
The ABACOC Algorithm: a Novel Approach for
Nonparametric Classification of Data Streams

Rocco De Rosa
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Francesco Orabona
Yahoo Labs

New York, NY, USA

Nicolò Cesa-Bianchi
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Abstract—Stream mining poses unique challenges to ma-
chine learning: predictive models are required to be scalable,
incrementally trainable, must remain bounded in size, and be
nonparametric in order to achieve high accuracy even in complex
and dynamic environments. Moreover, the learning system must
be parameterless—traditional tuning methods are problematic
in streaming settings—and avoid requiring prior knowledge of
the number of distinct class labels occurring in the stream. In
this paper, we introduce a new algorithmic approach for non-
parametric learning in data streams. Our approach addresses all
above mentioned challenges by learning a model that covers the
input space using simple local classifiers. The distribution of these
classifiers dynamically adapts to the local (unknown) complexity
of the classification problem, thus achieving a good balance
between model complexity and predictive accuracy. By means of
an extensive empirical evaluation against standard nonparametric
baselines, we show state-of-the-art results in terms of accuracy
versus model size. Our empirical analysis is complemented by a
theoretical performance guarantee which does not rely on any
stochastic assumption on the source generating the stream.1

I. INTRODUCTION

As pointed out in various papers—e.g. [14], [18]—stream
mining poses unique challenges to machine learning: examples
must be efficiently processed one at a time as they arrive from
the stream, and an up-to-date predictive model must be avail-
able at all times. Incremental learning systems are well suited
to address these requirements: the key difference between a
traditional (batch) learning system and an incremental one is
that the latter learns by performing small adjustments to the
current predictor. Each adjustment uses only the information
provided by the current example in the stream, allowing an
efficient and timely update of the predictive model. This is
unlike batch learning, where training typically involves a costly
global optimization process involving multiple passes over
the data. Another important feature of stream mining is that
the true structure of the problem is progressively revealed
as more data are observed. In this context, nonparametric
learning methods, such as decision trees (DT) or nearest
neighbour (NN), are especially effective, as a nonparametric
algorithm is not committed to any specific family of decision
surfaces. For this reason, incremental algorithms for DT [6],
[4] and NN [24] are extremely popular in stream mining
applications. Since in nonparametric methods the model size
keeps growing to fit the stream with increasing accuracy, we
seek a method able to improve predictions while growing the
model as slowly as possible. However, as the model size cannot
grow unbounded, we also introduce a variant of our approach

1Full version available at arxiv.org/pdf/1508.04912v1.pdf.

that prevents the model size from going beyond a given limit.
In the presence of concept drift [22], bounding the model
size may actually improve the overall predictive accuracy. A
further issue in stream mining concerns the way prediction
methods are evaluated—see, e.g., [12] for a discussion. In
this paper, we advocate the use of the online error which
measures the average of the errors made by the sequence of
incrementally learned models, where one first tests the current
model on the next example in the stream and then uses the
same example to update the model. Also, the online error does
not specifically require stochastic assumptions on the way the
stream is generated.

In this paper, we propose a novel incremental and non-
parametric approach for the classification of data streams. We
present four different instances of our approach characterized
by an increasing degree of adaptivity to the data. In a nutshell,
our algorithms work by incrementally covering the input space
with balls of possibly different radii. Each new example that
falls outside of the current cover becomes the center of a new
ball. Examples are classified according to NN over the ball
centers, where each ball predicts according to the majority of
the labels of previous examples that fell in that ball. The set of
balls is organized in a tree structure [16], so that predictions
can be computed in time logarithmic in the number of balls.
In order to increase the ability of the model to fit new data,
the radii of the balls shrink, thus making room for new balls.
The shrinking of the radius may depend on time or, in the
more sophisticated variants of our algorithms, on the number of
classification mistakes made by each ball classifier. Similarly
to DTs, our method locally adapts the complexity of the model
by allocating more balls in regions of the input space where the
stream is harder to predict. A further improvement concerns
the relocation of the ball centers in the input space: as our
methods are completely incremental, the positioning of the
balls depends on the order of the examples in the stream, which
may result in a model using more balls than necessary. In order
to mitigate this phenomenon, while avoiding a costly global
optimization step to reposition the balls, we also consider a
variant in which a K-means step is used to move the center
of a ball being updated towards the median of the data points
that previously fell in that ball. A further modification which
we consider is aimed at keeping the model size bounded even
in the presence of an arbitrarily long stream.

II. RELATED WORK

Within the vast area of stream mining [10], we focus our
analysis of related work on the subarea that is most relevant



to this study: nonparametric methods for stream classification.
The most important approaches in this domain are:

Incremental decision and rule tree learning systems, such
as Very Fast Decision Tree (VFDT) [6] and Decision Rules
(RULES) [11] which use an incremental version of the split
function computation —see also [7], [4].
Incremental variants of NN, such as Condensed Nearest
Neighbour (CNN) [23] that stores only the misclassified in-
stances, Lazy-Tree (L-Tree) [24] condensing historical stream
records into compact exemplars, and IBLStreams [19], an
instance-based learning algorithms removing outliers or ex-
amples that have become redundant.
Incremental kernel-based algorithms, such as the kernel
Perceptron [9] with Gaussian kernels.2

Note that our methods do not belong to any of the above
three families: they do not perform a recursive partition of
the feature space as DTs, they do not allocate (or remove)
instances based on the heuristics used by IBLStreams, and
they do not use kernels. As we explain next, our most basic
algorithm is a variant for classification tasks of the algorithm
proposed in [15] for nonparametric regression in a streaming
setting. A similar algorithm was previously proposed in [13]
and analyzed without resorting to stochastic assumptions on
the stream generation. A preliminary instance of our approach,
without any theoretical analysis, was developed in [5].

III. PROBLEM SETTING

Our analysis applies to streams of data points belonging to
an arbitrary metric space and depends on the metric dimension
of data points in the stream. This notion of dimension extends
to general metric spaces the traditional notions of dimension
(e.g., Euclidean dimension and manifold dimension) [2]. The
metric dimension of a subset S of a metric space (X , ρ) is
d if there exists a constant CS > 0 such that, for all ε > 0,
S has an ε-cover of size at most CSε

−d (an ε-cover is a set
of balls of radius ε whose union contains S). In practice, the
metric dimension of the stream may be much smaller than the
dimension of the ambient space X . This is especially relevant
in case of nonparametric algorithms, which typically have a
bad dependence on the dimensionality of the data.

The learner receives a sequence (x1, y1), (x2, y2), . . . of
examples, where each data point xt ∈ X is annotated with a
label yt from a set Y = {1, . . . ,K} of possible class labels,
which may change over time. The learner’s task is to predict
each label yt minimizing the overall number of prediction mis-
takes over the data stream. We derive theoretical performance
guarantees for BASE, the simplest algorithm in our family
(Algorithm 2), without making stochastic assumptions on the
way the examples in the stream are generated.

We will analyze the performance of BASE using the notion
of regret [1]. The regret of a randomized algorithm is defined
as the difference between the expected number of classification
mistakes made by the algorithm over the stream and the
expected number of mistakes made by the best element in
a fixed class of randomized classifiers. A randomized binary

2Gaussian kernels are universal [20], meaning that a kernel-based model can
approximate any continuous classification function. Hence, algorithms using
Gaussian kernels can be viewed as nonparametric learning algorithms.

classifier is a mapping f : X → [0, 1], where f(x) is the
probability of predicting label +1. We consider the class FL of
L-Lipschitz predictors f : X → [0, 1] w.r.t. the metric ρ of the
space. Namely, ∀x, x′ ∈ X , |f(x)− f(x′)| ≤ Lρ (x,x′).
Lipschitz functions are a standard reference in the analysis of
nonparametric algorithms. The regret of an algorithm generat-
ing randomized predictions ŷt is defined by (see also [13])

RL(T ) =

T∑
t=1

P(ŷt 6= yt)− min
f∈FL

T∑
t=1

P(f(xt) 6= yt) .

IV. ADAPTIVE BALL COVERING

The adaptive ball covering at the roots of our method was
previously used in a theoretical work [15]. Here, we distillate
the main ideas behind that approach in a generic algorith-
mic approach (the template Algorithm 1) called ABACOC
(Adaptive BAll COver for Classification). We then present our
methods as specific instances of this generic template.

The BASE Algorithm. Our first instance of ABACOC is
BASE (Algorithm 2), a randomized variant for binary clas-
sification of the ITBR (Incremental Tree-Based Regressor)
algorithm proposed in [15]. BASE shrinks the radius (line
27) of the balls depending on (1) an estimate of the metric
dimension of the stream and (2) the number of data points
so far observed from the stream. This implies that the radii
of all the balls shrink at the same rate. In the prediction
phase, the ball nearest to the input example is considered and
a randomized binary prediction is made based on the class
distribution estimate locally computed in the ball. Laplace
estimators (line 5) and randomized predictions (lines 6–8) are
new features of BASE that were missing in ITBR.

For the BASE algorithm we can prove the following regret
bound against any Lipschitz randomized classifier, without any
assumption on the way the stream is generated. Moreover,
similarly to ITBR, the regret upper bound depends on the
unknown metric dimension d of the space, automatically
estimated by the algorithm.

Theorem 1: Fix a metric ρ and any stream (xt, yt) t =
1, . . . , T of binary labeled points S = {x1, . . . ,xT } in a
metric space (X , ρ) of diameter 1 and let d be the metric
dimension of S. Assume that Algorithm 2 is run with
parameter Ĉ ≥ CS , where CS is such that CSε

−d upper
bounds the size of any ε-cover of S. Then, for any L > 0
we have

RL(T ) ≤ 1.26
(

2.5
√
CS 2d + 1.5L

)
T

1+d
2+d .

The proof is in Appendix A. Note that the algorithm
does not know L, hence the regret bound above holds for all
values of L simultaneously. This theorem tells us that BASE
is not an heuristic, but rather a principled approach with a
specific performance guarantee. The performance guarantee
implies that, on any stream, the expected mistake rate of
BASE converges to that of the best L-Lipschitz randomized
classifier at rate of order T−1/(2+d). Next, we generalize the
BASE algorithm to multiclass classification and make some
modifications aimed at improving its empirical performance.



Algorithm 1 ABACOC TEMPLATE
Input: metric ρ

1: InitProcedure()
2: for t = 1, 2, . . . do
3: Get input example (xt, yt)
4: if yt /∈ Y then
5: Set Y = Y ∪ {yt} . add new class on the fly
6: end if
7: Let B(xs, εs) be the ball in S closest to xt

8: OuputPrediction(Bs)
9: if ρ

(
xs,xt) ≤ εs then

10: B=UpdateBallInformation(Bs, (xt, yt))
11: else
12: B=AddNewBall(S,xs, (xt, yt))
13: end if
14: UpdateEpsilon(B)
15: end for

Algorithm 2 BASE

Input: Ĉ (space diameter)
1: procedure INITPROCEDURE
2: S = ∅, i = 1, ti = 0, and di = 1
3: end procedure
4: procedure OUPUTPREDICTION(Bs)
5: qs = ms+1

ns+2 . laplace estimator of counts
6: Set γs = 1

2
√
ns+2

7: Set pt =


0 if qs < 1

2 − γs
1 if qs > 1

2 + γs
1
2 + (qs − 1

2 )/(2γs) otherwise.
8: Predict ŷt = 1 with probability pt and 0 otherwise.
9: end procedure

10: procedure UPDATEBALLINFORMATION(Bs, (xt, yt))
11: ms = ms + yt . number of yt = 1 in the ball
12: ns = ns + 1 . total number of points in the ball
13: end procedure
14: procedure ADDNEWBALL(S,xs, (xt, yt))
15: if |S|+ 1 > Ĉ2diε−di

t then . dimension check
16: di+1 =

⌈
log
( |S|+1

Ĉ

)
/ log(2/εt)

⌉
. Phase i+ 1

17: S = ∅, i = i+ 1, ti = 0
18: end if
19: S = S ∪ {xt}
20: mt = yt . number of yt = 1 in the ball
21: nt = 1 . first point in the ball
22: ti = ti + 1 . counts the time steps within phase i
23: end procedure
24: procedure UPDATEEPSILON
25: εt = t

−1/(2+di)
i . radius dependent on time

26: end procedure

The BASE algorithm with ball adjustment. A natural way
of generalizing the BASE algorithm to the multiclass case is
by estimating the class probabilities in each ball. Note that this
approach is naturally incremental w.r.t. the number of classes.
The BASE algorithm greedly covers the input space, using
balls always centered on input points. However, constraining
the centers on data points is an intuitively sub-optimal strategy.
We introduce the BASE-ADJ variant which makes a partial
optimization of the ball centers. More precisely, BASE-ADJ,

Algorithm 3 AUTO and AUTO-ADJ

Input: d̂
1: procedure INITPROCEDURE
2: // wait until at least two different labels fed
3: if S ≡ ∅ then
4: S = {x1}
5: else if yt 6= y1 then . |S| = 1
6: S = S ∪ {xt}, ε1 = εt = ρ(x1,xt)
7: else
8: continue
9: end if

10: end procedure
11: procedure OUPUTPREDICTION(Bs)
12: ns = ns(1) + · · ·+ ns(K) . total class counts
13: ps(k) = ns(k)

ns
k = 1, . . . ,K

14: Predict ŷt = argmax
k∈Y

ps(k)

15: end procedure
16: procedure UPDATEBALLINFORMATION(Bs, (xt, yt))
17: // shrink radius on errors
18: if yt 6= ŷt then
19: Set ms = ms + 1 . update mistakes count
20: else if AUTO-ADJ method then
21: // update ball centre if correct prediction
22: ∆ = xt − xs;us = us + 1;xs = xs + ∆/us
23: end if
24: Updates label counts ns(1), . . . , ns(K) in the ball Bs

using yt
25: end procedure
26: procedure ADDNEWBALL(S,xs, (xt, yt))
27: S = S ∪ {xt}, Rt = ρ(xt,xs)
28: mt = 0 . ball mistakes count
29: ut = 1 . center updates count (for AUTO-ADJ)
30: Init. label counts ns(1), . . . , ns(K) in Bt using yt
31: end procedure
32: procedure UPDATEEPSILON(Bs)
33: εs = Rsm

−1/(2+d̂)
s . radius dependent on mistakes

34: end procedure

moves the center of each ball towards the average of the correct
classified data points falling into it —the update procedure is
described in line 22 of Algorithm 3.3 In this way, the center
of the ball tends to move towards the centroid of a cluster of
points of a certain class. We expect this variant to generate less
balls and also to have a better empirical performance. We drop
from BASE-ADJ the Laplace correction of class estimates and
the randomization in the computation of the predicted label.
Hence, BASE-ADJ always predicts the class with the largest
class probability estimate within the ball closest to the current
data point.

The AUTO algorithm: automatic radius. One of the biggest
issues with BASE (and ITBR) is the use of a common
radius for all the balls. In fact, we have that the radii εs
shrink uniformly with time t at rate t−1/(di+2), where di
is the estimated metric dimension. However, we would like
the algorithm to use smaller balls in regions of the input
space where labels are more irregularly distributed and bigger
balls in easy regions, where labels tend to be the same. In

3The other procedures are essentially the same as those in BASE.



Data Cls Dim Examples Drift Source

sensor 54 5 2,219,803 no SDMR
kddcup99 23 41 494,021 no SDMR
powersupply 24 2 29,928 yes SDMR
hyperPlane 5 10 100,000 yes SDMR
sea 2 3 60,000 yes DF
poker 10 10 25,010 no MOA
covtype 7 54 581,012 yes MOA
airlines 2 608 539,383 yes MOA
electricity 2 8 45,312 yes MOA
connect-4 3 126 67,557 no LIBSVM
acoustic 3 50 78,823 no LIBSVM

TABLE I. DATASETS USED FOR BENCHMARKING.

order to overcome this issue, in this section we introduce two
other instances of ABACOC: AUTO and AUTO-ADJ. In these
variants we let the radius of each ball shrink at a rate depending
on the number of mistakes made by each local ball classifier,
lines 19 and 33 in Algorithm 3. Moreover, in order to get rid
of the parameter Ĉ, we initialize the radius of each ball to the
distance to its closest ball, line 27 in Algorithm 3. In other
words, everytime a new ball is added its radius is set equal to
the distance to the nearest already-existing ball. AUTO-ADJ
differs from AUTO because it implements the same strategy,
introduced in BASE-ADJ, for updating the position of the
centers. Note that this strategy, coupled with the shrinkage
depending on the number of mistakes, makes a ball stationary
once it is covering a region of the space that contains data
points always annotated with the same label. Using balls of
different radii makes it impossible to work with the automatic
estimate of the metric dimension used in BASE, BASE-ADJ
and ITBR. For this reason, we further simplify the algorithms
by resorting to a fixed estimate d̂ of the intrinsic dimension d
as an input parameter.

V. EXPERIMENTS

Generally, in real applications for high-speed data streams,
when the system cannot afford to revise the current model
after each observation of a data point, stream sub-sampling
is used to keep the model size and the prediction efficiency
under control. In order to emphasize the distinctive features
of our approaches (i.e., good trade-off between accuracy and
model size), we tested the online (prequential) performance
using sub-sampling. In this setting, the algorithms have access
to each true class label only with a certain probability which
we call rate in all the experiments. By varying this proba-
bility, we can explore different model sizes for each baseline
algorithm and compare the resulting performances.

Baseline and datasets. We considered 11 popular datasets
for stream mining listed in Table I. As indicated in the
table, datasets are from the Stream Data Mining repository
(SDMR) [25], the Data Sets with Concept Drift repository
(DF) [21], the Massive Online Analysis (MOA) collection4,
and the LIBSVM classification repository5. In all experiments,
we measured the online accuracy (prequential error in [12]
or “Interleaved Test-Then-Train” validation in MOA6). This
is the average performance when each new example in the
stream is predicted using the classifier trained only over the

4moa.cms.waikato.ac.nz/datasets/
5www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
6moa.cms.waikato.ac.nz/

past examples in the stream. In a pre-processing phase, the
categorical attributes were binarized. BASE and BASE-ADJ
received normalized input instances (Euclidean norm) allowing
the input parameter Ĉ (space diameter) to be set to 1. We
compared our ABACOC methods BASE7 and BASE-ADJ
(Algorithm 2), AUTO and AUTO-ADJ (Algorithm 3) against
some of the most popular incremental nonparametric baselines
(see Section II) in the stream mining literature: K-NN with
parameter K = 3 (NN3) (see next paragraph for a justification
of this choice), Condensed Nearest Neighbor [23] (CNN), a
streaming version of NN which only stores mistaken points,
the multiclass Perceptron with Gaussian kernel [3] (K-PERC),
a DT for streaming data [6] (VDFT), and a recent algorithm for
learning decision rules on streaming data [11] (RULES). For
VDFT and RULES we used the implementation available in
MOA, while K-PERC was run using the code in DOGMA [17].
The ABACOC algorithms were implemented in MATLAB.8
We did not consider the L-Tree [24] and IBLStreams [19]
methods described in Section II as L-Tree is an efficient
approximation of NN (outperformed by NN, see [24]) and
IBLStreams never performs better than RULES (both im-
plemented in MOA) on our datasets. Where necessary, the
parameters of the competitor methods were individually tuned
on each dataset using an algorithm-specific grid of values in
order to obtain the best online performance. Hence, the results
of the competitors are not worse than the ones obtainable
with a tuning of the parameters using standard cross-validation
methods. For our methods, we used the Euclidean distance as
metric ρ. Based on preliminary experiments, we noticed that
the parameter d̂ does not affect significantly the performance
in AUTO and AUTO-ADJ, so we set it to 2. With d̂ fixed to
this value, our methods are essentially parameterless.

Results. We now turn to describing the sub-sampling experi-
ments. In a streaming setting, the model size and thus the com-
putational efficiency of the prediction system is a key feature.
The goal of the experiments is to show the trade-off between
online performance and model size for each algorithm. The
model size is measured by: the number of balls used to cover
the feature space (ABACOC), the number of stored instances
(K-PERC, NN, CNN), the number of leaves (VFDT) or rules
(RULES) used to partition the feature space. We ran all the
methods using values rate = {1%, 3%, 5%, 10%} and the
same random seeds for all algorithms.9 In Figure 1, we plot the
normalized online performance against model size, averaged
over the datasets. The model size is relative to the stream
length, whereas the online performance is measured relative to
the top-performing method on each dataset without restriction
on model size. As we can see from the plot, NN3 saturates the
model size and achieves a slightly better overall performance
on the larger model sizes. However, it suffers at low budget
values and small model sizes. CNN works better than K-
PERC and DTs. VFDT and RULES use very little memory but
have a worse performance than the other methods. BASE-ADJ
improves on the performance of BASE. AUTO attains a better
performance than BASE-ADJ and AUTO-ADJ achieves the
overall best trade-off between accuracy and model size. In fact,
as we can see in Figure 1, the AUTO-ADJ curve dominates the

7We used the multiclass version as for BASE-ADJ.
8Code available at http://mloss.org/software/view/560/.
9We remark that the rate is only an upper bound on the model size. In

fact, the methods can select a smaller fraction of data to represent the model.



0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1

0.4

0.6

0.8

1

STREAM LENGHT PERCENTAGE

N
O

R
M

A
L

IZ
E

D
A

C
C

U
R

A
C

Y

BASE
BASE-ADJ
AUTO
AUTO-ADJ
NN3
CNN
K-PERC
RULES
VFDT

Fig. 1. Online performance against model size averaged over the datasets. The
model size is relative to the stream length, whereas the online performance
is measured relative to the top-performing method on each dataset without
restriction on model size.

other ones. Moreover, it attains 90% of the best full-sampling
methods while using only 1.5% of the data to represent the
model. Because of the better performance exhibited by our
methods with respect to the baselines at the same model size
values, we can infer that our methods have a better way of
choosing the data points that define their models.

Constant model size. In this section we propose a simple
method for making the memory footprint bounded, even in
the presence of an arbitrarily long data stream. When the
model size reaches a given limit, the algorithm starts to discard
the examples supporting the model that are judged to be
less informative for the prediction task. More precisely, it
is reasonable to discard the local classifiers that are making
the largest number of mistakes. Removing local classifiers
with a high mistake rate may help because: we are discard-
ing classifiers that are making essentially random decisions;
moreover, we make room for new classifiers that rely on fresh
statistics (good in case of concept drift) and are possibly better
positioned to capture a complex decision surface. In a nutshell,
after the budget is reached, whenever a new ball is added an
existing ball i is discarded according to the Laplace-corrected
probability: P(i discarded) = mi+1∑

j∈S mj+|S| ; where mi is the
number of mistakes made by ball i ∈ S.

We run the experiments in the same setting of the first
set of experiments, where we did not make any restriction
on the sub-sampling rate (rate = 1). We added to AUTO-
ADJ a constant model size bound. In these experiments the
budget parameters (as for rate in the previous experiments)
is the maximum percentage of stream used as ball center. With
respect to sub-sampling, here the algorithm has more control
over the data points that support the model. Along the same
lines of Figure 1, we show in Figure 2 the overall perfor-
mance of the compared methods using the budget/rate values
{1%, 3%, 5%, 10%}. AUTO-ADJ FIX clearly outperforms all
the other methods. This is not surprising, as AUTO-ADJ FIX
has a better way of choosing the data points supporting the
model as opposed to the random selection imposed on the
other methods.

0 2 · 10−24 · 10−26 · 10−28 · 10−2 0.1
0.8

0.85

0.9

0.95

1

STREAM LENGTH PERCENTAGE

N
O

R
M

A
L

IZ
E

D
A

C
C

U
R

A
C

Y

NN3
AUTO-ADJ
AUTO-ADJ FIX

Fig. 2. Online performance against model size, averaged over the datasets.
The model size is relative to the stream length, whereas the online performance
is measured relative to the top-performing method on each dataset without
restriction on model size.

VI. CONCLUSION AND FUTURE WORKS

We presented a new family of algorithms for nonpara-
metric classification of data streams. Our more sophisticated
algorithms feature the most appealing traits in stream mining
applications: nonparametric classification, incremental learn-
ing, dynamic addition of new classes, small model size, fast
prediction at testing time (logarithmic in the model size),
essentially no parameters to tune. We empirically showed
the effectiveness of our approach in different scenarios and
against several standard baselines. In addition, we proved
strong theoretical guarantees on the online performance of the
most basic version of our approach. Future work will focus on
investigating notions of local dimensions that allow to perform
dimensionality reduction locally and incrementally.

Acknowledgements. RDR and NCB are supported by the
MIUR through the ARS TechnoMedia Project under grant
2010N5K7EB 003.

REFERENCES

[1] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006.

[2] K. Clarkson. Nearest-neighbor searching and metric space dimensions.
Nearest-Neighbor Methods for Learning and Vision: Theory and Prac-
tice, 2005.

[3] K. Crammer and Y. Singer. Ultraconservative online algorithms for
multiclass problems. J. Mach. Learn. Res., 3:951–991, 2003.

[4] R. De Rosa and N. Cesa-Bianchi. Splitting with confidence in decision
trees with application to stream mining. In Int. Joint Conf. on Neural
Networks. IEEE, 2015.

[5] R. De Rosa, N. Cesa-Bianchi, I. Gori, and F. Cuzzolin. Online action
recognition via nonparametric incremental learning. In 25th British
Machine Vision Conf., 2014.

[6] P. Domingos and G. Hulten. Mining high-speed data streams. In Proc.
of the 6th ACM SIGKDD Int. Conf. on Knowledge discovery and data
mining, pages 71–80. ACM, 2000.

[7] P. Duda, M. Jaworski, L. Pietruczuk, and L. Rutkowski. A novel
application of hoeffding’s inequality to decision trees construction for
data streams. In Int. Joint Conf. on Neural Networks. IEEE, 2014.

[8] M. Feder, N. Merhav, and M. Gutman. Universal prediction of
individual sequences. IEEE Trans. Inform. Theory, 38(4):1258–1270,
1992.



[9] Y. Freund and R. E. Schapire. Large margin classification using the
Perceptron algorithm. Machine learning, 37(3):277–296, 1999.

[10] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. A survey of
classification methods in data streams. In Data Streams, pages 39–59.
Springer, 2007.

[11] J. Gama and P. Kosina. Learning decision rules from data streams. In
Int. Joint Conf. on Artificial Intelligence, pages 1255–1260, 2011.

[12] J. Gama, R. Sebastiao, and P. P. Rodrigues. On evaluating stream
learning algorithms. Machine Learning, 90(3):317–346, 2013.

[13] E. Hazan and N. Megiddo. Online learning with prior knowledge. In
Annual Conf. on Learning Theory, pages 499–513. Springer, 2007.

[14] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data
streams. In Proc. of KDD, pages 97–106. ACM, 2001.

[15] S. Kpotufe and F. Orabona. Regression-tree tuning in a streaming
setting. In Advances in Neural Information Processing Systems 26,
pages 1788–1796, 2013.

[16] R. Krauthgamer and J. R. Lee. Navigating nets: Simple algorithms for
proximity search. In Proc. of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 798–807, 2004.

[17] F. Orabona. DOGMA: a MATLAB toolbox for Online Learning, 2009.
Software available at http://dogma.sourceforge.net.

[18] J. Read, A. Bifet, G. Holmes, and B. Pfahringer. Scalable and efficient
multi-label classification for evolving data streams. Machine Learning,
88(1-2):243–272, 2012.

[19] A. Shaker and E. Hüllermeier. Iblstreams: a system for instance-
based classification and regression on data streams. Evolving Systems,
3(4):235–249, 2012.

[20] I. Steinwart. On the influence of the kernel on the consistency of support
vector machines. J. Mach. Learn. Res., 2:67–93, 2002.

[21] Tsymbal. Data sets with concept drift, 2006. Available online at http:
//www.win.tue.nl/∼mpechen/data/DriftSets/.

[22] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen. Dy-
namic integration of classifiers for handling concept drift. Inf. Fusion,
9(1):56–68, Jan. 2008.

[23] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-
based learning algorithms. Machine learning, 38(3):257–286, 2000.

[24] P. Zhang, B. J. Gao, X. Zhu, and L. Guo. Enabling fast lazy learning
for data streams. In Proc. of ICDM, pages 932–941. IEEE, 2011.

[25] X. Zhu. Stream data mining repository, 2010. Available online at
http://www.cse.fau.edu/∼xqzhu/stream.html.

APPENDIX A
PROOFS

We use the following well-known fact: if pt = P(ŷt =
1) for predicting yt ∈ {0, 1} using a randomized label ŷt ∈
{0, 1}, then P(ŷt 6= yt) = |yt − pt|. In the following, we say
that a phase ends each time condition in line 15 of BASE is
verified and use Ti to denote the time steps included in phase i.
Finally, Si denotes the maximum number of balls used in phase
i. We use the following lemma from the ITBR analysis [15].

Lemma 1 ([15]): Suppose BASE is run with parameter
Ĉ ≥ CS . Then for all phases i ≥ 1 we have i ≤ di ≤ d
and for any t ∈ Ti we have |Si| ≤ Ĉ 4diε−di

t .

Define `t(pt) = |pt− yt|. Unlike the analysis in [15], here we
cannot use a bias-variance decomposition. So, the key in the
proof is to decompose the regret in two terms with behaviour
similar to the bias and variance terms in the stochastic setting.

Lemma 2: Let d be the metric dimension of the set S of
data points in the stream. Assume that Ĉ ≥ CS . Then, in any
phase i and for any f ∈ FL we have that∑

t∈Ti

(
`t(pt)− `t

(
f(xt)

))
≤
(

2
√
Ĉ 2di+1 + 1.5L

)
n

1+di
2+di
i .

Proof: We use the notation xt → xs to say that xt is
assigned to a ball with center xs. We also denote by n(xs) the
number of points assigned to a ball of center xs. Define p∗s =
argminp∈[0,1]

∑
t :xt→xs

`t(p). For each xs in Si, we proceed
by upper bounding the error as a sum of two components∑
t :xt→xs

(
`t(pt)− `t

(
f(xt)

))
=

∑
t :xt→xs

(
`t(pt)− `t(p∗s)

)
+

∑
t :xt→xs

(
`t(p

∗
s)− `t

(
f(xt)

))
.

Using the definition of p∗s and the Lipschitzness of f , we have

`t(p
∗
s)− `t(f(xt)) ≤ `t(f(xs))− `t(f(xt))

≤ |f(xs)− f(xt)| ≤ Lρ (xs,xt) ≤ L εt.
The prediction strategy in each ball is equivalent to the
approach followed in [8] (see also Exercise 8.8 in [1]). The
only important thing to note is that the first prediction of the
algorithm in a ball is made using the probability of the closest
ball, even if it is further than εt, instead of at random as in
the original strategy in [8]. It is easy to see that this adds an
additional 0.5 to the regret stated in [8]. So we have∑
t :xt→xs

(`t(pt)− `t(p∗s)) ≤
√
n(xs) + 1 + 1 ≤ 2.5

√
n(xs).

Hence overall we have∑
t :xt→xs

(
`t(pt)− `t

(
f(xt)

))
≤ 2.5

√
n(xs) + L

∑
t :xt→xs

εt.

Summing over all the xs ∈ Si, we have∑
t∈Ti

(
`t(pt)− `t

(
f(xt)

))
≤ 2.5

|Si|∑
s=1

√
n(xs) +L

∑
t∈Ti

εt. (1)

For the first term in the r.h.s. of (1) we have

|Si|∑
s=1

√
n(xs) ≤ |Si|

√√√√ 1

|Si|

|Si|∑
s=1

n(xs) ≤ 2.5
√
|Si|ni.

To bound |Si| we use Lemma 1. While to bound the second
term in (1) we have∑

t∈Ti

εt =

ni∑
t=1

t
− 1

2+di ≤
∫ ni

0

τ
− 1

2+di dτ ≤ 1.5n
di+1

2+di
i

where ni = |Ti|. Putting all together and using again Lemma 1
we get the stated bound.

Proof: (of Theorem 1) Let I denote the number of phases
up to time T . Let B , 2.5

√
Ĉ 2d + 1.5L. We use Lemma 2

in each phase and sum over the phases, to have
T∑

t=1

(`t(pt)− `t(p∗s)) =

I∑
i=1

∑
t∈Ti

(`t(pt)− `t(p∗s))

≤ B
I∑

i=1

n
1+d
2+d

i = B I

I∑
i=1

1

I
n

1+d
2+d

i ≤ B I

(
I∑

i=1

ni
I

) 1+d
2+d

= B I

(
T

I

) 1+d
2+d

≤ Bd
1

2+dT
1+d
2+d ≤ 1.26B T

1+d
2+d

where in the second inequality we use Jensen’s inequality, and
in the third one the first statement of Lemma 1.


