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In certain application domains, such as weather prediction, one typically prefers to output a prob-
ability (e.g., the chance of rain) instead of a binary prediction (e.g., it will rain). This task corre-
sponds to the problem of learning the function η(x) = P(Y = 1 | X = x) in a binary classification
problem. A popular approach to do that is known as logistic regression: we train a predictor
g : X → R and then use σ

(
g(x)

)
to predict η(x). The function σ : R → R, called logistic, is defined

by

σ(z) =
1

1 + e−z
∈ (0, 1)

Because we estimate a probability, an appropriate loss function is the logarithmic loss (here we use
logarithms in base 2 for convenience),

ℓ(y, ŷ) = I{y = +1} log2
1

ŷ
+ I{y = −1} log2

1

1− ŷ

Noting that 1− σ(z) = σ(−z), we can write the identity

I{y = +1} log2
1

ŷ
+ I{y = −1} log2

1

1− ŷ
= log2

(
1 + e−yg(x)

)
where ŷ = σ

(
g(x)

)
. The right-hand side of the above identity is a function known as logistic loss,

and is typically defined using ŷ = g(x) as follows,

ℓ(y, ŷ) = log2
(
1 + e−y ŷ

)
We now describe the important case of logistic regression when g(x) is a linear model w⊤x. Given a

training set S =
{
(x1, y1), . . . , (xm, ym)

}
, let ℓt(w) = log2

(
1+e−ytw⊤xt

)
, we show how to compute

∇ℓt(w). Let st = w⊤xt. First, observe that

d

dst
log2

(
1 + e−ytst

)
=

1

ln 2

−yte
−ytst

1 + e−ytst
=

1

ln 2

−yt
1 + eytst

=
−yt σ(−ytst)

ln 2

Therefore,

∇ℓt(w) =

(
d

dst
log2

(
1 + e−ytst

)∣∣∣
st=w⊤xt

)
xt =

−σ
(
− ytw

⊤xt

)
ln 2

ytxt .

The gradient descent update can then be written as

wt+1 = wt + ηtσ
(
− ytw

⊤xt

)
ytxt

where we hid the ln 2 factor in the learning rate ηt.
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To avoid overfitting, logistic regression is often used with a regularization term that enforces sta-
bility,

ℓt(w) = log2
(
1 + e−ytw⊤xt

)
+

λ

2
∥w∥2 .

If we run stochastic gradient descent using regularized logistic regression we get an algorithm similar
to Pegasos for regularized hinge loss.

Surrogate losses ℓ : {−1, 1} × R → R are convex upper bounds on the zero-one loss function for
binary classification. We already encountered three of them:

• Hinge loss ℓ(y, ŷ) =
[
1− y ŷ

]
+

• Boosting loss ℓ(y, ŷ) = e−y ŷ

• Logistic loss ℓ(y, ŷ) = log2
(
1 + e−y ŷ

)
where y ∈ {−1, 1} and ŷ ∈ R.

As many surrogate losses exist, we may wonder whether some of them should be preferred over
the others. We now define an important criterion, called consistency, that a surrogate loss may
satisfy with respect to the function η(x) = P

(
Y = 1 | X = x

)
which defines the Bayes optimal

predictor f∗.

A surrogate loss function ℓ is consistent if, for all x ∈ X ,

sgn(g∗) = f∗ for g∗(x) = argmin
ŷ∈R

E
[
ℓ(Y, ŷ) | X = x

]
In other words, the sign of the Bayes optimal predictor for the surrogate loss must be the Bayes
optimal classifier for the zero-one loss.

We now verify the consistency of the logistic loss. By taking derivatives, it is easy to check that

g∗(x) = argmin
ŷ∈R

(
η(x) log2

(
1 + e−ŷ

)
+
(
1− η(x)

)
log2

(
1 + eŷ

))
= ln

η(x)

1− η(x)

which implies

sgn
(
g∗(x)

)
= sgn

(
ln

η(x)

1− η(x)

)
= sgn

(
η(x)− 1

2

)
= f∗(x)

The Bayes optimal prediction g∗(x) = ln η(x)
1−η(x) for the logistic loss is known as log-odds ratio. If

we compute the conditional Bayes risk of g∗ with respect to the logistic loss we get

E
[
log2

(
1 + e−Y g∗(x)

) ∣∣∣X = x
]
= −η(x) log2 η(x)−

(
1− η(x)

)
log2

(
1− η(x)

)
The quantity on the right-hand side is the entropyH

(
Y | X = x

)
of Y forX = x. This corresponds

to the expected number of bits that we receive by observing Y when X is already known. From
the conditional Bayes risk, we can easily obtain the Bayes risk,

ℓD(g
∗) = E

[
log2

(
1 + e−Y g∗(X)

)]
= H(Y | X)

The quantity on the right-hand side is now the conditional entropy H(Y | X) of the label Y given
X, which corresponds the Bayes risk for the logistic loss.
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Next, we verify the consistency of the hinge loss. We have

g∗(x) = argmin
ŷ∈R

(
η(x)

[
1− ŷ

]
+
+
(
1− η(x)

)[
1 + ŷ

]
+

)
= argmin

ŷ∈[−1,+1]

(
η(x)

[
1− ŷ

]
+
+
(
1− η(x)

)[
1 + ŷ

]
+

)
= argmin

ŷ∈[−1,+1]

(
1 +

(
1− 2η(x)

)
ŷ
)

=

{
−1 if η(x) ≤ 1/2,
+1 otherwise

= f∗(x)

In the second inequality, we could replace ŷ ∈ R with ŷ ∈ [−1,+1] because both functions [1− ŷ]+
and [1 + ŷ]+ increase or remain constant outside of the interval [−1,+1].

More generally, the following result holds.

Theorem 1 (Sufficient condition for consistency of a surrogate loss). If a surrogate loss ℓ : {−1, 1}×
R → R is such that for all y ∈ {−1, 1} the derivative ℓ′(y, 0) exists and satisfies ℓ′(y, 0) < 0, then ℓ
is consistent.

Besides the hinge loss and the logistic loss, also the boosting loss, the square loss ℓ(y, ŷ) =
(
1−y ŷ

)2
and the quadratic hinge loss ℓ(y, ŷ) =

(
[1− y ŷ]+

)2
are all consistent.
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