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In certain application domains, such as weather prediction, one typically prefers to output a prob-
ability (e.g., the chance of rain) instead of a binary prediction (e.g., it will rain). This task corre-
sponds to the problem of learning the function n(x) = P(Y = 1| X = «) in a binary classification
problem. A popular approach to do that is known as logistic regression: we train a predictor
g : X — R and then use a(g(az)) to predict n(x). The function o : R — R, called logistic, is defined
by .
o(z) = 1+e*

Because we estimate a probability, an appropriate loss function is the logarithmic loss (here we use
logarithms in base 2 for convenience),
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Noting that 1 — o(z) = o(—2), we can write the identity
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where 7 = a(g(m)). The right-hand side of the above identity is a function known as logistic loss,
and is typically defined using y = g(x) as follows,

Uy, ) = logy (1 +¢7¥9)

We now describe the important case of logistic regression when g(x) is a linear model w ' . Given a
training set S = {(1,91), ..., (Tm,Ym) }, let L(w) = log, (1 —i—e‘yf“’Tmf), we show how to compute
Vi (w). Let sp = w ' x;. First, observe that
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The gradient descent update can then be written as

Wiyl = Wt + 77t0( - yt’wT:Ft)ytwt

where we hid the In 2 factor in the learning rate ;.



To avoid overfitting, logistic regression is often used with a regularization term that enforces sta-
bility,
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If we run stochastic gradient descent using regularized logistic regression we get an algorithm similar

to Pegasos for regularized hinge loss.

Surrogate losses ¢ : {—1,1} x R — R are convex upper bounds on the zero-one loss function for
binary classification. We already encountered three of them:

e Hinge loss {(y,y) = [1 — y§]+
e Boosting loss £(y,7) = e ¥V
e Logistic loss £(y,y) = logsy (1 + e‘yy)

where y € {—1,1} and y € R.

As many surrogate losses exist, we may wonder whether some of them should be preferred over
the others. We now define an important criterion, called consistency, that a surrogate loss may
satisfy with respect to the function n(z) = P(Y = 1| X = x) which defines the Bayes optimal
predictor f*.

A surrogate loss function £ is consistent if, for all x € X,

sgn(g®) = f* for g (x) = argminE[E(Y, Y| X = az]
yeER

In other words, the sign of the Bayes optimal predictor for the surrogate loss must be the Bayes
optimal classifier for the zero-one loss.

We now verify the consistency of the logistic loss. By taking derivatives, it is easy to check that

() = argmin (n(@)logz (1 +¢77) + (1 = n(@)) log, (1 + 7)) = In 12(:()@

which implies

senls (@) = sen (122} = sgn(n(e) - ) = £*(@)
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we compute the conditional Bayes risk of g* with respect to the logistic loss we get

E{logg (1 + efyg*(‘”)) ‘ X = w] = —n(x)logyn(x) — (1 - 77(:1:)) log, (1 — n(a:))

The quantity on the right-hand side is the entropy H (Y | X = :c) of Y for X = a. This corresponds
to the expected number of bits that we receive by observing ¥ when X is already known. From
the conditional Bayes risk, we can easily obtain the Bayes risk,

The Bayes optimal prediction ¢*(x) = In for the logistic loss is known as log-odds ratio. If

t(g") =B log, (1+ 7] = H(Y | X)

The quantity on the right-hand side is now the conditional entropy H(Y | X) of the label Y given
X, which corresponds the Bayes risk for the logistic loss.



Next, we verify the consistency of the hinge loss. We have

g (x) = argmin(n(w) [1 - §]+ + (1 - n(m)) [1 + ﬂLr)
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_ =1 if 77(33) < 1/27
"1 +1 otherwise

= f*(=)

In the second inequality, we could replace y € R with y € [—1, +1] because both functions [1 — y]4+
and [1 + y]4 increase or remain constant outside of the interval [—1, +1].

More generally, the following result holds.

Theorem 1 (Sufficient condition for consistency of a surrogate loss). If a surrogate loss € : {—1,1}x
R — R is such that for all y € {—1,1} the derivative ¢'(y,0) exists and satisfies ¢'(y,0) < 0, then ¢
18 consistent.

Besides the hinge loss and the logistic loss, also the boosting loss, the square loss £(y,y) = (1 —y @)2
and the quadratic hinge loss ¢(y,y) = ([1 — yg?]Jr)Q are all consistent.



