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Worst-Case Quadratic Loss Bounds for Prediction
Using Linear Functions and Gradient Descent

Nicold Cesa-Bianchi, Philip M. Long, and Manfred K. Warmuth

Abstract—In this paper we study the performance of gradient
descent (GD) when applied to the problem of on-line linear
prediction in arbitrary inner product spaces. We prove worst-case
bounds on the sum of the squared prediction errors under various
assumptions concerning the amount of a priori information about
the sequence to predict. The algorithms we use are variants and
extensions of on-line GD. Whereas our algorithms always predict
using linear functions as hypotheses, none of our results requires
the data to be linearly related. In fact, the bounds proved on the
total prediction loss are typically expressed as a function of the
total loss of the best fixed linear predictor with bounded norm.
All the upper bounds are tight to within constants. Matching
lower bounds are provided in some cases. Finally, we apply our
results to the problem of on-line prediction for classes of smooth
functions.

I. INTRODUCTION

N this paper we analyze algorithms in the on-line prediction

model. This model was introduced by Angluin [1] and Lit-
tlestone [16], [17]. Unlike other settings, where the predictor’s
goal is to estimate a set of parameters in a nearly optimal way
with respect to some criterion, the goal in this model is to
generate predictions in a sequential fashion, so as to minimize
the total (sum) loss over the whole sequence of examples.
Throughout this paper we use the squared prediction error as
the loss function for each example. This loss is sometimes
called the square loss. Though we focus on the performance
of on-line algorithms from a purely theoretical viewpoint, one
of the main contributions of -this study is the derivation of
the optimal learning rate for gradient descent (GD) applied to
linear predictors.

We assume the prediction process occurs in a sequence of
trials. At trial number ¢ the prediction algorithm:

e is presented with an instance z; chosen from some
domain y,

* is required to return a real number §;, and

« then receives a real number y; from the environment
which we interpret as the truth.
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The total loss of an algorithm over a sequence-of m trials is
7 (9¢ — y)?. A critical aspect of this model is that when
the algorithm is making its prediction g: for the ¢th instance
T+, it has access to pairs (zs,9s) only for s <t.

We adopt a worst-case outlook, following [271, [21], [18],
[71, [22], [3], and many others, assuming nothing about
the environment of the predictor, in particular the pairs
(Z1,91), -+ » (Tm, Ym ). Our results can be loosely interpreted
as having the following message: “To the extent that the
environment is friendly, our algorithms have small total
loss.” Of course, the strength of such results depends on
how “friendly” is formalized. For the most general results of
this paper (described in Section IV), the domain ¥ is assumed
to be a real vector space.! To formalize “friendly,” we make
use of the general notion of an inner product (-,-), which is
any function from x x x to R that has certain properties (see
Section III for a list). The inner product formalization is very
general. One of the simplest inner products may be deﬁned
as follows in the case that X = R"

(u,v) = Zuivi =u-v.
i=1

Notice that for any inner product space (x; (', -)), for any
w € X, we obtain a linear function fyy from x to R by defining

fw(z) = (w,z). ey
Throughout the paper, we define the (square) loss of prediction
; on the pair (z¢,y:) by the squared prediction error (§: —
y:)? and, accordingly, define the total loss of a sequence of
predictions by the sum X;(§; — y:)? of the squared prediction
17018,

Typically, we express the bounds on'the loss of our algo-
rithms as a function of

l.glf Z:((wr'nt)

where the infimum is taken over all w whose norm +/(w, w)
is bounded by a parameter. Roughly speaking, this quantity
measures the total misfit or noise of the environment with
respect to the best “model” in the inner product space. In
other words, bounds in terms of (2) are strong to the extent
that there is a (not too large) w for which fqyy “approximately”
maps x;’s to corresponding y,’s. Thus we can also interpret
(2) as an approximation error with respect to some unknown
law generating the pairs (z:, ;). In practice, estimates of this
approximation error could be obtained by looking a posteriori

— ) , @

"The general results will hold for finite and infinite dimensional vector
spaces.
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at related applications, and calculating the quantity analogous
to (2) for them.

In many cases we can even bound the additional loss of the
algorithm over the above infimum similarly to the additional
loss bounds of [3] obtained in a simpler setting. Our bounds
are worst-case in the sense that they hold for all sequences of
pairs (z:,y;). (In some cases we assume the norm of the z;’s
is bounded by a second parameter.)

Faber and Mycielski [6] noted that a natural class of smooth
functions of a single real variable can be defined using inner
products as above. The same class of smooth functions, as
well as linear functions in R™, has been heavily studied in
statistics [9] (however, with probabilistic assumptions). Thus,
general results for learning classes of functions defined by
arbitrary inner product spaces can be applied in a variety of
circumstances. Faber and Mycielski proved bounds on X (g, —
;)? under the assumption that there was a w € x for which
for all ¢,y = (w,z;), and described some applications of
this result for learning classes of smooth functions. Mycielski
[24] had already treated the special case of linear functions
in R™. The algorithm they analyzed for this “noise-free” case
was a generalization of the on-line GD algorithm? to arbitrary
inner product spaces. We call this algorithm GD (defined
below). In this paper we analyze the behavior of GD in the
case in which there is not necessarily a w for which for all
t,yt = (w, ). Faber and Mycielski [6] also studied this case,
but their algorithms made use of side information which, in
this paper, we assume is not available. Hui and Zak [12] also
studied the robustness of GD in the presence of noise in
a similar setting, however they modelled observation noise,
assuming that there was a w such that for all ty, = (w, =),
but that the learner’s observation of y; was corrupted with
noise. A more substantive difference is that they assumed
Ty = Top = Ty-+-.

The algorithm GD for the special case of linear functions in
R" is a central building block in area of signal processing (see,
e.g., [19], [25], [26], [29], and [10]) where it is usually called
least mean square (LMS) algorithm. Therefore, there is an
extensive literature studying the convergence properties of this
algorithm (see, e.g., [29] and [10]). All this research, however,
is based on probabilistic assumptions on the generation of the
x;’s. This paper shows that the algorithm GD can analyzed
even without probabilistic assumptions.

GD is an algorithm design technique which has achieved
considerable practical success in more complicated hypothesis
spaces, in particular multilayer neural networks. Despite this
success, there appears not to be a principled method for tuning
the learning rate. In this paper, we tune the learning rate in
presence of noise with the goal of minimizing the worst-case
total squared loss over the best that can be obtained using
elements from a given class of linear functions.

The GD algorithm maintains an element @ of x as its
hypothesis which is updated between trials. For each ¢, let @,
be the hypothesis before trial ¢ (the initial hypothesis @; is
the zero vector). GD predicts with §; = (i, %) and updates

" 2Even though in the neural-network community this algorithm is usually
credited to Widrow and Hoff [28], a similar algorithm for the iterative solution
of a system of linear equations was previously developed by Kaczmarz [13].
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the hypothesis following the rule
W1 = Wy — (G — Ye) T 3)
where 7> 0 is the learning rate parameter.

If the real vector space x has finite dimension, then each
element v of x can be uniquely represented by the real vector
¢(v) of its Fourier coefficients, once a basis is chosen. If
the basis is orthonormal, by simple linear algebra facts we
have §; = (i, x¢) = (i) - e(z;). Furthermore, the vector
2(9:— 1yt )e(=x4) is the gradient, with respect to the vector c(4; ),
of the square loss (§; —y;)? for the pair (z;, y; ). Hence, in this
case, rule (3) is indeed an “on-line” version of GD performed
over the quadratic loss.

When yx is an arbitrary real vector space, and therefore its
elements may not be uniquely represented by finite tuples of
reals, the GD algorithm is a natural generalization of on-
line GD? and may viewed as follows [23].* After each trial ¢,
there is a set S; of elements w of x for which (w,z:) = y:.
Intuitively, our hypothesis would like to be more like the
elements of S;, since we are banking on there being a nearly
functional relationship fu between the z;’s and the y;’s. It
does not want to change too much, however, because the
example (x:, y;) may be misleading. The GD algorithm “takes
a step” in the direction of the element of S; which is closest to
w; (using the natural notion of the distance between elements
of an inner product space).

II. OVERVIEW OF RESULTS

We now give an overview of the bounds obtained in this pa-
per. We will use (s:): to denote sequences $1, 82, -, S, "+,
and S* to denote the set of all finite sequences (empty
sequence included) over a set S.

For any.v € x,||v| = +/(v,v) measures the “size” of
v. We show in Theorem IV.3 that for all sequences s =
{(z+,y:)): € (x x R)* and for all positive reals X, W, and
E, if max, ||z;]| < X and Lw(s) < E, where

Lw(s) = | inf

wlj<w 4
then the GD algorithm (with learning rate tuned to X, W,
and E) achieves the following:

S (@ - w)? < Lw(s) + 2WX)WVE + (WX)2.  (4)
t
(Notice that Ly (s) > L}, (s) for all W’ > W.) The above

((w,2) = )"

. bound is tight in a very strong sense: We show in Theorem

VIL1 a lower bound of Ly (s) + 2(WX)VE + (WX)? that
holds for all X, W, and E, also when these parameters are

7

given to the algorithm ahead of time. .
We then remove the assumption that .a bound E on Ly (s)

is known for some W. We require, however, that y;’s are in

a certain range [—Y, Y] for some ¥ > 0. In Theorem IV .4 we

3To be precise, if x has countably infinite dimension, then GID can still
be viewed as a mapping performing on-line GD. Such a mapping is clearly
noncomputable in general since each step might involve the update of an
infinite number of coefficients. Note, however, that the tth hypothesis @; is a
linear combination of the first-¢ — 1 examples {1, --,Z;—1} and can thus
be represented by ¢ — 1 real coefficients.

4 Actually, this interpretation was shown only in the slightly more restricted
case that (X, (-,-)) is a Hilbert space.
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TABLE 1
TABLE SUMMARIZING Loss BOUNDS FOR (G AND ITS VARIANTS WITH RESPECT TO DIFFERENT A PRIORI INFORMATION

Known information

Bounds for L(s) = Y, (§: — yz)*

max |]:z:t|[ <X
Lw(s) S E

L(8) < Lw(s) + 2WX)VE + (WX)?
MATCHING LOWER BOUND

maX; ”:l:t“ S X

max; |ye} <Y

L(s) < Ly;x(s) +9.2 (Y/Ly/x(s) + Y?)
L(S’) > Ly/X(s') + 2Y\/Ly/x(-9'§ +Y?

max; [|z|| < X

L(s) < 2.25 infare x [(max, [leel[2)hwl|? + 3 ((w, 2e) — 40)°]

None

L(s) < 9infwex [(maxe ||z:|*)[lwli* + 3y ((w, %) — 9)*]

show that for all positive reals X and Y and for all sequences
s = ((zs,y0))e € (x X [-Y,Y])* such that max, ||z:|| < X,
the total loss incurred on s by a variant of the GD algorithm
(with learning rate tuned to the remaining parameters X and
Y) is at most

Ly/x(s) +9.2(Yy/Ly/x(s) + Y?). )]

Notice that the above result also holds when Ly, x(s) is
replaced by Ly (s) for any W < Y/X. Observe that X;(§: —
y:)> — Ly/x(s) can be interpreted as the excess of the
algorithm’s total loss over the best that can be obtained using
vectors w whose norms are at most Y/X. The above bound
is tight within constant factors: We show in Theorem VIL.2
that for all prediction algorithms A and all X,Y, F > 0, there
is a sequence s on x X [-Y,Y] such that max, ||z:|| =
" X,Ly;x(s) = E, and the total squared loss of A on s is
at least £+ 2Y/E + Y2, The dimension of the inner product
space, however, must increase as a function of F. As before,
the lower bound holds also if all three parameters are given
" 1o the algorithm ahead of time.

‘We:-continue by giving the algorithm less information about
the sequence. For the case when only a bound X on the norm
of any z; is known, we show in Theorem IV.1 that the GD
algorithm, tuned to X, achieves the following upper bound on
the total loss (the sum of its squared prediction errors):

225 jnf. | (mgx )l + 322 - yt)-?}

on any sequence s = {(%:,y:)): € (x x R)* such that
max; ||z:|| < X. Note that this result shows how the GD
algorithm is able to trade-off between the “size” of a w,
represented by its norm, and the extent to which w “fits” the
data sequence, represented by the total loss incurred by fay..

Finally, with no assumptions on the environment of the
learner, a further variant of the GD algorithm has the fol-

lowing bound on the total loss (Theorem IV.6):
9 inf | (max [lz|*) [ + z;«w,zt) - )’

that holds on any sequence s = {(z4, 1))+ € (x X R)*.

Our general results are summarized in Table 1.

We may apply our general bounds to a class of smooth
functions of a single real variable, in the manner used by
Faber and Mycielski [6] in the case that there is a perfect
smooth function. The smoothness of a function is measured
by the two-norm of its derivative. Of course, the derivative
measures the steepness of a function at a given point, and
therefore the two-norm (or any norm, for that matter) of
the derivative measures the tendency of the function to be
steep. When normalized appropriately, the two-norm of a
function f’s derivative can be seen to be between the average
steepness of f and the f’s maximum steepness. In Theorem
V.1 we show that if there is an absolutely continuous function
f:Ry — R with f(0) = 0 which tends not to be very steep
and approximately maps the z,’s to the y;’s, and if the z¢’s
are not very big, then an application of the GD algorithm to -
this case obtains good bounds on the total loss. More formally,
we show that, for example, if the ;s are taken from [0, X];

and if f:[0,00) — R satisfies || f/[la = / [ f/(w)? du < W,
and ;(f(z:) —y:)? < E, then the special case of the general

GD algorithm applied to this problem has a sum of squared
errors bounded by

in ) — yg)?
l\f’\\szW [zt:(f( )=w)

A bound of W2.X was proved by [6] in the case when F = 0.
It is surprising that the time required for the.algorithm we
describe for this problem to make its ¢th prediction g is O(%)
in the uniform cost model provided that all past examples and

+2WVXE+W?3X. (6
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predictions are saved. This is because, although the vector -

space in which we live in this application consists of functions,
and therefore the GD algorithm requires us to add functions,
we can see that the functions that arise are piecewise linear,
with the pieces being a simple function of the past examples
and predictions. In the case £ = 0, however, there is an
algorithm with an optimal bound on X(§: — :)?> which
computes its tth prediction in O(logt) time [14], raising the
hope that there might be a similarly efficient robust algorithm.
In Theorem V.2 we extend our result to apply to classes of
smooth functions of n > 1 real variables studied by Faber and
Mycielski [6] in the absence of noise. We further show that
upper bound (6), even viewed as bound on the excess of the
algorithm’s total loss over the loss of the best function of
“size” at most W, is optimal, constants included.

Littlestone et al. [18] proved bounds for another algorithm
for learning linear functions in R™, in which the ,’s were
measured using the infinity norm, and the w’s were measured
using - one-norm. The bounds for the two algorithms are
incomparable because different norms are used to measure
the sizes of the z’s and the w’s. The algorithm of [18],
however, does not appear to generalize to arbitrary inner
product spaces as did the GD algorithm, and therefore those
techniques do not appear to be as widely applicable.

One of the main problems with GD is that it motivates
a learning rule but does not give any method for choosing
the step size. Our resuits provide a method for setting the
learning rate essentially optimally when learning linear
functions. An exciting research direction is to investigate
to what extent the methods of this paper can be applied to
analyze other simple GD learning algorithms.

Our methods can also be applied to the batch setting
where the whole sequence of examples is given to the learner
at once and the goal of leaming is to find the function that
minimizes the sum of the squared residual errors. In the
case of linear functions this can be solved directly using
the linear least squares method which might be considered
to be too computationally expensive. Iterative methods
provide an alternative. We prove a total loss bound for a GD
algorithm by applying the techniques used in this paper. We
then contrast this bound to the standard bound for steepest
descent on the total squared residual error.

The paper is organized as follows: In Section III we recall
the notion of inner product space and define the algorithm
GD. The upper bounds for GD and its variants are all proven
in Section IV; in this section we also prove bounds for the
normalized total loss. These results are applied in Section V
to' derive upper bounds for prediction in classes of smooth
functions. The comparison with the standard steepest descent
methods is given in Section VI. Corresponding lower bounds
for the upper bounds of Sections IV and V are then proven
in Section VII. The paper is concluded in Section VIII with
some discussion and open problems.

III. PRELIMINARIES

Let N denote the positive integers and R denote the reals.

Each prediction of an on-line algorithm is determined by the
previous examples and the current instance. In this paper, the
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domain of the instances is always a fixed real vector space
X- An on-line prediction algorithm A is a mapping from
(x x R)* x x to R. For a finite sequence s = {(%1,¥t))1<t<m
of examples we let §; denote the prediction of A on the {th
trial, i.e.,

@t = A(((xlryl)v Yy (zt—lyyt—l))y xt)

and we call §1, - - -, ¥, the sequence of A’s on-line predictions
for s.

An inner product space (sometimes called a pre-Hilbert
space since the imposition of one more assumption yields the
definition of a Hilbert space) consists of a real vector space x
and a function (-, -) (called an inner product) from x X x to R
that satisfies the following for all u, v,z € x and x € R:

) (u,v) = (v,u),

2) (ku,v) = &(u,v),

3) (w+v,2) = (u,z) + (v,%), and

4) (z,z)>0 whenever £ # 0.

The last requirement can be dropped essentially without af-
fecting the definition (see, e.g., [30, p. 25]). For = € x, the
norm of z, denoted by ||z||, is defined by

llzll = V(= 2).

(These definitions are taken from [30].)

An example of an inner product is the dot product in R".
For z,y € R" for some positive integer n, the dot product of
z and y is defined to be

”n
T-Yy= szyz
i=1

The two-norm (or Euclidian norm) of z € R™ is then defined
to be

lllz = v -z =

If f is a function from R to R, we say that f is absolutely
continuous® iff there exists a (Lebesgue measurable) function
g: R — R such that for all a,6 € R,a < b

b
£~ f(a) = / o(z) da.

IV. UPPER BOUNDS FOR THE GENERALIZED
GRADIENT DESCENT ALGORITHM

In this section, we prove bounds on the worst case total loss
made by the GD algorithm (described in Fig. 1). (Technically,
Fig. 1 describes a different learning algorithm for each initial
setting of the “learning rate” 7. For a particular , we will
refer to the associated learning algorithm as GD,, and we
will use a similar convention throughout the paper.)

For the remainder of this section, fix an inner product space
(X, (*,-)). In what follows, we will analyze the GD algorithm
and its variants starting from ‘the case where only a bound on
the norm of z;, for all £, is available to the learner ahead of
time. We will then show how additional information can be

5This is shown to be equivalent to a more technical definition in most
calculus texts.
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Algorithin GD.
Input: » > 0.
« Choose X’s zero vector as initial hypothesis ;.
 On each trial ¢: ‘
1. Get ; € X from the environment.
2. Predict with :l}t = (ﬁlt,mt).
3.. Get y; € X from the environment.
4. Update the current hypothesis 1, according to
the rule

Wiy = Wy + 9(Ye — Ge) s

Fig. 1.. Pseudocode for algorithm GD. (See Theorems IV.1, IV.2, and IV.3
and Corollary IV.1.)

exploited for tuning the learning rate  and obtaining better
worst-case bounds. Finally, we will prove a bound for the
case where no assumptions are made on the environment of
the learner.

A. Bounding the Size of the Instances

In this section we prove that, when given a bound on
max; |||, the algorithm GD can obtain good bounds on the
total loss. We will remove the assumption of this knowledge
later through application of standard doubling techniques.

As a first step, we will show the following which might be
interpreted as determining the “progress” per trial, that is the
amount that GD,, learns from an error. The derivation is based
on previous derivations used in the proof of convergence of
the on-line GD algorithm (see, e.g., [5]).

Lemma IV.1: Choose z,w1,w € x,y € R,n>0. Let
9 = (wy,x) and we = w1 + n(y — §)=z. Then

iy = w2 = iy — w]?
=20~ =% — 9)* — 2n(y = 9)(y — (w,z)). ()
Proof: Let a = n(y — 4). Then i = W; + azx. Thus
i — wi
=((2 — w), (W2 — w))
=((1 + az — w), (1 + az — w))
=ll1 — wl]* + (2az, (@ — w)) + o7||=||*.
This implies
lldr — wl|* — |l ~ w||®
=20(z, (i1 —w)) + o’|lz*
=20(9 — (w, )) + o?||z]|?
=20(j) - y) + 20y ~ (w,2)) + *[|=||*.
Expanding our definition of «
o2 — w||* ~ [l —w]]?
==21(§ = y)* + 20y — §)(y — (w, )
+llzl*(y — )
==(2n — n’[l=[*)(§ - v)*
+2n(y - 9)(y — (w,z))
establishing (7). ‘ . O
We need the following simple lemma.
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Lemma IV.2: For all q,r,c € R such that 0 <c<1

TZ

2 _gr>eq?—
g —qr>cq A=) ®)
Proof: Inequality (8) is equivalent to
2-cg=r) _
4(1-¢) -
which is clearly true as 0 <c < 1. O

As a second step, we show a lower bound on the progress
per trial. This lower bound will be used to prove the main
theorem of this section. ‘

Lemma IV.3: Choose z,wi,w € x,y € R. Choose
X,B,c € R such that X > ||z]],0<B<2 and 0<c<1.
Let - :

9 = (i1, T) and Wy =W + %(y - 9=
Then
[y — wl]2 — |Jdiry — w]]? :
28-p42] @
> P et 9 -
(y - (w,z>>2].

Proof: Applying Lemma IV.1 with n = 8/ X2, we get

llin — wl]* ~ [ivz — w|®

(2P

_ -if—ﬁz(y—ﬂ)(y— (w, z)) ©
2 .
2()2(—@ B %)@-w
_ ;—i(y—@)(y-(w,z)) 10y
_ 32 ‘
S
- %Iy ~ 3l |y — (w, )]
(32
22ﬂx2ﬂ [e(g — y)2
S 2
T @E—pra—gW )T an

where (10) holds because X > ||z|| and (11) is an application
of Lemma IV.2. |

The next theorem shows that the performance of the GD al-
gorithm degrades gracefully as the relationship to be modeled
moves away from being (w, -) from some w € . Throughout
the paper, for all sequences s = ((z:,v:)): € (x X R)* and
all w € y, let

Lu(s) = Z(("hzt) ~ )

t

‘ ‘and for all W >0 let

Lw(s) = ”wlﬁléWLw(s),
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Theorem IV.1: Choose 0< 3<2,0<c<1l,m € N, and
8 = ((®,9e))t<m € (x X R)™. Let X > max, |||, and let
1, ,Um be the sequence of GDy,x2’s on-line predictions
for s. Then
o~ X2|w)?
— 1nf
2 (- w)s Afoeras

Lw(s) jl
(2-8)%(1-<) ]
(12)

In particular, if 8 = 2/3 and ¢ = 1/2

i

t=1

2<2.25 Jnf [X2||w||2 + Ly(s)]. (13

Notice that, by setting ¢ = 1/2 and by letting 8 — 0, the
constant on the Lqy(8) term can be brought arbitrarily close to
one at the expense of increasing the constant on the other term.

Proof: Choose w € x. If 1,42, -, Wpnqe1 is the
sequence of GDg,x2’s hypotheses, we get

m a2 v )
Z ZBXZIB [c(?)t "%)2 _ (zﬂ—__ﬂf)_Q(l__—c—)(yt —(w, mt))2]

m
<Y (llire — w|[* — |Jbes1 — w[|?) by Lemma IV.3

t=1
= [l — w||* — (|1 — w]? _
< |lw||*>  since ; = 0 and || - || is nonnegative.

. [t - G~ 0

Solving for X:(4; — y:)? yields

X2w]? B

2
Z(yt yt) > (2/6 ﬂz)c + (Zﬂ_ﬂz)zc

(1 — C) Lw(s)

establishing (12). Formula (13) then follows immediately. [J

Observe that the assumption ; = 0 is chosen merely
for convenience. If i, # 0, then the factor |[w(|? in (12)
is replaced by |Jw — 1||?. Thus, in this more general form,
the bound of Theorem IV.1 depends on the squared distance
between the starting vector i and the “target” w.

If we run algorithm GD with learning rate 7 set in each trial
t to B/||z:||?>, we can then prove a variant of Theorem IV.1
for a different notion of loss (previously studied by Faber and
Mycielski [6]) which we call normalized loss. The normalized
loss incurred by an algorithm predicting §; on a trial (%, y;)
is defined by (g: — v:)?/||z:||>. We begin by proving the

following result via a straightforward variant of the proof of -

Lemma IV.3.
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Lemma IV.4: Choose z, 1, w € X,y € R,0< (<2, and
0<c<1. Let

§ = (w1,z) and 12)2 =1 + ”—fn—z-(y - §)z.

Then
llws — wl® — ||z — w|?
2ﬁ 4 [(y y)’c B
el (28 -6%)2(1~¢)
- (w,z>>2].

We now extend Theorem IV.1 to fhe normalized loss. Let

wa(s) — i (.f'lH(xt) - yt)2.

ll:[?

Theorem IV.2: Choose 0<(3<2,m €& N, and 8 =
(%4, y2))t<m € (x X R)™. Let g1, - -, Ym be the sequence of
GDyg/jjz,|2’s on-line predictions for s. Then .

G _ [l Liy(s)
Z i wefx[ﬂm 7 T et =)

for all 0< c< 1. In particular, if § = 2/3 and ¢ =

- (Qt yt)
) P ll:]}?

t=1

<295 Jnf [lwll” + Lp(s)].

The above theorem shows that the knowledge of a bound
on ||z:||, for all ¢, is not necessary when the normalized
loss is used. This raises the question of whether the setting

= B/||z:||*> (for some fixed B not depending on ||z;||)
can be successfully used when the goal is to minimize the
total unnormalized loss and no bound on ||z:|| is available
beforehand. On the other hand, suppose x = R, and the inner
product is just the ordinary product on the reals. Suppose
further that for € >0,2; = ¢, and y; = 1, whereas for all
t>1,z; = 1 and y; = 0. Then for smaller and smaller ¢, the
total (unnormalized) quadratic loss of the GD with the above
setting of 7 in this case is unbounded, whereas there is a w
such that 3 (wz; — y:)* = 1, namely 0. (This example is due
to E. Bernstein.)

B. Tuning

The next result shows that, if certain parameters are known
in advance, optimal performance can be obtained by tuning
B. We need a technical lemma first. Define the function

G: R%. — (0,1] by
) WX
GE,W,X) = —— o .
EWX = T wx
Lemma IV.5: For all E,W, X >0
(WX)? E

=E+(WX)?+2WXVE
14

B2— B 2-prdl-o)

whenever 8 = G(E,W,X) and c = VE+WX/2VE4+WX.
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Proof: First notice that, when [ and c are chosen as in
the lemma’s hypothesis, 0 < < 1 and % < ¢<1 for all
B, W,X > 0. Second, observe that (14) can be rewritten as

1 2 3 )
ﬂ(2_ﬂ)c+ (2—,3)26(1—0) _(y"}"l) 15)
where y = VE/WX. Now let
' _y+1
ﬁ:G(anaX):——" and C_2y+1,
Then
(2-B)c=1 and (2—5)2c(1—c)=1—ﬁ=m,

By making these substitutions in (15) we obtain y+ 1+ y(y+
1) =(y+1)>° O

Theorem IV.3: For each E, X, W > 0, the algorithm
GD¢,w,x)/x> has the following properties. Choose
m € N,s = {((@t,¥))e<m € (x x R)™, such that
max: ||| < X, and Lw(s) < E. Let §1,---,%m be the
sequence of GDG(E,W,X) /x2’s on-line predictions for s.
Then

i(@t — )2 < Lw(s) + 2WXVE + (WX)2.

t=1

Proof: Choose m € N,s = ((%t,y:))1<m € (x X R)™
for which Ly (s) < F and max; ||z:||* < X. By Theorem
IV.1, for all § and ¢ such that 0< <2 and 0<e<1, we
have

(5 — X2 Lu(s)
;(yt v < fx BEZ-Be " @=pye(i= c)}
< (WX)? Lw(s)
/3( Be = (2—pB)2%c(l~c)
(WX)? L (s)
B2 B 2-B)Pdl-o)
— Lw(s) + Lw(s)
(WX)? E
=Ba-fe " E-Brd—0

- E + Lw(s)

since Ly (s) < E and 0< (2 — 8)%¢c(1 — ¢) < 1 for the given

ranges of ¢ and (3. Applying LemmaIV.5 for 8 = G(E, W, X) -

and ¢ = \/_ E + WX/2v/E + WX, we then conclude

Z(yt y)? <E +2WXVE E+(WX)® E+Lv;(s)

t=1
= L (s) + 2WXVE + (WX)?

as desired. O
A corollary to Theorem IV3 can be obtained for the
normalized loss.
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Corollary IV.1: For any E,W > 0 and for any m € N.
Choose s = {(%+, Yt))t<m € (x*x R)™, such that L}, (s) < E. -
Let 91, -, Um be the sequence of GDegEw,1)/|z,)>’S on
line predictions for s. Then

o~ (5= 9:)” <I OWVE + W?
2 S Bwle) +2WVE W

Proof: Lemma IV.5 can be applied to Theorem IV.2 with
X =1and ¢c = VE + W/2VE + W. The derivation then
closely resembles that of Theorem IV.3. (]
The following corollary shows an application of Theorem
IV.3 to the class of linear functions in R™. For each W, n,
let LINyy,, be the set of all functions f from R"™ to R for
which there exists w € R",|jw|s < W, such that for all
z € R f(z) =w- =
Corollary IV.2: For each E,X,W > 0, the GD al-
gorithm has the following properties: Choose m,n €
N, ((#t,9¢))i<m € (R™ x R)™, such that max; ||z:s < X,
and there is an f € LINw,, for which &7, (f(z;) '—yt.)2 <E.
Let 41, -+, ¥m be the sequence of GDg (g, W, X)/X? ’s on-line
predictions for s, when GD is applied to the inner product
space LINw, . Then

A 2 < . - 2
;('yt yt) = fella%leW,n ;(f(iﬂi) yt) }
+ 2WXVE + W2X2.

It has been shown recently [15] that even on very simple
probabilistic artificial data, the above tunings and worst-case
loss bounds are close to optimal.

In the next section, we show that techniques from [3] may
also be applied to obtain a Ly x (s)+O(YVE+Y?) bound on
the total loss (unnormalized) when bounds X on ||z;|| and ¥
on |y;| are known for all t. The delicate interplay between Ly
and W (loosely speaking, increasing W decreases Lyy), how-
ever, has so far prevented us from obtaining such a result with-
out knowledge of any of the three parameters W, X, and E.-

C. Bounding the Range of the y;’s

We now introduce an algorithm G1 for the case where a
bound X on the norm of z; and a bound Y on |y,|, for all ¢,
are known ahead of time. The algorithm is sketched in Fig. 2.
In the following theorem we show a bound on the difference
between the total loss of G1 and the loss of the best linear
predictor w whose norm is bounded by Y/ X, where X bounds
the norm of the x;’s and Y bounds the norm of the y;’s. The
bound Y/X on the norm of the best lincar predictor comes
from an application of Theorem IV.3 and is the largest value
for which we can prove the result.

Theorem IV.4: For each X,Y > 0, the algorlthm G1 has
the following properties. Choose m € N 5= (e, Yt))t<m €
(x x [-Y,Y])™ such that max; ||z:]] < X. Let {1, - -, . be
the sequence of G1lx y’s on-line predictions for s. Then

> (@ = w)* < Lyyx(s) + 9.2(Yy/Ly/x(s) +Y?). .

t=1
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Algorithm G1.
Input X,Y > 0.
e For each7=0,1,...
— Let k; = 2%(aY)?2.
— Repeat
1. Give z; to GDg,,v/x,x)/x2-
2. Get GDG(k.-,Y/X‘X)/XZ’S prediction h;.
3. Predict with

-Y ifh<-Y
Ge=9q he if || <Y
Y  otherwise.

4. Pass y; to GDg(k"y/X,x)/Xz.
until the total loss in this loop exceeds

ki +2Y ki + Y2

Fig. 2. Psendocode for the algorithm G 1. (See Theorem IV 4.) Here GD is
used as a subroutine and its learning rate is set using the function &' defined
in Section IV-B. Optimized values for the parameters are z = 2.618 and
a = 2:0979.

Proof of Theorem IV.4: In the Appendix.

Our next result is a corollary to Theorem IV.4 for the nor-
malized loss. We introduce a new algorithm, G1-norm, that
differs from the algorithm G1 only in the setting of the learn-
ing rate for the subroutine GD (cf. Fig. 2.) That is, in each
trial, G1-norm sets GD’s learning rate to G(k;, Y, 1)/||z||%.
Thus, there is no need to know a bound X on the norm of
the z;’s.

Theorem IV.5: For all Y > 0, the algorithm G1-norm has
the following properties. Choose m € N, 8 = {(®¢, y1))t<m €
(x x [-Y,Y])™. Let §1,---,9m be the sequence of G1-
normy’s on-line predictions for s. Then

m

3 (_Eﬁ‘_yt)f < Ly (5) + 9.2(Y 4/ L (s) + Y?).

= el

Proof: Given Corollary IV.1, the proof follows from a
straightforward adaptation to the normalized loss of the proof
of Theorem IV 4. O

D. Predicting with No a priori Information

In this section we remove all assumptions that the learner
has prior knowledge. We introduce a new variant of the GD
algorithm which we call G2. This new variant is described
in Fig. 3. A bound on G2’s total loss follows quite straight-
forwardly from Theorem IV.1 via the application of standard
doubling techniques.

Theorem IV.6: For any 0< 3< 2, the algorithm G23 has
the following properties. Choose m € N, s = ((%¢, ¥t))t<m €
(x x R)™. Let §1,- - -, Jm be the sequence of G24’s on-line
predictions for s. Then

[4<mm lze)1?) w2
B2 - P
Lay(s)
MR c)]

m
> (@~ ) < inf

t=1 x
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Algorithm G2.
Input 0 < 8 < 2.
o Let ] =0. .
e Let X7 = ||.’l:1||
o On each trial ¢:
1. Let j + max {j, |-log\/§ “%ﬂ]}
2. Give z; to G’Dﬁ/(zjlle)z.
3. Use GDg/(3i/2 x,)2’s prediction ;.
4. Pass y; to GDﬁ/(2j/2x1)2.

Fig. 3. Pseudocode for the algorithm G2 that uses GD as a subroutine.
(See Theorem IV.6.) The learning rate of GD is dynamically set depending
on the relative sizes of the x¢’s. -

for all 0 < ¢ < 1. In particular, if 3 = 4/3 and ¢ = 1/2

D (G —w)* <9 inf [(max el ]l + Law(s)].

Proof: Choose 0< 3<2 and 0<c¢<1. Notice that, in
addition to a vector of hypothesized weights, G2 maintains
an integer j between trials. Before learning takes place, j is
set to zero. After G2 receives z, it sets X1 = ||1]| and starts
as a subroutine GDg/(x,)2- Thereafter, at each trial ¢, after
G2 receives z, it sets

. Py 1 |EA
J < max<J, |log 5 X, .

Then G2 uses GDg/(25/2x,)> for prediction on that trial.
Thus G2 uses GDg/(x,)2 as long as the z;’s are smaller
than Xy, at which time it switches over to GDg J(VBX1)??

which it uses as long as the z,’s are no bigger than v2X;
(possibly for zero trials), and continues in this manner, succes-
sively multiplying its assumed upper bound on the two-norm
of the z,’s by V2. Let X = max; ||z.]|. It follows immediately
from Theorem IV.1 that

m MNog /5(X/X1)] .
o, ][22/ X1)?
;(yt y:)” < ; 82~ e
L (s)
R D)
Mog./5(X/X1)]
_ ”“"||2Xl2 i
“sa—pe| 2
“ . Luw(s)

(2-p)%c(l-c)

||"”||2X12 92-+2logy (X/X1)

“Bz-B)e
n Law(s)
(2 — B)2%c(l —¢)
_Al?X? | Lu(s)
S B2-Pe (2-B)2c(l-0o)

Plugging in = 4/3 and ¢ = 1/2 completes the proof. O
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V. APPLICATION TO CLASSES OF SMOOTH FUNCTIONS

In this section, we describe applications of the inner product
results of the previous section to.classes of smooth functions.
While we will focus on applications of Theorem IV.3, we note
that analogs of the other results of Section IV can be obtained
in a similar manner.

A. Smooth Functions of a Single Variable

We begin with a class of smooth functions of a single real
variable that was studied by Faber and Mycielski [6] in a
similar context, except using the assumption that there was
a function f in the class such.that y; = f(z;) for all ¢.
Their methodology was to prove general results like those
of the previous section under that assumption that there was
a w with foy(z:) = y; for all ¢, then to reduce the smooth
function learning problem to the more general problem as we
do below. Similar function classes have also often been studied
in nonparametric statistics (see, e.g., [9]) using probabilistic
assumptions on the generation of the z;’s.

Let R be the set of nonnegative reals. We define the set

SMOw to be all absolutely continuous f: Ry — R for which

1) f(0) = 0 and

2) /fs f(2)2dz < W.

The assumption that f(0) = 0 will be satisfied by many natural
functions of interest. Examples include distance traveled as a
function of time and return as a function of investment. We
will prove the following result about SMOvy.

Theorem V.1: For each E, X, W > 0, there is a prediction
algorithm Agmo with the following properties. Choose m €
N,s = ((z¢,y))e<m € ([0,X] x R)™, such that there is
an f € SMOw for which X7, (f(z:) — :)? < E. Let

G, Ym be the sequence of Asmo’s on-line predictions for
s. Then
= m
N 5 ) 2
- < o inf ) —
tzl(yt Ye)* < e SMOw ;(f( t) — Yt) }
+2WVXE + W2X.

Proof: For now, let us ignore computational issues. We
will treat them again after the proof.

Fix E,X,W > 0. The algorithm Agpmo operates by
reducing the problem of learning SMOw to a more general
problem of the type treated in the previous section.

Let L?*(R. ) be the space of (measurable) functions g from
R, to R for which [} g(u)? du is finite. L?(Ry) is well
known to be an inner product space (see, e.g., [30]), with the
inner product defined by

(91,92) = /Ooo Q1(u)gz(u) du.
Further, we define g3 = g2 + g1 by

(Vz) gs(z) = 92(z) + g1(=)
and g3 = kg1 by

(Vz) gs3(z) = kg1 (z).
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Algorithm Agyo.
Input: E,W,X > 0.
o On each trial #: :
1. Get z; € [0, X] from the environment.
2. Give X<z € Lz(R_;_) to GDG’(E,W,X)/X?-
3. Use GDg(&,w,x)/x>’s prediction .
4. Pass Yt to GDG(E,W,X)/XZ-

Fig. 4. Pseudocode for algorithm Agpo. (See Theorem V.1.) Algorithm
GD (here used as a subroutine) is applied to the inner product space
x = L?(R4+). The function G, used to set GD’s learning rate, is defined
in Section IV-B.

Now apply algorithm GD to this particular inner product
space, L?(R..), with learning rate 7 set to G(E, W, X), where
the function G is defined in Section IV-B. For any z > 0,
define x<,: By — R by

X% (u):{l ifu<zg
= 0 otherwise.
Note that for any z < X

esell= [ xetwr du=vE<VE a0

and therefore y<, € L2(Ry).
In Fig. 4, we give a short description of the algorithm

Asmo-
Note that for any f € SMOw

17 = / " P du<w. an

Finally, note that since f(0) = 0

(') x<a) = /0 " F(w)x<alu) du— /0 " F(w) du = f(a).
(18)

Thus, if there is an f € SMOyy for which S, (f(z¢)—1:)? <
E, then f’ € L?(R,) has ||f']] < W and satisfies

m

> (F X<er) — ) < E.

t=1

Combining this with (16) and Theorem IV.3, we can see that
GD’s predictions satisfy

Z(’Qt - yt)2 < inf {zm:((f/&gmi) - yt)z]

pa T slsw | &
+2WVXE + WX,

The result then follows from the fact that Agyvo just makes
the same predictions as GD. ]

By closely examining the predictions of the algorithm
Asmo of Theorem V.1, we can see that it can be implemented
in time polynomial in ¢. The algorithm GD maintains a
function @ € L?*(R.) which it updates between trials. As
before, let i be the ¢th hypothesis of GD. We can see that @,
can be interpreted as the derivative of Agyo’s tth hypothesis.
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(wi;yt)

g b-------> ht41

by

Fig. 5. An example of the update of the application of the GD algorithm
to smoothing in the single-variable case. The derivative of the hypothesis is
modified by a constant in the appropriate direction to the left of 4, and left
unchanged to the right.

This is because GD’s tth prediction, and therefore Asmo’s
tth prediction, is

(e, Xsag,) = /000 Wy (u)x<a, (v) du = /0% wy(u) du.

Hence Agmo’s tth hypothesis h; satisfies b} = ;.

GD sets w; to be the constant zero function, and its update
is
@t)XSwe

W1 = Wy + 1(y: —

where 1 does not depend on ¢ (see the proof of Theorem
IV.3). Integrating yields the following expression for Asmo’s
t + 1st hypothesis

_ () +nlye -
heyi(z) = {ht(x) + n(ye —

if z S Tt
otherwise

i)z
Ut )Tt
and therefore

hit1(z) = hu(z) + 1(ye —

By induction, we have

= T]Z(ys — §s) min{z,,x}

s<t

§¢) min{zs, z}.

e (@

trivially computable in O(¢) time if the previous §,’s are
saved. This algorithm is illustrated in Fig. 5. '

B. Smooth Functions of Several Variables

Theorem V.1 can be generalized to higher dimensions as
follows. The analogous generalization in the absence of noise
was carried out in [6]. The domain X is R’;. We define the
set SMOyy,,, to be all functions f: R’} — R for which there
is a function f such that

1) Va:ER"f(a:): 011.” Omnf(ulv"'aun)dun”'dul
and _
2) \/f()oo : ‘f()co(f(ulﬂ o ‘,un))z dun . 'dUl S W.
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Algorithm AsMOn.
Input: E,;W, X > 0.
o On each trial ¢: ‘
1. Get z; € [0, X]" from the environment.
2. Give x<z, € L? (R ) to GDg(g, W,X)/ X2
3. Use GDg(g,w,x)/x2’s prediction .
4. Pass Yt to GDG(E,W,X)/XQ‘
Fig. 6. Pseudocode for algorithm AgMon. (See Theorem V.2.) Algorithm
GD (here used as a subroutine) is applied to the inner product space

x = L2(R?). The function G, used to set GD’s learning rate, is defined
in Section IV-B.

It is easily verified that when f exists, it is defined by
" f(ug, -

s Un)
Ouy- - Oup
We can establish the following generalization of Theorem V.1.
Theorem V.2: For each E, X, W > 0 and n € N, there is
a prediction algorithm Agnmon With the following properties.
Choose m € N,s = {(z¢,y1))i<m € ([0, X]™ x R)™, such
that there is an f € SMOyy, for which 272, (f(:) — %)? <
E. Let {1, --,9m be the sequence of Agmon’s on-line
predictions for s. Then X, (9, — y;)? is at most

fES%\l/}(gw,n [;(f(zt) -

Proof: Fix E,X,W,n > 0. The algorithm Asgnon
operates by reducing the problem of learning SMOw,, to
a more general problem of the type treated in the previous
section.
~ Let L?(R}) be the space of (measurable) functions g from

"+ to R for which

/m.;./wg(x)zdxn---dxl

is finite. Again, it is well known (see, e.g., [30]), that L2(R%)
has an inner product defined by

(91,92) = /000 e /Ooo g1(x)g2(zx) dxy, - - - dxy

Now apply algorithm GD to this particular inner product
space, L2(R'}), with learning rate n set to G(E, W, X), where
the function G is defined in Section IV-B. For any = € R},
define x<z: R’} — R as the indicator function of the rectangle
[0,21] X -+ X [0,,]. Note that for any x € [0, X]|"

flur, - yun) =

yt)z} + 2WXAE + W2X".

lIx<zll = 19

and therefore x<z € LZ(RTL)

The algorithm Agyon is sketched in Fig. 6.

Note that for any f € SMOyy,,, there is a function f such
that

(ﬁXS.’cc) = /0°°
d

= f(zs).

/ @y, Tn) X<z, (T1, 7+ Tn)
o ,



614 -

Thus, if there is an f € SMOyw,,, for which X%, (f(z) —
Y1) < E, then the corresponding f € L?(Ry), which has
71 < W, satisfies 72, ((f, x<z,) — y)> < E. Combining
this with (19) and Theorem IV.3, we can see that, for GD’s
predictions, X%, (9 — v;)? is bounded by

m
jIlf ] [Z((fy XSxt) - yt)z} + QWXn/Z\/E—'_ WQX”‘
IFi<w | 1=
The result then follows from the fact that Agyo, just makes
the same predictions as GD. : O
It is easy to see, by extending the discussion following
Theorem V.1, that the predictions of Theorem V.2 can be
computed in O(tn) time, if previous predictions are saved.

VI. A COMPARISON TO STANDARD
GRADIENT DESCENT METHODS

The goal of this section is to compare the total square loss
bounds obtained via our analysis to the bounds obtained via
the standard analysis of GD methods. Standard methods only
deal with the case when all the pairs (zy,y;) are given at
once (batch case) rather than in an on-line fashion. Thus we
consider the problem of finding. the solution z € R™ of a
system of linear equations

41,121 + a1,2%T2+ +a1,n%n = b1

Am,121 + am,2x2+ +a/m,nx~n = b‘m

where a; ;,b; € R. The above system can be given the more
compact representation Az = b, where b = (by,---,by,)
and A is a m X n matrix with entries a; - (Az denotes the
usual matrix-vector product.) For simplicity, we assume in
this section that Az = b has a solution. We do not assume,
however, that the matrix A has any special property.

A standard iterative approach for solving the problem Az =
b is to perform GD over the (total) squared residual error
R(x) = || A% — b||3, where % is a candidate solution. We will
prove upper bounds on the sum of R(#;) for the sequence
Z1,%2, - - - of candidate solutions generated by the GD method
tuned e¢ither according to the standard analysis or to our
analysis. The bounds are expressed in terms of both the norm
of the solution # and the eigenvalues of AT A, where AT
denotes the transpose matrix of A.

We define the norm [|A]| of a matrix A by

l4ll2 = sup [|Av]z.
lloll2=1

This is the norm induced by the Euclidean norm for
vectors in R" (see [8].) Notice that ||Av|s < [|Alla]v]|2
(Cauchy—Schwartz inequality). We will make use of the
following well-known facts.

Fact VI.I ([11]): For any real matrix A, ||Alls = v Amax,
where Ap,.x is the largest eigenvalue of AT A.

Fact V1.2 ([11]): For any real matrix A

47 ]l2 = (| 4]l2.

»

Given a candidate solution & € R"™ with squared residual
error R(%), the gradient of R(2) with respect to & is VR(&) =
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2AT (A% — b). By applying the GD (Kaczmarz) rule for the
batch case we derive the update

Zy1 = & — 1247 (A% - b) (20)

for some scaling factor 9 > 0. Simple manipulation shows that
R(k111) = R(&:) + 7 |AVR@:)|3 — [ VR@E)IZ. @D
Following the standard analysis of GD, we find the value of
7 minimizing the LHS of (21) at
_ _IVRGIB
2[|AVR(24)(13
By plugging this optimal value of 7 back in (21) we get
IVR@IE
4| AV R(z)[3

Proposition VI1: For all. m,n >0, for-any m X n real
matrix A and for any vector £ € R". Let b = Az and
let Amin, Amax De, respectively, the 'smallest and the largest
eigenvalues of ATA. Then, if #op = 0 and &, is computed
from #; using formula (20) with = 7,

ez ol < s el

R(&141) = R(#:) —

Proof: If Agin = 0, then the bound holds vacuously.
Assume then Amin > 0. Via an application of the Kantorovich
inequality to the square matrix AT A (see, e.g., [20]) it can
be shown that

N 4)\min)\max ~
R(#:y1) < (1 - m)R(:‘;t)' (22)
Therefore, we get
4Amin)\max
(/\min + )\max)Z

By summing up over all iterations ¢ we obtain

R(#;) < R(&) ~ R(&141).

min A -
— B N R(44) < R(do).
(Amin + Amax)Q ;

Recalling that &9 = (0, - - -,0) and making use of Fact VI.1

()\min + )\max)z

Az, — b))% < R(z
> iz, - bl < Dol
(Amin + )\max)z 2
- 4)\min/\max “A-'EHZ
(/\rﬁin + Am.:-)uc
< TA—)—IIAIIQIIleg
()\mm + )\max) 2
e
(/\mm + )\max)
B =3
min
concludmg the proof. ‘ O

A different analysis of update (20) can be obtained by
applying the techniques developed in Section IV. Let D(%)
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be the distance || — z||3 of # to the solution z. An easy
adaptation of Lemma IV.1 shows that

D(e41) = D(&:) + 1| VR(@E)|I3 — AnR ().
Here, the minimization over 7 yields the optimum at
2R(&:)
IVR(z:)l13
We then have the following result:
Proposition VI.2: For all m,n >0, for any m X n real
matrix A and for any vector z € R". Let b = Az and let

Amax be the largest eigenvalue of AT A. Then, if #o = 0 and
Z441 is computed from %, using formula (20) with = 7

(23)

M2 =

[e o] .
> 1A% = blI2 < Asmaxll=l3.
t=0

Proof: By plugging 2 for  in (23) we obtain
R 4R(&)*
D($t) _ ( t)

D(% = —
(8e11) [V R(z.)|2

) ) Az — b3
= D(#:) — || A%, - bH%nT”T(i@—-%@

.\ _ |lA%, — b|I3
< D(@) - L2 22
<P~ g
(by definition of || AT||2)
A B2
< D@, - M8 bl o Rt v .2).
llA[13

Therefore, rearranging the above and summing up over all
iterations ¢

o0
Y ll4&; — b3 <[ Al3D(&0)
t=0

=14l I3

since #o = (0, ---,0). By Fact VL1, this implies

Z | Az, — b||2 < /\maX||-";||2
=0
O

In summary, we compared two tunings of n for the learning
rule (20). The first and standard one maximizes the decrease
of ||AZ — b||2 and the second one maximizes the decrease in
|£ — =||3, where = is a solution.

The first method has the advantage that one can show that
||A%Z — b||3 decreases by a fixed factor in each trial [(22)].
(Note that this factor is one when Ay;, = 0, and this holds
when A does not have full rank.) In contrast, matrices A can
be constructed where updating with the optimal learning rate
72 causes an increase in ||A% — b||3.

The second method, however, always leads to better bounds
on % ||AZ: — bl|% since
()\min + )\max)Q

4)‘min
for all Apin, Amax > 0. (Notice that the corresponding bound

for the first method is vacuous when A, = 0, which holds,
as we said above, when A does not have full rank.) -

A <

max —=
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VII. LOWER BOUNDS

In this section, we describe lower bounds which match
the upper bounds of Theorems IV.3, V.1, and V.2, constants
included. In fact, these lower bounds show that even the upper
bound on the excess of the algorithm’s squared loss above the
best fixed element within a given class of functions is optimal.

Theorem VII.1: Fix an inner product space x for which an
orthonormal basis can be found.® For all E, X, W > 0 and
all prediction algorithms A, there exists n € N and a pair
(z,y) € x x R, such that ||z|| < X and the following hold:
There is a w € x for which ||Jw|| = W and ((w,z)-y)> = E
Furthermore, if § = A(x:) then

(G-vy)? > E+2WXVE + (WX)2

Proof: Choose an orthonormal basis for x. Set
= (X,0,--4),y = sgn(—-§(WX + \/E)a and w =
(sgn(—9)W, 0, - - ). The result then follows easily. O
To establish the upper bound of Theorem IV.4, in which
general bounds were obtained without any knowledge of an
upper bound on L (s), we required the assumption that
the y;’s were in a known range [—Y,Y] and compared the
total loss of the GD algorithm on s against Ly (s), where
W =Y/(max; ||z¢||). Therefore, the above lower bound does
not say anything about the optimality of those results. The
following lower bound shows that Theorem IV.4 cannot be
significantly improved, at least for high-dimensional spaces.
That is, we show that for any given X,Y,E >0 there is
some ng such that for all n-dimensional inner product spaces
Xn, With m > ng, any prediction strategy incurs loss at
least E 4 2YVE + Y2 for some sequence on x, x [—Y,Y].
This theorem further has obvious consequences concerning the
finite dimension case when the “noise level” E is not too large
relative to the number n of variables as well as X and Y.
Theorem VIL.2: Let (Xq),cy be any sequence of inner
product spaces such that x4 is a d-dimensional vector space.
Choose X,Y, E>0. Let n be any integer such that

2
vVE
> 1. -} .
(14
Then for any prediction algorithm A there is a sequence
((£1,91))t<n € (Xn X [-Y,Y])" such that:
1) Forall 1 <t < n, |z = X

2) If for each ,9: = A(((x1,91), -
then

n

Z(yt -

t=1

@4

7(mt—1>yt—1))7$t),

9)2> (Y +VE)? =E+2YVE +Y2

3) There exists w € R™ such that ||w|| = Y/X and

n

> (e - (w,z))* = E.

t=1

6 An orthonormal basis can be found under quite general conditions. See,
e.g., [30] for details.



616

Proof: Choose X,Y,E >0 and choose n € N so that
(24) is satisfied. Let e4, - - - , e, be an orthonormal basis of x,
(since xy, is a finite-dimensional inner product space, such an
orthonormal basis can always be found). Let z; = Xe;, for

i =1,---,n. Since the basis is orthonormal, ||z;|| = X for
all ¢, fulfilling part 1). Consider the adversary which at each
stept = 1,---,n feeds the algorithm with vector z; and, upon
algorithm’s prediction ¢, responds with
_ Y+ VE
Ye = Sgn(—yt)T-

This implies
2
R Y +VE
(e — 92)* > (T)

for éll t=1,2,---,n. This proves part 2). Now let w be the
vector of x, with coordinates

N Y/X Y/ X
(Sgﬂ(*yl)%> T ,Sgﬂ(_yn)‘%)
with respect to the basis eq, - - -, €,. To prove part 3, first notice
that |jw|| = Y/X. Second, for each £ = 1,---,n we have
(v — (x4, w))*
2
Y +VE
= sgn(—9 )'—,\/ﬁ— — (%, w)
2
Y +VE
= [Sgn(—yt) Jn - X(et,w):|

This concludes the proof of part 3. Finally, notice that (24)
implies that for all ¢ = 1,2,---,n

Y +VE
N

The proof is complete. &
We conclude with a lower bound for smooth functions.
Theorem VIL.3: Choose E,X,W > 0,n € N, and a

prediction algorithm A. Then there exists m € N,s =

(=4, 41))t<m € ([0, X]™ x R)™, such that the following hold:

There is a function f € SMOw,, for which &%, (f(=z:) —

y1)? < E. If for each ¢

lye| = <Y.

9 = A(((=1, y1), o (241, Yt—1)), Et)

then

m
S~ )? 2 B+ 2WX/*VE 42w X",

t=1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 3, MAY 1996

Proof: In fact m = 1 suffices in this case. Let £, =
(X,---,X). Suppose the first prediction ; of A is nonpos-
itive. Let v :

y=WX"2+VE
and let the function f: R} — R be defined by

W
f(Z)ZWgwi

if z € [0,X]", and f(z) = O otherwise. Then; for any
z € [0,X]" ’

f(a:):/ozl /Own Flun, - un) ddn-'-dul

where f = W/X™/2, The following are then easily verified:

1) f(0) =0
2) (flz) —p)? = (WX"? —(WX™? +VE)2 =E

D I 5 Fu) dundus = /XWX
=W

4 (fr—-91)? > (WX 4+ VE? = E+2WX™/*VE +

w2xn
since §; < 0. The case in which ¢; >0 can be handled
symmetrically. d

VIII. DiSCcUSSION AND CONCLUSIONS

In this paper we have investigated the performance of
the GD rule applied to the problem of on-line prediction in
arbitrary inner product spaces. Through a reduction, we then
applied our results to natural classes of smooth functions.

One of the most interesting contributions of this work is
perhaps the derivation of the optimal “learning rate” for GD
methods when the goal is to minimize the worst-case total loss
(here the sum of the squared prediction errors). Our tuning of
the learning rate is based on a priori information that can be

-guessed on-line with an increase in the total loss of constant

factors only. In the case of itérative solution of systems of
linear equations, we also showed that, with respect to the
sum of squared residual errors, the tuning provided by our
analysis compares favorably against the tuning obtained via
the standard GD analysis. '

It is an open problem whether, instead of using adversarial
arguments as we do here, our lower bounds. can already be
obtained when the examples are randomly and independently -
drawn from a natural distribution. For more simple functions
this was done in [3]: the lower bounds there are with respect to
uniform disiributions and the. upper bounds. which essentially
meet the lower bounds are proven for the worst-case as done
in this paper.

An interesting open problem is whether a variant of the
GDx,y algorithm (see Fig. 2) exists such that, for all se-
quences s = ((®;, Us))e<m satisfying ||z:]] < X and |y:| <Y
for all ¢, the additional total loss of the algorithm on s over
and above infye, Law(s) is bounded by a function of X,Y
only. Notice that this does not contradict Theorem VIL2.

The most challenging research direction is to prove worst
case loss bounds for other GD applications-(by tuning the
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learning rate) as we have done in this paper for linear functions
and the square loss. For example, are there useful worst
case loss bounds for learning linear functions with other loss
functions than the square loss. Another interesting case would
be worst case loss bounds for learning the class of linear
functions passed through a fixed transfer function (such as
tanh or the sigmoid function) for any reasonable loss function.

APPENDIX
PROOF OF THEOREM IV .4

Before proving the theorem we need some preliminary
lemmas. )

Lemma A.1: The total loss of G1 incurred in each loop ¢
is at most k; + (2a2%/2 + 5)Y2.

Proof: By construction of G1, the total loss incurred in
each loop i is at most &; + (2az%/2 4+ 1)Y2 plus the possible
additional loss on the trial causing the exit from the loop.
To upper bound this additional loss observe that G1 always
predicts with a value §; in the range [-Y,Y]. By hypothesis,
y; € [-Y,Y] for all t. Hence the loss of G1 on a single trial
t is at most 4Y 2. O

In what follows W = Y/X. Let s; be the subsequence of
s fed to G1 during loop <.
Lemma A.2: If G1 exits loop 4, then Ly (8;) > k.

Proof: By construction of G1, if G1 exits loop ¢, then
the total loss incurred on subsequence s; is bigger than

ki +2Y ki + Y2

Since |y:| <Y and since G1 predicts on each trial of loop ¢
by “clipping” the prediction of GDgx,,w,x)/x? to make it fit
in the range [-Y,Y], we conclude that the total loss incurred
by GDgx, w,x)/x2 on loop ¢ is bigger than ki+2Y VE+Y?
as well. Hence by Theorem IV.3 Ly (s;) > k; must hold. O

Lemma A.3: Let £ be the index of the last loop entered
by G1. Then

Y
£ < log, (1+ (ﬁﬁv(ﬁ)
Proof:
Lw(s) = | indy, Lw(®)
‘ £
= i [; L"’(s")]

4
> 1 .
> ;[“ unf, Lo(s)

4
=Y Lw(s)

i=0
-1

> Z k; + Lw(s¢) by Lemma A2
i=0

=1
> (aY)zzzi
=0
£
_ 92" =1
=(aY) —

Solving for £ finally yields the lemma. : O
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Lemma A.4: The total loss on G1 on the last loop £ entered
is at most

L (s) + (2022 4+ 5)Y2.

Proof: By construction of G1, the total loss L, of G1
on loop £ is the total loss of GDgk, w,x)/x2 on se. If
Lw(s¢) < kg, then by Theorem 1V.3

Le < Lw(se) + 2W X ke + (WX)?
<Lw(se) + ZY\/k_g +Y? sinceY = WX
= Lw(s¢) + (20242 + 1)Y?
< Ly (se) + (2022 + 5)Y2.
On the other hand, if Ly (s¢) > ke, then by Lemma A.1
L <k + (2024 + 5)Y?
< Lw(se) + (20242 + 5)Y?

and the proof is concluded. a
Lemma A.5: For all z > 0,In(1 + z)/In(2.618) <
0.8362,/.

Proof: The inequality in the statement of the lemma is
equivalent to

In(1+ z)
Nz
The function In(1 + z)/+/z has a unique maximum at z =

3.921. At this value of z the above inequality is seen to hold.
d

—0.83621n(2.618) < 0.

Proof of Theorem 1V.4. By Lemmas A.1 and A4

m

(?)t - yt)2
t=1

-1
<Y ki + (2022 + 5)Y?]
=0
+ Lw(se) + (2024 + 5)Y?
-1 £
<3 ki +2aY?Y 2 4 Lw(se) +5(£+ 1)Y?
=0 =0
-1
< Z Ly (s;) + Lw(s¢) + 2aY
=0
+5(£+1)Y? by Lemma A2
ZD/2 2972

Vi—-1 z-1

(z = 1)Lw(s)
211+ <
< Lw(s)+ 2aY? ﬂ (a¥) )

Vz—1
2aY?2
5+ 1)Y?
by Lemma A.3

,2EHD/2

Vi1

< Lyy(s) + 2aY? 5((+1)Y?
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(z = 1) Lw(s)
(aY)?

= Lw(s) + 2aY? fl\/u

2aY?

o +5(€+1)Y?
<LW(S)+2aY’2_\/E_\/ET 1+
- \%{2—1 + 5+ 1)Y?
= Ly (s) + 2aY? f\/— +2V ff_l
DI - 22X s+ y?

Vz—1
< Lw(s) + ZYV.;/ETI V(2 — 1) Lw(s) + 2aY?

~I—5[logz <1 + %) +.1} \&

by Lemma A.3. The factor (\/z/y/z —1)y/z — 1 is minimized
at z = 2.618. Plugging back in this value and using Lemma

AS

we get

Z(@t - yt)z

< Ly (s) + 6.6604Y /Ly (s) + 2aY?

1.618Ly (s) )
0.83624 | —— X5 4 11y
o+ 5108362 | == 55 +
< Lw(s) + (6 6604 + ﬂ>1q/LW'(s)

+ (20 + 5)Y2

Finally, by letting a = 2.0979 to trade off between the last
two terms we obtain

m

> (-

t=1

)+ 9.2(Y/Lw(s) + Y?).

Z/t) < Ly (s
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