem to
prove a bound on the regret for this approach that is comparable to the bound
given in Theorem 5.3.1.

The subtle difficulty we encountered in trying to prove such a bound is in
moving from Eq. (16) to Eq. (17). In Eq. (16), ŷ t is the prediction made by the
algorithm on the additional instance ( x, y) when it is inserted into position t of
sequence s. Thus, ŷ t depends on the previous elements of the sequence, the
current predictions of the experts, and the choice of b. In Theorem 5.2.1, b is a
fixed function of the length of the sequence, and thus the prediction ŷ t is
identical to the prediction made by P(b). This is why we can replace ŷ t by ŷ9t.

Unfortunately, when we choose b as a function of the examples in s, this
substitution of ŷ9t for ŷ t is impossible. Because a different b is chosen for each
position t, the sequence of predictions ŷ9t no longer corresponds to the predic-
tions generated by a single run of P(b), and so we cannot derive Eq. (18). (Recall
that the performance bound on P(b) requires that b is held constant.)

There are several ways one could attempt to patch this flaw, but despite much
effort we were unable to find a simple fix. The approach that was ultimately
successful deals directly with prediction when all but one outcome is available.
This setting is reminiscent of that obtained when using the “hold-one-out”
method of cross validation, commonly used in statistics. Results for this setting
are given in the next section, as is the proof of Theorem 5.3.1.

The bounds given in Theorem 5.3.1 are better than those obtained for this kind
of pattern recognition problem by the other methods of which we are aware,
which are those of Vapnik [1992], Talagrand [1994], and Birge and Massart
[1993]. Bounds given by Vapnik [1992, Eq. (11)] imply a bound in the same form
as the second bound in Theorem 5.3.1, but with an additional factor of 2 in the
leading term. However, Vapnik’s bounds hold in more general cases than the one
we consider here. Talagrand [1994] gives similar general bounds without the
factor of 2, but with an unspecified constant in the lower-order term. It is not
clear that this unspecified constant can be made small enough to get practical
bounds for small sample size ,. Bounds obtained by Birge and Massart [1993]
also contain constants that are difficult to bound. Thus, our approach to the
pattern recognition problem through worst-case analysis of the sequence predic-
tion problem appears to be a fruitful one.
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5.4. THE HOLD-ONE-OUT MODEL OF PREDICTION AND PROOF OF THEOREM

5.3.1. In this subsection, we discuss a slightly different prediction problem.
After developing a theory of this prediction problem, we will be in a position to
prove Theorem 5.3.1.

Let x 5 x1, . . . , x, be a sequence of instances chosen from an arbitrary set X,
y 5 y1, . . . , y, be a sequence of binary outcomes, and % 5 {%1, . . . , %N} be a
set of experts. In this section, we will assume that each expert % i is a function
from X into [0, 1], that is, the ith expert’s prediction at time t, denoted j i,t,
depends only on the instance xt, and not on previous outcomes or instances. As
in Section 3.1, we call such experts static.13 For a fixed sequence x of instances,
they are equivalent to the static experts defined there. As in the previous
sections, the total loss of the ith expert is L% i

(x, y) 5 t51
, uj i,t 2 ytu, and the

total loss of the best expert is L%(x, y) 5 min1#i#N L% i
(x, y).

In hold-one-out prediction, the goal is still to predict almost as well as the best
expert, but the prediction algorithm is allowed more information to help it make
its predictions. In particular, when asked to predict the outcome yt, the predic-
tion algorithm is provided with all the instances x 5 x1, . . . , x,, the entire
matrix % i,t, 1 # i # N, 1 # t # ,, giving the advice of each expert on each
instance, and the outcomes y1, . . . , yt21, yt11, . . . , y,, that is, all outcomes
except yt. Given this input, a hold-one-out prediction algorithm produces a
prediction ŷ t [ [0, 1]. The total hold-one-out loss of the prediction algorithm A
on outcome sequence y is defined in analogy with the on-line prediction loss as
HLA(x, y) 5 t51

, u ŷ t 2 ytu. This total loss can be viewed as the sum of the
losses of , separate runs of the algorithm, where in each run the algorithm is
asked to predict a different outcome yt. The motivation for the name “hold-one-
out” loss comes from the similarity to the cross-validation procedure of the same
name used in statistics [Stone 1977].

The following example illustrates the use of the total hold-one-out loss.
Consider a classroom setting in which an instructor is trying to teach students to
perform a classification task of some type, say to distinguish earthquakes from
underground nuclear explosions, based on seismographic data. Suppose that the
teacher has collected a sequence of labeled examples ( x1, y1), . . . , ( x,, y,),
where for each t, 1 # t # ,, the instance xt is a vector of seismic measurements
and the label yt is a binary value, with 1 representing earthquake and 0
representing underground explosion. Let x 5 x1, . . . , x, and y 5 y1, . . . , y,.
The teacher shows each of the examples to the students (the experts in this
example), in random order, first showing them the measurement vector xt, then
asking each student to predict the classification yt, and finally providing actual
label yt as feedback. A prediction is a number p [ [0, 1] and the loss is up 2 ytu
as above. However, instead of considering total loss, here the teacher only counts
the loss on the last example shown, considering the other examples to be merely
training cases. The choice of which example is shown last (called the “test”
example) is random. Now imagine that you are auditing the class because of your
extremely limited knowledge of seismology. Nevertheless, you still want to
impress the teacher in hopes of eventually being admitted to the program. Can

13Thus, a static expert is simply a regression function (or “p-concept” [Kearns and Schapire 1994])
from the instance space X into [0, 1], the value of which represents a conditional probability of the
label 1 given the input instance xt.
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you or any algorithm A, after seeing all the instances x1, . . . , x,, hearing all the
students’ predictions for each of these instances, including the test instance, and
seeing all the labels except that of the test instance, predict the label of the test
instance in such a way that your expected loss, averaged over possible choices of
the test instance, is not much more than that of the best student in the class?

Instead of averaging over all choices of the last instance, we can equivalent-
ly consider the experiment in which the examples stay in the fixed order
( x1, y1), . . . , ( x,, y,), but for t from 1 to , we perform a series of experiments
with the algorithm A, each time covering only the label yt and forcing the
algorithm to predict this label, based on the , instances, the prediction of each
expert on each instance, and the label of all the instances except xt. Clearly, the
total hold-one-out loss HLA(x, y) is the total loss obtained by all these
experiments. Thus, the average loss of the algorithm in predicting a randomly
chosen test instance is just HLA(x, y)/,.

Note that we have restricted our analysis of the hold-one-out loss to the case
of static experts. For this type of loss, we must be careful about how much power
we give the experts. Consider the case in which there are just two experts %0 and
%1, and %0 always predicts that the sequence of binary values y 5 y1, . . . , y, will
have even parity, while %1 always predicts that y will have odd parity. Clearly, the
predictions of each of these experts for yt can easily be expressed as a function of
the values y1, . . . , yt21, yt11, . . . , y,, ignoring the instances. Moreover, any
sequence y either has even or odd parity. Thus, for any sequence y, one of the
two experts predicts each held out label correctly! Yet for any prediction
algorithm A there is always a sequence that forces total loss ,/2, since this is the
average loss obtained on a random sequence. It is thus clear that to get a useful
worst-case model in the hold-one-out setting, one needs to restrict the experts.
Restricting to static experts is one natural choice.

It should be clear that any on-line prediction strategy can also be used as a
hold-one-out prediction strategy: the hold-one-out version of the strategy simply
ignores the additional information available to it and makes its prediction of yt

based solely on the instances x1, . . . , xt, the predictions of the experts on these
instances, and the outcomes y1, . . . , yt21. In this case, the total hold-one-out
loss is the same as the total on-line loss. One might suppose, however, that
significantly smaller hold-one-out losses could be obtained by employing more
sophisticated strategies that take into account all the information that is avail-
able. Curiously, this is not true, at least in the worst case, as we show below.

Let us define the hold-one-out prediction game for a given N and , by
assuming that the adversary chooses a set % of N static experts, a sequence x of ,
instances and a sequence y of , outcomes, and then the predictor is given ,
separate prediction problems based on these choices, where in each problem a
different outcome is held out and must be predicted on the basis of the other
information as described above. Let VN,,

(H) denote the min/max value of this game,
that is, the minimum over all hold-one-out prediction strategies A of the
maximum over all choices of the adversary of the difference HLA(x, y) 2
L%(x, y). It turns out that this min/max value is the same as that of the on-line
prediction game with static experts given in Theorem 3.1.2.

Before we state the analog of Theorem 3.1.2 for the hold-one-out prediction
game, recall that we defined the average covering radius of S # {0, 1}, as
R(S) 5 Ey mins[S is 2 yi1, where Ey denotes expectation over a uniformly
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random choice of y [ {0, 1},, and that for any set of functions % from X into [0,
1] and any sequence x 5 x1, . . . , x, of instances in X, we defined
%ux 5 {( f( x1), . . . , f( x,)) : f [ %}.

THEOREM 5.4.1. Let % be a set of static experts and x be a sequence of ,
instances. Then there exists a hold-one-out prediction strategy A such that for every
sequence y, we have

HLA~x ,y! 2 L%~x, y! 5
,

2
2 R~% ux! .

Moreover, A is optimal in the sense that for every hold-one-out prediction strategy B,
there exists a sequence y such that

HLB~x, y! 2 L%~x, y! $
,

2
2 R~% ux! .

Hence

VN,,
~H! 5 VN,,

~static! 5
,

2
2 min

S

R~S! ,

where the minimum is over all sets S of N vectors in {0, 1},.

PROOF. We simply let A be the optimal on-line prediction strategy MS from
the proof of Theorem 3.1.2, used as a hold-one-out prediction strategy, ignoring
the outcomes yt11, . . . , y, when predicting the outcome yt. Since the net loss
HLA(x, y) 2 L%(x, y) is the same for the hold-one-out game as it is for on-line
prediction, this gives the first statement of the theorem. The second statement
follows from the fact that if y is chosen at random, then the expectation of HLB

(x, y) 2 L%(x, y) is equal to the right-hand-side for any hold-one-out prediction
strategy B. Finally, the last statement follows by the same argument used in the
proof of Theorem 3.1.2 to prove the analogous statement. e

The optimal algorithm MS is not very efficient. We get a simple, efficient, and
nearly optimal hold-one-out prediction strategy by using the on-line prediction
algorithm P. From the above theorem and Theorems 3.2.3 and 4.5.1, we have:

THEOREM 5.4.2. Let P(b) be the on-line prediction algorithm defined in Section
4. For all , and N, if b is chosen to be g(=2 ln(N 1 1)/,), where g is as defined in
Eq. (12), then for any set % of N static experts, and any sequences x and y of length
,, the total hold-one-out loss of P is bounded by

HLP~x, y! 2 L%~x, y! # Î, ln~N 1 1!

2
1

log2~N 1 1!

2
,

and the constant in the leading term on the right-hand-side cannot be improved.

When the value L%(x, y) is given, we can use algorithm P with an appropriately
tuned b (as in Theorem 4.4.3) to get a better hold-one-out prediction algorithm.
In this case, we get an algorithm that has hold-one-out loss at most L%(x, y) 1
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=L%(x, y) ln N 1 log2N/2. When neither this value nor the length of the
sequence is available, algorithm P*, which iteratively guesses the loss of the best
expert, can be used. However, algorithm P* ignores the extra information
provided and its bound has a factor greater than one multiplying the =L% ln N
term. It is better to use the observed losses of the experts on the , 2 1 outcomes
provided to estimate L%(x, y). Unfortunately, we are unable to show that when
these estimates are plugged directly into algorithm P, a small total loss results.
As mentioned in Section 5.3, the problem is that different runs of the algorithm
could use different values of b resulting in different predictions. Conceivably, the
worst prediction in each run could be the one used to predict the held out label.

Our solution is to discretize the estimated total loss and let b be a function of
the estimate. A little randomization is used to ensure that the estimate is likely to
be the same regardless of which label is held out. The resulting algorithm is
algorithm B, described in Figure 9. The estimated loss is determined in Step (3).
We show that for this choice of the estimate, the probability that all of the
estimates are the same increases with the loss of the best expert.

Note that the hypothesis of algorithm B is probabilistic since it depends on a
value r chosen uniformly at random in the interval [0, 1]. It is easy to get a
deterministic version of algorithm B: Run algorithm B q times in parallel, where
the ith copy uses the fixed i/q as its choice for r (0 # i # q 2 1). The new
deterministic algorithm DB simply predicts with the average of the q predictions.
We still need to specify the choice of q. As q grows the worst-case loss of
algorithm DB converges to the expected worst-case loss of algorithm B, where
the latter expectation is over the uniform choice of r [ [0, 1]. We choose

q 5 , 1 S Î, 1 1 1 1D Îln N 1
ln N

2 ln 2
,

where , is the number of trials. For this choice, we prove in the theorem below
that the worst-case loss of algorithm DB is at most one larger than the bound we
prove on the worst-case expected loss of algorithm B.

THEOREM 5.4.3. The hold-one-out prediction algorithms B and DB have the
property that for any x, any set of static experts %, and any sequence y

Algorithm B(t):

{The algorithm receives a sequence of instances, x 5 x1, . . . , x,, a sequence of binary outcomes, y 5
y1, . . . , yt21, ?, yt11, . . . , y,, where the tth position is marked with a “?”, and the predictions %i,j of
each expert %i for 1 # i # N on each instance xj for 1 # j # ,. The algorithm produces a prediction
ŷt for the held out outcome yt.}

1. Pick r [ [0, 1] uniformly at random;

2. Compute Lobs(t) 5 mini (jÞtu%i,j2yju;

3. Compute Lest(t) 5 (=Lobs(t)112r1r)2;

4. Compute b 5 g(=ln N/Lest(t)), where g is the function defined in (12). Run algorithm P(b) on
the sequence of instances x1, . . . , xt and observations y1, . . . , yt21, and predict with the ŷt (for yt)
generated by P.

FIG. 9. Description of Algorithm B for hold-one-out prediction.
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Er;@0, 1#~HLB~x, y!! # L%~x, y!~ Î ln N 1 1! 1 3 Î ln N 1 log2 N and

HLDB~x, y! # L%~x, y! 1 ÎL%~x, y!~ Îln N 1 1! 1 3 Îln N 1 log2 N 1 1.

Recall that in the case when L%(x, y) is given to the algorithm, the algorithm P
with its parameter b properly tuned as a function of L%(x, y) has hold-one-out
loss at most L%(x, y) 1 =L%(x, y) ln N 1 log2 N/ 2 (see Theorem 4.4.3). Note
that the bounds of the above theorem for algorithms that do not have L%(x, y)
available are not too much larger. We develop the proof of this theorem in a
sequence of lemmas.

LEMMA 5.4.4. Choose any set of experts %, and sequences x and y of length ,.
For each r [ [0, 1] we have that for all 1 # t # ,,

Lest~t! [ $Lr
2, Lr

1% ,

where

Lr
2 5 S  ÎL%~x, y! 2 r 1 rD 2

and Lr
1 5  S ÎL%~x, y! 1 1 2 r 1 rD 2.

PROOF. Since the loss in any trial lies in [0, 1], we have

Lobs~t! # L%~x, y! # Lobs~t! 1 1,

L%~x, y! # Lobs~t! 1 1 # L%~x, y! 1 1 and

ÎLobs~t! 1 1 [ @ ÎL%~x, y! , ÎL%~x, y! 1 1# .

This interval is of length at most 1. Thus, the ceiling function in the computation
of Lest(t) can take at most two values and the lemma follows. e

Note that the set {Lr
2, Lr

1} depends on r but not on t. Thus, for each r [
[0, 1], the two possible values for Lest (t) are the same for all choices of t. We
will show that for most r the two values for Lest (t) are actually the same for all
t.

Let Lr(t) be the loss of B(t) when predicting the single value yt after seeing all
, examples except the label yt and picking the value r. When r is drawn uniformly
at random from [0, 1], the expected total loss of B(t), summed over choices of t,
is

Er;@0, 1#~HLB~x, y!! 5 O
t51

, E
0

1

Lr~t!dr 5 E
0

1 S O
t51

,

Lr~t!D dr . (22)

We now consider the expectation over r [ [0, 1] of t51
, Lr(t).

LEMMA 5.4.5. Choose any set of experts %, and sequences x and y of length ,,
and let Lr

2 and Lr
1 be defined as in Lemma 5.4.4.

Then , for any r [ [0, 1], such that for all 1 # t # ,, we have Lest(t) 5
Lr

2,
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O
t51

,

Lr~t! # L%~x, y! 1 ~ ÎL%~x, y! 1 1! Îln N 1
log2 N

2
5 low.

Similarly, for any r [ [0,1] such that for all 1 # t # , we have Lest(t) 5
Lr

1,

O
t51

,

Lr~t! # L%~x, y! 1 ~ ÎL%~x, y! 1 1 1 1! Îln N 1
log2 N

2
5 high.

PROOF. We only prove the first bound. The proof of the second bound is
identical. Since L%(x, y) # Lobs(t) 1 1 # Lest(t) 5 Lr

2, we can apply Theorem
4.4.3:

O
t51

,

Lr~t! # L%~x, y! 1 ÎLr
2 ln N 1

log2 N

2
.

Because x 2 r 1 r # x 2 r 1 1 1 r 5 x 1 1, we have

Lr
2 # ~ ÎL% ~x, y) 1 1)2.

Thus, the RHS of inequality (23) is upper-bounded by “low”. e

In the proof of the following most important lemma of this section, we show
that most of the time we get a total loss of “low” and only rarely a total loss of at
most “low 1 high”. The resulting upper bound is only slightly larger than “low”.

LEMMA 5.4.6. For any set of experts % and sequence y of length ,,

Er;@0,1#~HLB~x, y!! # low 1 S ÎL%~x, y! 1 1 2 ÎL%~x, y! D high,

where low and high are defined as in Lemma 5.4.5.

PROOF. Let us first consider the case when r is such that Lr
2 5 Lr

1: Then
each B(t) chooses Lest(t) 5 Lr

2 and by Lemma 5.4.5:

O
t51

,

Lr~t! # low. (24)

In the remaining case r is such that Lr
2 Þ Lr

1: Now the B(t) might use either
Lest(t) 5 Lr

2 or Lest(t) 5 Lr
1 for each t. In that case, the sum of the Lr(t) is at

most the sum of Lr(t) when all Lest(t) 5 Lr
2 plus the sum of the Lr(t) when all

Lest(t) 5 Lr
1:

O
t51

,

Lr~t! # low 1 high. (25)

Let Z 1 r 5 {k 1 r : k [ Z} be the set of integers shifted by r [ [0, 1]. We
will first show that Lr

2 Þ Lr
1 iff a point from Z 1 r lies in interval [=L%(x, y),

=L%(x, y) 1 1)], which is of length at most one. (Note that Lr
2 and Lr

1 are the
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values obtained when applying the mapping dr( x) 5 (x 2 r 1 r)2 to the left
and right boundary of the interval.) If a point k 1 r lies in the interval, then it
and the left boundary of the interval map to (k 1 r)2. Also, any point in the
interval that is larger than k 1 r (including the right boundary of the interval)
maps to (k 1 1 1 r)2. On the other hand, if Lr

2 Þ Lr
1, then let p be the largest

point in the interval that maps to Lr
2. Clearly, p must be in Z 1 r.

The probability that Lr
2 Þ Lr

1 equals the probability that the interval
[=L%(x, y), =L%(x, y) 1 1] contains a point of Z 1 r. Since r is drawn
uniformly in [0, 1] and since the interval has length at most one, this probability
equals the length of the interval, that is =L%(x, y) 1 1 2 =L%(x, y). This
allows us to average inequalities (24) and (25) to get

O
t51

,

LB~t! 5 E
0

1 S O
t51

,

Lr~t!D dr

# S 1 2 S ÎL%~x, y! 1 1 2 ÎL%~x, y!D D low

1 S ÎL%~x , y! 1 1 2 ÎL%~x, y!D (low 1 high)

5 low 1 S ÎL%~x, y! 1 1 2 ÎL%~x, y!D high. e

PROOF OF THEOREM 5.4.3. For the first part of the theorem, which is a bound
on Er;[0, 1] (HLB (x, y)), what remains to be done is to simplify the upper bound
of Lemma 5.4.6. First observe that

~ÎL%~x, y! 1 1 2 ÎL%~x, y!! high #
1

ÎL%~x, y! 1 1
high

# ÎL%~x, y! 1 S1 1
1

ÎL%~x, y! 1 1DÎln N

1 S 1

ÎL%~x, y! 1 1D log2 N

2
.

Plugging this into the bound of the lemma, we get

Er;@0,1#~HLB~x, y!! # L%~x, y! 1 ÎL%~x, y! ~ Îln N 1 1!

1 S 2 1
1

ÎL%~x, y! 1 1D Îln N

1 S 1

ÎL%~x, y! 1 1
1 1D log2 N

2
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# L%~x, y! 1 ÎL%~x, y!~ Îln N 1 1! 1 3 Îln N 1
log2 N

2
.

For the second part, view algorithm DB as a version of algorithm B where r is
chosen uniformly from the finite set {i/q : 0 # i # q 2 1} instead of uniformly
from the continuous interval [0, 1]. (Recall that q 5 , 1 (=, 1 1 1 1)=ln N
1 log2 N/ 2 and this choice of q is at least as large as the value high.) In Lemma
5.4.6, we showed that the expected hold-one-out loss is at most
low 1 p high, where p is the probability of the event that the set {k 1 r : k [
Z} has a point in the interval [=L%(x, y), =L%(x, y) 1 1]. If r [ [0, 1], then p
equals the length of the interval and in the case r [ {i/q : 0 # i # q 2 1} the
probability p equals the length plus or minus 1/q. Since q $ high, we get the
following upper bound on the total hold-one-out loss of algorithm DB:

HLB~x, y! # low 1 S ÎL%~x, y! 1 1 2 ÎL%~x, y! 1
1

qD high

# low 1 S ÎL%~x, y! 1 1 2 ÎL%~x, y! 1
1

highD high.

Thus, the bound in the second part is at most one larger than the bound proven
in the first part. e

We are finally now in a position to return to the pattern recognition problem
considered in Section 5. The next lemma generalizes the argument given in the
proof of Theorem 5.2.1 to give a general method for converting hold-one-out
prediction strategies to learning algorithms that solve the pattern recognition
problem.

LEMMA 5.4.7. Let A be a hold-one-out prediction strategy. Then A can be
converted into a learning strategy B such that for any comparison class *, any ,, and
any distribution D on X 3 {0, 1},

Es;D,~erD~B~s!!! 2 erD~*! 5
1

, 1 1
E ~x,y!;D,11~HLA~x, y! 2 L* ux

~x, y!!

2 er,11,D
D ~*! ,

where E(x,y);D,11 denotes expectation over x 5 x1, . . . , x,11 and y 5 y1, . . . , y,11,
each (xt, yt) drawn independently at random according to D, 1 # t # , 1 1.

PROOF OF LEMMA 5.4.7. The learning strategy B works as follows: For any
sequence of examples s 5 ( x1, y1), . . . , ( x,, y,) and any instance x, let ŷ t

denote the output of A when A is given as input the sequence of instances x 5
x1, . . . , xt21, x, xt, . . . , x,, the set *ux of experts, and the observed outcomes y
5 y1, . . . , yt21, ?, yt, . . . , y,, where “?” denotes the location of the missing tth
outcome to be predicted. Now the value of the function h 5 B(s) on input x is
defined by the average of the ŷ t’s, that is, h( x) 5 (, 1 1)21

t51
,11 ŷ t.

To show that this strategy B has the desired performance, first note the
following
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Es;D,~erD~B~s!!! 5 Es;D,,~ x,y!;DuB~s!~ x! 2 y u

5 Es;D,,~ x,y!;DU S 1

, 1 1
O
t51

,11

ŷ tD 2 yU , (26)

where ŷ t is as defined in the previous paragraph, and s 5 ( x1, y1), . . . , ( x,, y,).
Because u(1

n t51
n pt) 2 c u 5 1

n t51
n upt 2 c u for c [ {0, 1} and 0 # pt # 1,

it follows that

Es;D,~erD~B~s!!! 5 Es;D,,~ x,y!;D

1

, 1 1
O
t51

,11

u ŷ t 2 y u

5
1

, 1 1
O
t51

,11

Es;D,,~ x,y!;Du ŷ t 2 y u

5
1

, 1 1
O
t51

,11

E ~x,y!;D,11u ŷ9t 2 ytu, (27)

where ŷ9t is the output of A when A is given as input the sequence of instances x
5 x1, . . . , x,11, the set *ux of experts, and the observed outcomes y 5 y1, . . . ,
yt21, ?, yt11, . . . , y,11, where “?” denotes the location of the missing outcome
to be predicted. Thus, by the definition of the hold-one-out prediction loss

Es;D,~erD~B~s!!! 5
1

, 1 1
E ~x,y!;D,11 O

t51

,11

u ŷ9t 2 ytu

5
1

, 1 1
E ~x,y!;D,11HLA~x, y! , (28)

where HLA(x, y) denotes the total hold-one-out prediction loss of the strategy A
on instances x and outcomes y, assuming the set of experts used is *ux.

Furthermore, it is clear that

er̂,,D~*! 5 E ~x,y!;D,

1

,
inf
h[*

O
t51

,

uh~ xt! 2 ytu

5 E ~x,y!;D,

1

,
L* ux

~x, y! . (29)

It follows from Eqs. (28) and (29) and the definition of expected over-fit that

Es;D,~erD~B~s!!! 2 erD~*!

5 Es;D,~erD~B~s!!! 2 er̂,11,D~*! 2 ~erD~*! 2 er̂,11,D~*!!

5
1

, 1 1
E ~x,y!;D,11HLA~x, y! 2

1

, 1 1
E ~x,y!;D,11L* ux

~x, y! 2 er,11,D
D (*)
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5
1

, 1 1
E ~x,y!;D,11~HLA~x, y! 2 L* ux

~x, y!! 2 er,11,D
D (*). e

Finally, we can now complete the

PROOF OF THEOREM 5.3.1. From Theorem 5.4.3 and the above lemma, with
A being the algorithm DB, it follows that

Es;D,~erD~ A~s!!! 2 erD~*! #

E ~x,y!;D,11F ÎL* ux
~x, y! ~ Îlnu* uxu 1 1!G
, 1 1

1
Ex lnu*uxu

~, 1 1!ln 2
1

3ExÎlnu*uxu 1 1

, 1 1
2 er, 1 1,D

D ~*!.

(30)

Hence by the Cauchy–Schwarz inequality (applied in the first line below) and by
Jensen’s inequality (applied in the second line),

Es;D,~erD~ A~s!!! 2 erD~*! #
ÎE ~x,y!;D,11L* ux

~x, y! ~ ÎEx lnu* uxu 1 1!

, 1 1

1
Ex lnu* uxu

~, 1 1!ln 2
1

3 ÎEx lnu* uxu 1 1

, 1 1
2 er, 1 1,D

D ~*! .

Since T 5 Ex ln u*uxu and since Eq. (29) implies that

E ~x,y!;D,11~L* ux
~x, y!! 5 ~, 1 1!er̂,11,D~*! ,

Eq. (20) follows. From this, Eq. (21) follows by simply noting that er̂,11,D~*!
# erD~*!. e

Note that, for sake of simplicity, the bounds stated the Theorem 5.3.1 are
actually weaker than what we prove in Eq. (30).

6. Worst-Case Loss Bounds for the Log Loss

It is interesting to relate the min/max analysis, given in Section 3, to results on
the problem of optimal universal sequential coding studied by Shtarkov [1975;
1987].

The problem of sequential coding is similar to the problem studied in this
paper, with two major differences:

(1) The loss function that is studied in this paper is up 2 y u. This loss
corresponds to the probability of making a mistake if making a prediction by
flipping a random coin whose bias is p. The study of sequential coding, on
the other hand, is interested in the log loss function

2 y ln p 2 ~1 2 y! ln ~1 2 p! .
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This loss function is closely related to the minimal average coding length
that can be achieved by using the given predictions (see Rissanen and
Langdon [1981]).

(2) The predictions made by the “experts” as defined here are not restricted;
they can depend on any information that is available to the experts. The
corresponding concept in Shtarkov’s paper is that of a “source.” A source
is an expert whose prediction at time t depends only on the previous
outcomes: y1, . . . , yt21. We call such experts “simulatable” because their
future predictions can be simulated by feeding them with future outcomes.
The predictions of a simulatable expert can be viewed as a conditional
distribution p( ytuy1, . . . , yt21). This means that any simulatable expert
can be identified with a distribution over the set of infinite binary
sequences. Assuming all our experts are simulatable, we denote by Pi the
distribution associated with expert i. Similarly, if we fix a prediction
algorithm A that combines a fixed set of experts we can associate with it a
distribution PA.

It is well known that for the log loss, for any set % of N experts there is a
prediction strategy A such that for any sequence y, LA(y) 2 L%(y) # log N, where
L%(y) is the total log loss of the best expert for y.14,15 The strategy is just the Bayes
algorithm with uniform prior on the distributions represented by the experts.

A min/max optimal prediction algorithm is known for the case in which the
experts are simulatable and ,, the number of iterations, is known in advance.
This result is given by Shtarkov [1987, Theorem 1]. For completeness, we restate
the theorem and its proof here using our terminology.

THEOREM 6.1 (SHTARKOV). For each y [ {0, 1}, and each expert %i [ %, let
Pi(y) denote the probability of y under expert %i. Define the probability of y for the
algorithm A by

PA~y! 5
max1#i#N Pi~y!

O y9[$0,1%, max1#i#N Pi~y9!
.

Then A minimizes the maximum of the difference LA(y) 2 L%(y) over all sequences
y. Furthermore, this difference is the same for all sequences y:

LA~y! 2 L%~y! 5 log O
y9[$0,1%,

max
1#i#N

Pi~y9! # log N.

PROOF. Since LA(y) 5 2log PA(y) and L%(y) 5 2log max1#i#N Pi(y), it
follows from the definition of PA that

LA~y! 2 L%~y! 5 log O
y9[$0,1%,

max
1#i#N

Pi~y9!

for all y. Clearly this value is at most log N. Furthermore, A can be interpreted
as a Bayes algorithm for predicting the bits of y under the log loss, where the
prior probability of y is given by

14This inequality holds even if the experts are not simulatable.
15See, for example, Rissanen [1986], Desantis et al. [1988], Vovk [1992], Haussler and Barron [1992],
Yamanishi [1995], and Kivinen and Warmuth [1994].
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P~y! 5
max1#i#N Pi~y!

O y*[$0,1%, max1#i#N Pi~y9!
.

Since A is Bayes and has the same regret LA(y) 2 L%(y) for each y, it follows
that A is min/max. Otherwise, there would exist another algorithm A9 with
average regret with respect to this prior that is less than the Bayes optimal
algorithm, which would yield a contradiction. e

It is instructive to contrast the simplicity of the algorithms and analysis for log
loss to the relative complexity involved in the analysis of the algorithms in this
paper, which aim to minimize the absolute loss. This suggests that, when given
the choice, one might be better off choosing to use the log loss. However, in
many situations there is no such choice because the goal is to minimize the
number of mistakes and not to minimize the length of a coding of the sequence.

7. Conclusions

In this paper, we prove worst-case loss bounds for on-line learning for the
absolute loss, and give applications in pattern recognition. We bound the
additional loss of the algorithm over the loss of the best expert. Apart from the
game-theoretic analysis, our main upper bound is obtained essentially by tuning
an algorithm that was first introduced by Vovk (Theorem 4.4.3). Other loss
functions for the expert framework are considered in Vovk [1990] and Haussler
et al. [1995].

The paper leaves many open problems. Our lower bounds only address the
case when a bound on the length of the sequence of examples is known. We
would like to have lower bounds for the case when the sequence is of unbounded
length but the loss of the best expert lies below a bound that is known to the
algorithm. In other words, are there lower bounds that match the upper bounds
of Theorem 4.4.3?

For the case when the algorithm has no prior knowledge of the loss of the best
expert (Theorem 4.6.3), can the constant in front of the square root be lowered
and the algorithm be simplified? We would also like to generalize our upper
bounds of Theorem 4.4.3 to the case when the set of experts is infinite. Assume
the expert % i has initial weight wi and the total weight i51

` wi of all experts is
one. We would like to get bounds of the following form that hold for arbitrary
outcome sequence y:

LA~y! # inf
1#i#`

SL% i
~y! 1 c ÎL% i

lnS 1

wi
D 1 c9 lnS 1

wi
D ,D ,

where the constants c and c9 are as low as possible. Weaker bounds that are not
in the above form have been given by Littlestone and Warmuth [1994].

Our new bounds proven for the PAC model (Section 5) are better that
previous bounds but the algorithms are very complicated. Is the hold-one-out
model necessary to prove the bounds given for the PAC model? Can the same
bounds be obtained by simpler algorithms?

The upper bound for the main algorithm P of this paper (Theorem 4.2.1) has
recently been generalized by Kivinen and Warmuth [1994] to the case when the
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outcomes lie in the interval [0, 1] instead being restricted to be binary as done in
this paper. The new result can be used as a starting point for generalizing the
results for the PAC model to the case when the hypotheses have range [0, 1]
instead of {0, 1}.

Appendix A. Proof of Lemma 3.2.1.

The proof is based on the fact that the distribution of A,,N, after proper
rescaling and shifting, converges to a limit distribution. However, as convergence
of the distributions does not imply convergence of the expected values, we need
to use a slightly more involved argument.

Let Y,,i be a normalized version of S,,i, with mean 0 and variance 1

Y,,i 5
S,,i 2 ,/ 2

Î,/ 2
, (31)

and let B,,N be

B,,N 5
min1#i#N$Y,,i%

Î2 ln N
5

A,,N 2 ,/ 2

Î~,/ 2!ln N
. (32)

It suffices to show that e . 0 N0 N . N0 ,0 , $ ,0

E~B,,N! # 21 1 e. (33)

In order to prove this claim, we upper bound the expectation by a sum as
follows:

E~B,,N! # S 2 1 1
e

3D PSB,,N # 21 1
e

3D 1 0P~B,,N # 0!

1 E
0

`

P~B,,N $ C!dc . (34)

We start by bounding the third term in (34). In general, we have that

P~B,,N $ c! 5 P
i51

N

PS S,,i 2 ,/ 2

Î,~ln N!/ 2
$ cD , (35)

and as the expected value of S,,i is ,/2, we can bound the RHS using Hoeffding’s
bound:

PS S,,i 2 ,/ 2

Î,~ln N!/ 2
$ cD 5 PSS,,i $

,

2
1 , S c Î~ln N!/ 2

Î,
D D

# expS22,S c Î~ln N!/ 2

Î,
D 2D

5 exp~2c2 ln N! . (36)
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Plugging this back into the integral, we get

E
0

`

P~B,,N $ c!dc # E
0

`

exp~2c2 N ln N!dc 5
1

2 Î p

N ln N
#

e

3
(37)

for sufficiently large N.
It remains to bound the first term in Eq. (34). Let c be an arbitrary real

number. From the central limit theorem, it follows that

P~Y,,i $ c!3
,3`

P~F i $ c! , (38)

where F i are independent random variables from the normal distribution
1(0, 1). From this, we get that

P~ Î2 ln N B,,N # c! 5 PS min
1#i#N

Y,,i # cD
5 1 2 P

i51

N

P~Y,,i . c!3
,3`

1 2 P
i51

N

P~F i . c!

5 P~QN # c! , (39)

where QN 5 min1#i#N {F i}. On the other hand, asymptotic analysis of the
extreme order statistics of the normal distribution (see Galambos [1987], Section
2.3.2, Eqs. (59), (60)) shows that

PSQN 2 aN

bN

# cD 3N3`

1 2 exp~2ec! , (40)

where

aN 5 2Î2 ln N 1
ln ln N 1 ln 4p

2 Î2 ln N
and bN 5

1

Î2 ln N
. (41)

Combining Eqs. (39) and (40), we get that

lim
N3`

lim
,3`

PSB,,N .
cbN 1 aN

Î2 ln N
D 5 exp~2ec! . (42)

We now fix c sufficiently large so that exp(2ec) , e/3. For N and , sufficiently
large we have that

PSB,,N .
cbN 1 aN

Î2 ln N
D ,

e

3
. (43)

Plugging in the definitions of aN and bN, we get that

PSB,,N .
c

2 ln N
2 1 1

1/ 2~ln ln N 1 ln 4p!

2 ln N D ,
e

3
. (44)
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Choosing N large enough we finally get that

PSB,,N . 21 1
e

3D ,
e

3
, (45)

which upper bounds the first term in Eq. (34) by (1 2 e/3)(21 1 e/3) , 21 1
(2/3)e. This, combined with the above bound for the third term, completes the
proof. e

Appendix B Proof of Lemma 4.4.1

Recall that z . 0 or z 5 ` and thus

g~ z! 5
1

1 1 2z 1 z2/ln 2
[ @0, 1! .

The following inequalities are equivalent to the lemma.

z2 2 ln~ g~ z!!

2 ln~2/~1 1 g~ z!!!
#

1

2g~ z!
1

1

2

0 # S 1 1
1

g~ z!
D ln S 2

1 1 g~ z!
D 2 z2 1 ln~ g~ z!! .

Since g(0) 5 1, the last inequality holds for z 5 0. Thus, it suffices to show that
the derivative of the RHS is nonnegative for all z $ 0. Taking this derivative we
get

2
g9~ z! ln~2/~1 1 g~ z!!!

g~ z!2
2

~1 1 ~1/g~ z!!! g9~ z!

1 1 g~ z!
2 2z 1

g9~ z!

g~ z!

which simplifies to

2
g9~ z! ln~2/~1 1 g~ z!!!

g~ z!2
2 2z.

Note that g9( z) 5 2(2 1 2z/ln 2) g( z)2, so the derivative is nonnegative
whenever

S 2 1
2z

ln 2D lnS 2

1 1 g~ z!
D 2 2z $ 0. (46)

We now consider two cases depending on the value of z. In the first case,

0 , z #
3 ln 2 2 4 ln2 2

2 ln 2 2 1
< .4

and we use the approximation ln(1 1 x) $ x/(1 1 x). With this approximation,
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lnS 2

1 1 g~ z!
D 5 lnS 1 1

1 2 g~ z!

1 1 g~ z!
D $

1 2 g~ z!

2
.

Plugging back into Inequality (46), we see that the derivative is nonnegative
whenever

S 2 1
2z

ln 2D 1 2 g~ z!

2
2 2z $ 0.

By multiplying the above with 1/g( z), we get the following equivalent inequali-
ties:

S 1 1
z

ln 2D S 2z 1
z2

ln 2D 2 2zS 1 1 2z 1
z2

ln 2D $ 0

3z2

ln 2
1

z3

ln2 2
2 4z2 2 2

z3

ln 2
$ 0

3 ln 2 2 4 ln2 2 1 z 2 2z ln 2 $ 0,

which holds due to the assumption that z # (3 ln 2 2 4 ln2 2)/(2 ln 2 2 1).
Now we assume that z $ (3 ln 2 2 4 ln2 2)/(2 ln 2 2 1). Note that
(1 2 g( z))/(1 1 g( z)) is an increasing function which approaches 1 as z 3 `.
Furthermore, under the assumptions of this case, g( z) # (2 ln 2 2 1)2/(1 2 ln 2)
, 1/2 and (1 2 g( z))/(1 1 g( z)) . 1/3. Thus, we can underestimate ln(1 1 x)
by interpolating between x 5 1/3 and x 5 1 (with (1 2 g( z))/(1 1 g( z)) 5 x)

lnS 1 1
1 2 g~ z!

1 1 g~ z!
D $

3

2 S 1 2
1 2 g~ z!

1 1 g~ z!
D lnS 4

3D 1
3

2 S 1 2 g~ z!

1 1 g~ z!
2

1

3D ln 2.

Thus, for the values of z considered in this case, the following equivalent form of
(46)

lnS 1 1
1 2 g~ z!

1 1 g~ z!
D 2

z

1 1 ~ z/ln 2!
$ 0

holds whenever

3

2S 1 2
1 2 g~ z!

1 1 g~ z!
D lnS 4

3D 1
3

2 S 1 2 g~ z!

1 1 g~ z!
2

1

3D ln 2 2
z

1 1 ~ z/ln 2!
$ 0

3g~ z!

1 1 g~ z!
lnS 4

3D 1
1 2 2g~ z!

1 1 g~ z!
ln 2 2

z

1 1 ~ z/ln 2!
$ 0

S 3g~ z!lnS 4

3D 1 ~1 2 2g~ z!!ln 2D S 1 1
z

ln 2D 2 z~1 1 g~ z!! $ 0

S 3 lnS 4

3D 2 ln 2 1 2z ln 2 1 z2D S 1 1
z

ln 2D 2 zS 2 1 2z 1
z2

ln 2D $ 0
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3 lnS 4

3D 2 ln 2 1 2z ln2 1 z2 1
3z ln~4/3!

ln 2
2 z 2 2z $ 0

3 lnS 4

3D 2 ln 2 1 zS 2 ln 2 1
3 ln~4/3!

ln 2
2 3D 1 z2 $ 0

Finally, we observe that this polynomial is always positive, obtaining its minimum
of about 0.13 when z ' 0.18. e

Appendix C. Proof of Theorem 4.6.3

First, if L%(y) # a2 ln N, then the algorithms first guess k0 is an upper bound on
the loss of the best expert, and by Theorem 4.4.3 the loss of P* is bounded by at
most

L%~y! 1 Îa2~ln N!2 1
1

2
log2 N 5 L%~y! 1 S a 1

1

2 ln 2D ln N,

satisfying the theorem. We proceed with the assumption that L%(y) . a2 ln N.
Let last be the largest iteration number in which a prediction was made by

algorithm P*. Let Llast,% i
be the loss incurred by the expert % i while algorithm P*

is executing iteration number last, and let Llast ,% be the minimum Llast ,% i
over % i

[ %. If Llast,% # klast, then by Theorem 4.4.3 the loss of algorithm P* during
iteration number last is at most

Llast,% 1 Îklast ln N 1
1

2
log2 N 5 Llast,% 1 S aclast/ 2 1

1

2 ln 2D ln N.

If Llast,% . klast, then, as there are no more iterations after last (implying that
P* makes only one additional prediction following the last prediction in which
the loss of algorithm P* is at most blast), the loss of algorithm P* during iteration
number last is at most

blast 1 1 # Llast,% 1 S aclast/ 2 1
1

2 ln 2D ln N 1 1.

Using the above and the fact that the loss incurred by P* during any iteration
z is at most bz 1 1, we can bound LP*(y),

LP*~y! # Llast,% 1 S aclast/ 2 1
1

2 ln 2D ln N 1 1 1 O
z50

last21

~bz 1 1! .

Using Eq. (14),

LP*~y! # Llast,% 1 S aclast/ 2 1
1

2 ln 2D ln N 1 1
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1 O
z50

last21 S kz 1 S acz/ 2 1
1

2 ln 2D ln N 1 1D
# Llast,% 1 O

z50

last21

kz 1 O
z50

last S S acz/ 2 1
1

2 ln 2D ln N 1 1D .

Lemma 4.6.1 implies that L%(y), the loss of the best expert, is at least Llast ,% 1

z50
last21 kz. Using this fact,

LP*~y! # L%~y! 1 ~last 1 1!S 1 1
ln N

2 ln 2D 1 O
z50

last

acz/ 2 ln N. (47)

We now work on the second and third terms separately. We will use the
following lemma to help simplify the second term.

LEMMA C.1. For all x $ 0, ln(1 1 x) # 0.805 =x.

PROOF (OF LEMMA). It is slightly easier to show that for all z $ 0, ln(1 1 z2)
2 0.805z # 0. The inequality clearly holds at z 5 0 and z 5 `. By
differentiating, we see that the extrema are at

z 5
1 6 Î1 2 ~0.805!2

0.805
.

Plugging these values in show that both of these (local) extrema are negative, so
ln(1 1 z2) 2 0.805z # 0 for all z $ 0. e

We return to the proof of the theorem by applying Lemma 4.6.2 followed by
Lemma C.1 to the second term.

~last 1 1!S1 1
ln N

2 ln 2D # 1 1
log2 N

2
1 S1 1

ln N

2 ln 2DlogcS1 1
L%~y!~c 2 1!

a2 ln N D
# 1 1

log2 N

2
1 S1 1

ln N

2 ln 2D 0.805

ln c ÎL%~y!~c 2 1!

a2 ln N

5 1 1
log2 N

2
1 S1 1

ln N

2 ln 2D 0.805 Î~c 2 1!

a ln N ln c
ÎL%~y!ln N

5 1 1
log2 N

2
1 S0.805Î~c 2 1!

a ln N ln c
1

0.805Î~c 2 1!

a~2 ln 2!ln c
DÎL%~y!ln N.

For the third term of Eq. (47) we sum the geometric series and then apply
Lemma 4.6.2.

O
z50

last

acz/ 2 ln N 5 a ln N
Îclast11 2 1

Îc 2 1
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# a ln N
ÎcS 1 1

L%~y!~c 2 1!

a2 ln N D
Îc 2 1

2
a ln N

Îc 2 1
.

We continue with the approximation =1 1 x # =x 1 1/=4x and then use the
assumption that L%(y) $ a2 ln N.

O
z50

last

acz/ 2 ln N #
a Îc ln N

Îc 2 1
S ÎL%~y!~c 2 1!

a2 ln N
1 Î a2 ln N

4L%~y!~c 2 1!
D 2

a ln N

Îc 2 1

#
Îc~c 2 1!

Îc 2 1
ÎL%~y!ln N 1

a Îc ln N

2~ Îc 2 1! Îc 2 1
2

a ln N

Îc 2 1

5
Îc~c 2 1!

Îc 2 1
ÎL%~y!ln N 2 a ln N

2 Îc 2 1 2 Îc

2~ Îc 2 1! Îc 2 1
.

Plugging these results back into (47) yields

LP*~y! # L%~y! 1 1 1
ln N

2 ln 2
2

a ln N~2 Îc 2 1 2 Îc!

2~ Îc 2 1! Îc 2 1

1 S 0.805 Îc 2 1

a ln N ln c
1

0.805 Îc 2 1

a~2 ln 2!ln c
1

Îc~c 2 1!

Îc 2 1
D ÎL%~y!ln N.

We use f to denote the golden ratio, (1 1 =5)/2, and recall that f2 2 1 5 f.
The =c(c 2 1)/(=c 2 1) term is minimized at c 5 f2, where it is f3/2/(f 2 1),
or about 3.33 (less than 3.3302).

With c set to f2, the factor in front of the =L%(y) ln N term is less than

S f3/ 2

~f 2 1!
1

0.805 Îf

4a ln 2 ln f
1

0.805 Îf

2a ln N ln f
D .

We now turn our attention to the coefficient of the ln N term together with the
“11”. For c 5 f2, this factor is

1

ln N
1

1

2 ln 2
2

a~2 2 Îf!

2~f 2 1!

and is less than 1/(2 ln 2) for all a $ 2(f 2 1)/((2 2 =f) ln N), completing
the proof of the theorem. e
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