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ABSTRACT
Summary: The R package HCGene (Hierarchical Classification of
Genes) implements methods to process and analyze the Gene Onto-
logy and the FunCat taxonomy in order to support the functional
classification of genes. HCGene allows the extraction of subgraphs
and subtrees related to specific biological problems, the labelling of
genes and gene products with multiple and hierarchical functional
classes, and the association of different types of bio-molecular data
to genes for learning to predict their functions.
Availability: http://homes.dsi.unimi.it/∼valenti/SW/hcgene/
download/hcgene 1.0.tar.gz
Contact: valentini@dsi.unimi.it
Supplementary Information:
http://homes.dsi.unimi.it/∼valenti/SW/hcgene

The capability of assigning functions to unannotated gene products
using large-scale bio-molecular data is a key issue in functional
genomics and bioinformatics [Dopazo, 2006].

Ontologies such asGene Ontology[Harris et al., 2004] andFun-
Cat [Ruepp et al., 2004] encode binary relations among functional
classes. The graph induced on the class nodes by these relations is
a DAG (directed acyclic graph) for the Gene Ontology and a tree
for FunCat. Annotations for genes and gene products are provided
for both ontologies at different degrees of resolution and reliability,
and typically involve multiple classes. Thus gene function predic-
tion can be naturally viewed as a hierarchical classification problem
with structured labels involving multiple and partial paths [Barut-
cuoglu et al., 2006]. Yet, the majority of computational approaches
for the prediction of gene functions disregard the hierarchical struc-
ture of gene classes and solve the problem using a “flat” multiclass
predictor [Brown et al., 2000, Pavlidis et al., 2002].

A full-fledged hierarchical classification approach to gene predic-
tion calls for a new generation of scalable software tools. Graphs
with thousands of nodes and edges must be processed in order to
extract subgraphs related to the specific biological process under
investigation. Multiple functional classes must be properly associa-
ted to genes and gene products, according to the specific hierarchy
being considered. Finally, gene products must be associated to
the different data types (e.g., gene expression data, phylogenetic
or protein interaction data) used to infer the function of unknown
genes.

∗to whom correspondence should be addressed

Several software tools have been developed for browsing,
searching, and processing the Gene Ontology (see, e.g.,
www.geneontology.org for an updated list). In this work we des-
cribe HCGene(Hierarchical Classification of Genes), a software
library performing data pre-processing in tasks of hierarchical gene
classification. The distinctive features ofHCGenewith respect to
previous tools are: the integration of data, the processing of multila-
bels and graphs, and the addition of a library to process and analyze
the FunCat taxonomy.

We can divide in three main steps the pre-processing of data and
classes in a gene classification task.

1. Processing of functional classes of genes: Construction of GO
graphs and FunCat trees; extraction of subgraphs related to the pro-
blem under investigation.
2. Labeling gene products with functional classes: Association of
multiple functional classes from the GO or FunCat ontologies to
gene products.
3. Association of gene products to data: Association of the gene
products to their corresponding biological data.

The HCGeneR package provides methods and functionalities to
support all of the above steps. Moreover, it allows to analyze the pro-
perties of GO graphs and FunCat trees associated to both human and
specific model organisms (such asS. cerevisiae, Mus musculusand
Arabidopsis thaliana). Methods for computing various statistics on
the structure of GO and FunCat and their associated gene products
are also included in the library. Note thatHCGenedoes not include
any algorithm for hierarchical classification. Its purpose is to rather
offer tools that facilitate the use of gene classification algorithms.

The functionalities related to the processing of the GO ontology
have been implemented using theBioconductorpackages [Gentle-
man et al., 2004], graph, GO, GOstats, and Rgraphviz. The part of
the library related to FunCat has been built from scratch using the
hierarchical schemes and the functional annotations obtained from
the MIPS website (mips.gsf.de).

HCGenehas been primarily designed for the supervised hierar-
chical classification of genes/gene products. However, it can also
be used with unsupervised and semi-supervised methods to incor-
porate a priori biological knowledge about functional classes of
genes [Lottaz et al., 2007, Tai and Pan, 2007].

The main functionalities of the software library can be summari-
zed as follows.

•Graph processing: construction of hierarchical structures based on
graphs and trees. This part includes methods to analyze the structure
and the relationships between functional classes (e.g., distribution of

c© Oxford University Press . 1

Page 1 of 2 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Valentini and Cesa-Bianchi

node and classes with respect to their depth, in and out-degree, car-
dinality of classes and distribution of leaves at different levels). It
also includes methods to extract biologically meaningful structures
from GO DAGs and FunCat trees.
• Multilabel generation: extraction of the most specific annotati-
ons and derivation of the full annotation of genes; building of the
multilabel for each gene using compact representations; mapping
functions to associate gene names or identifiers (e.g., ORF ID or
EntrezGene IDs) to functional classes
• Data processing: This part includes methods to associate gene
names to different types of data, methods to select positive and nega-
tive examples for each class according to different strategies (see
below for a discussion of selection strategies), and methods to build
data related to specific functional classes.

Moreover, the library provides functions to graphically show the
results of statistical analyses, and to draw subgraphs of GO and
FunCat ontologies.

The mapping of genes to their corresponding classes has been per-
formed according to theGene Ontology Annotation (GOA)consor-
tium [Camon et al., 2006], and according to the MIPS (mips.gsf.de)
annotations for FunCat. Usually, genes are annotated with the lowest
level (that is, most specific) terms of GO and FunCat. These terms
are associated to nodes in the underlying graph (DAG or tree). The
multilabel associated with a gene is the set of all terms that can be
associated with it. To obtain this multilabel, we start from the set of
initial nodes, corresponding to the most specific terms, and add to
them all the nodes that belong to any path from the initial nodes to
a root (in a DAG a root is any node having no parents). This “tran-
sitive closure” operation is based on the notion of consistency for
multilabels: if the multilabel of a gene includes a node, then it must
also include all of its ancestors.

A typical approach to hierarchical gene classification is to asso-
ciate a binary classifier to each node of the graph and then use
some global criterion to infer a consistent multilabel from the binary
classifications performed at each node. Binary classifiers perform
better when trained on a mixture of positive and negative examp-
les (we callexamplea gene, or gene product, together with its
associated multilabel). Thus, one of the issues with this approach
is to determine the set of negative examples each node classifier
should be trained on. However, gene sets annotated with GO and
FunCat classes almost never include explicit negative examples for
specific nodes. As a consequence, any example whose multilabel
does not include a given node is a candidate negative example for
training the associated node classifier. In practice, different strate-
gies for selecting negative examples are used in order to carefully
balance the fraction of negative examples used in training. Our
library implements the three following strategies.

1. A negative example for a node is any example whose multilabel
does not include that node.
2. A negative example for a node is any example whose multilabel
does not include that node and any of its ancestors.
3. A negative example for a node is any example whose multilabel
does not include that node and includes at least one of its parents.

The discussion of these strategies is beyond the scope of this paper:
we only recall that most of the works on the functional classification
of genes adopt the first and the second strategy [Pavlidis et al., 2002,
Barutcuoglu et al., 2006, Lewis et al., 2006]. Other strategies could
be equally well motivated. For instance, the presence of incomplete

annotations justifies requiring that a negative example for a node
have a multilabel including at least a sibling of that node. Such
alternative strategies will be considered in future implementations.

HCGeneprovides several methods to extract subgraphs from GO
or subtrees from FunCat, and to automatically associate correspon-
ding genes and data. Subgraphs can be selected according to the
depth of the nodes (in FunCat trees) or to the minimum distance
from roots (in GO DAGs). A node can be also selected based on
the number of genes that are associated to it. For example, we
might be interested in classifying, in the FunCat tree, genes related
to the amino acid metabolism in the yeast while considering only
classes with more than ten annotated genes. With a few lines of R
code we can extract the corresponding subtree, as well as the yeast
genes associated to each FunCat class and the corresponding gene
expression or phylogenetic data, or any other data supplied by the
user.

Finally, HCGeneprovides methods to analyze the statistical pro-
perties of FunCat and GO ontologies. For example, one can compute
the distribution of the number of labels in theGO Biological Pro-
cessontology associated to each gene inA. thaliana, considering
only genes reliably annotated with TAS (Traceable Author State-
ment) evidence. One can also extract a subgraph rooted at a specific
GO node, and select nodes with genes annotated with IGI (Inferred
from Genetic Interaction) or IPI (Inferred from Physical Interaction)
evidence inH. sapiens. The structural characteristics of the resul-
ting graph and associated genes can then be analyzed (e.g., indegree
and outdegree node distributions, distribution of the length of the
shortest path from the root, distribution of the cardinality of the
functional classes and multilabels ).

The Supplementary Information available on line offers more
details about the methods implemented in the software library,
several examples of application, and a detailed reference manual.
Considering that some functionalities ofHCGeneare not just speci-
fic to the functional classification of genes, future developments of
this work will be the adaptation and the extension of the package
to other applications characterized by the presence of structured
domains.
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