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Random walks on graphs have numerous applications in computer science and other disciplines.
The well-known PageRank index, originally introduced as a way for ranking Web pages, is de-
fined through a random walk on the Web graph. Random walks are also used to model infor-
mation spreading in online social networks. Graph properties—such as size, diameter, degree
distribution—can be efficiently approximated via random walks when the graph is so large that
exact computations are not feasible.

Another important class of applications is the simulation of uniform draws from a finite combina-
torial set. For example, all spanning trees of a graph, all permutations of a set that satisfy certain
properties, all Hamiltonian cycles of a graph. Given the combinatorial set S, one can define a
graph with vertex set S and edges (u, v) whenever u can be obtained from v by a small change; for
example, the substitution of an edge in a spanning tree. By designing a random walk on this graph
that quickly converges to the uniform distribution on S, one can efficiently simulate a uniform
random draw from S.

Let A be the adjacency matrix of a connected graph G and recall the normalized Laplacian matrix
Lnorm = I −D−1/2AD−1/2 with entries

Lnorm(i, j) =

{
1 if i = j

−A(i, j)
/√

d(i)d(j) otherwise

We use α1 ≥ · · · ≥ αn to denote the eigenvalues of A (note that they are ordered in the opposite
direction with respect to the eigenvalues λ1 ≤ · · · ≤ λn of Lnorm).

If G is d-regular, then Lnorm = I − 1
dA and therefore λi = 1− 1

dαi. Since λi ∈ [0, 2] for any G (even
not regular), we have that αi ∈ [−d, d] for any d-regular graph.

Recall that d(G) is the average degree of the nodes in G, whereas ∆(G) is the maximum degree of
a node in G.

Fact 1 For any graph G = (V,E), d(G) ≤ α1 ≤ ∆(G).

Proof. Using the variational characterization of eigenvalues,

α1 = max
x : x̸=0

x⊤Ax

x⊤x
≥ 1⊤A1

1⊤1
=

1

n

n∑
i=1

n∑
j=1

A(i, j) =
1

n

n∑
i=1

d(i) = d(G)

For the other inequality, let u be an eigenvector for the eigenvalue α1 and let ui > 0 the largest
component of u (if all components are negative, take −u). Then

α1 =
(Au)i
ui

=
1

ui

n∑
j=1

A(i, j)uj =

n∑
j=1

A(i, j)
uj
ui

≤
n∑

j=1

A(i, j) ≤ ∆(G)
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concluding the proof. □

The trace of a symmetric n× n matrix M is M(1, 1)+ · · ·+M(n, n). One can show that the trace
is equal to the sum of eigenvalues. Since Ai,i = 0, the trace of A is zero and so α1 + · · ·+ αn = 0.
Since we proved that α1 ≥ d(G) > 0, this implies that αn < 0.

Lemma 2 Let G = (V,E) be a connected graph and let M be a nonnegative symmetric matrix such
that M(i, j) > 0 if and only if (i, j) ∈ E. Assume that some nonnegative vector u is an eigenvector
of M . Then u is strictly positive.

Proof. If u is nonnegative but not strictly positive, then there is some vertex r for which ur = 0.
As G is connected, there must be some edge (r, s) for which ur = 0 but us > 0 (since u is an
eigenvector, u ̸= 0). Let µ be the eigenvalue of u. We obtain a contradiction from

0 = µur = (Mu)r =
n∑

i=1

M(r, i)ui ≥ M(r, s)us > 0

concluding the proof. □

The next result is the cornerstone for the analysis of random walks on graphs. It applies to
many symmetric matrices defined on graphs, including the adjacency matrix and the normalized
adjacency matrix.

Theorem 3 (Perron-Frobenius for symmetric matrices) Let G = (V,E) be a connected graph
and let M be a nonnegative symmetric matrix such that, for all i ̸= j, M(i, j) > 0 if and only if
(i, j) ∈ E. Then the eigenvalues µ1 ≥ · · · ≥ µn of M satisfy:

1. The largest eigenvalue µ1 has a strictly positive eigenvector,
2. µ1 ≥ −µn,
3. µ1 > µ2, implying that µ1 has multiplicity 1.

Proof. Note that M has trace zero and so µn < 0 < µ1. In order to prove part 1, let u1 an
eigenvector for µ1 and define xi = |u1,i|. Then x⊤x = u⊤u = 1. Moreover, since M is nonnegative,

µ1 = u
⊤
1 Mu1 =

n∑
i=1

n∑
j=1

M(i, j)uiuj ≤
n∑

i=1

n∑
j=1

M(i, j)|ui||uj | = x⊤Mx

Therefore x satisfies x⊤x = 1 and

x⊤Mx ≥ µi = max
v :v ̸=0

v⊤Mv

v⊤v

So, according to the variational characterization of eigenvalues, x must be an eigenvector of µ1.
Since x is nonnegative, Lemma 2 implies that is strictly positive.

To prove part 2, let un be an eigenvector of µn and let xi = |un,i|. Then, similarly to before and
recalling that µn < 0,

|µn| =
∣∣u⊤

nMun

∣∣ ≤ n∑
i=1

n∑
j=1

M(i, j)|ui||uj | = x⊤Mx ≤ µ1
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To prove part 3, consider an eigenvector u2 of µ2. Note that: u⊤
2 u1 = 0, u1 has strictly positive

components, and u2 ̸= 0. Hence u2 must contain positive and negative components. Now let xi =
|u2,i| and, once again, note that µ2 = u⊤

2 Mu2 ≤ x⊤Mx ≤ µ1. For the purpose of contradiction,
assume µ2 = µ1. Then x is a nonnegative eigenvector of µ1. Lemma 2 implies that x is strictly
positive and so u2 has all components different from zero. Since u2 has positive and negative
components and the graph is connected, there must be at least one edge (i, j) ∈ E such that
u2,i < 0 < u2,j . This edge gives a negative contribution to u⊤

2 Mu2 and a positive contribution
to x⊤Mx ≤ µ1 (recall that M is nonnegative). Hence the inequality u⊤

2 Mu2 ≤ x⊤Mx must be
strict, implying µ2 < µ1. So we have a contradiction. □

The next observation (proof omitted) is important in the analysis of convergence of a random walk
on a graph.

Fact 4 G is bipartite if and only if µn = −µ1.

The random walk on a graph. Given a connected graph G = (V,E) with V = {1, . . . , n}, we
consider the random walk that starts from an arbitrary vertex V0 ∈ V , and at each step t = 0, 1, . . .
moves from Vt to a random vertex Vt+1 in the neighborhood of Vt. Therefore,

P(Vt+1 = i | Vt = j) =
A(i, j)

d(j)

Let ei be the canonical basis vector for the i-th coordinate (all zeros but a single 1 in position i).
The state of the walk at time t is defined by a probability distribution pt over V ,

P(Vt = i) = pt(i)

Hence, if the walk starts at V0 = i, then p0 = ei. At any time t we have

pt(i) = P(Vt = i) =
∑

j : (i,j)∈E

P(Vt = i | Vt−1 = j)P(Vt−1 = j) =
n∑

j=1

A(i, j)

d(j)
pt−1(j) (1)

Let D = diag
(
d(1), . . . , d(n)

)
and note that D−1

i,j = I{i = j}/d(j). Since

(
AD−1

)
(i, j) =

n∑
k=1

Ai,k
I{k = j}
d(j)

=
A(i, j)

d(j)

the right-hand side of (1) can be rewritten as AD−1pt−1 Letting W = AD−1, the evolution of our
random walk is given by pt = Wpt−1, or pt = W tp0. W is a column-stochastic matrix, as it is a
nonnegative matrix whose elements in each column sum to 1, that is (1⊤W )i = 1 for all i.

As Wi,j = A(i, j)/d(j), the matrix W is not symmetric. However, it is related to the normalized
adjacency matrix Anorm = D−1/2AD−1/2, which is symmetric with components

Anorm(i, j) =

{
0 if i = j

A(i, j)
/√

d(i)d(j) otherwise

Indeed, Anorm = D−1/2WD1/2. The normalized adjacency matrix is in turn related to the normal-
ized Laplacian as follows

Lnorm = I −D−1/2AD−1/2 = I −Anorm
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Let α′
1 ≥ · · · ≥ α′

n be the eigenvalues of Anorm. Because Lnorm = I − Anorm, we have α′
i = 1 − λi

for all i. Moreover, because the eigenvalues λ1 ≤ · · · ≤ λn of Lnorm belong to the interval [0, 2],
α′
i ∈ [−1, 1] for all i.

Fact 5 The vector ψ is an eigenvector of Anorm of eigenvalue ω if and only if D1/2ψ is an eigen-
vector of W of eigenvalue ω.

Proof. As Anorm = D−1/2WD1/2, we have that D1/2Anorm = WD1/2. Thus, if Anormψ = ωψ,
then

WD1/2ψ = D1/2Anormψ = D1/2ωψ = ω
(
D1/2ψ

)
and, similarly, we can show that Wu = ωu implies Anorm

(
D−1/2u

)
= ω

(
D−1/2u

)
. □

This result implies that the eigenvalues ω1 ≥ · · · ≥ ωn of W are the same as the eigenvalues of
Anorm.

An application of the Perron-Frobenius theorem to the normalized adjacency matrix Anorm gives:

1. −1 ≤ ωn < 0 < ω1 ≤ 1 and the unique eigenvector ψ1 of ω1 has strictly positive components
2. ω2 < ω1

3. ωn = −ω1 if and only if G is bipartite.

Next, we show that ω1 = 1. However, ω2 can be positive or negative. Moreover, if G is bipartite,
then ω1 = 1 and ω2 = −1.

The stationary distribution. We say that a distribution π over V is the stationary distribution
of W if Wπ = π. Hence, the stationary distribution is a (unnormalized) eigenvector of W with
eigenvalue 1 = ω1, as the eigenvalues of W range in [−1, 1]. Now let d =

(
d(1), . . . , d(n)

)
be the

vector of vertex degrees and consider the distribution

π =
d

1⊤d

Since

(Wπ)i =
n∑

j=1

W (i, j)πj =
n∑

j=1

A(i, j)

d(j)

d(j)

1⊤d
=

1

1⊤d

n∑
j=1

A(i, j) =
d(i)

1⊤d
= π(i)

this is the stationary distribution for W . Moreover, we also know that π is (up to normalization)
the unique eigenvector of W for the eigenvalue 1. So Fact 5 implies π = D1/2ψ1.

Fact 6 Let A be a n × n symmetric matrix with spectrum λ1, . . . , λn,u1, . . . ,un. Then, for any
t ∈ N,

At =
n∑

i=1

λt
iuiu

⊤
i

Proof. We use induction on t together with the spectral theorem and the orthonormality of
the eigenvectors. For t = 1 the statement follows from the spectral theorem. Assume now the
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statement holds for t− 1 and write

At = AAt−1 =

(
n∑

i=1

λiuiu
⊤
i

) n∑
j=1

λt−1
j uju

⊤
j


=

n∑
i=1

n∑
j=1

λiλ
t−1
j uiu

⊤
i uju

⊤
j

=
n∑

i=1

λt
iuiu

⊤
i (since u⊤

i uj = I{i = j})

concluding the proof. □

We are now ready to prove the convergence of the random walk to the stationary distribution.

Theorem 7 For any connected graph G not bipartite,

lim
t→∞

W tp0 =
d

1⊤d

irrespective to the initial distribution p0.

Proof. To verify convergence to π, we express D−1/2p0 in the eigenbasis ψ1, . . . ,ψn of Anorm,

D−1/2p0 =
n∑

i=1

(
ψ⊤

i D
−1/2p0

)
ψi =

n∑
i=1

ciψi (2)

Now we write

pt = W tp0 =
(
D1/2AnormD

−1/2
)t
p0

= D1/2AnormD
−1/2D1/2AnormD

−1/2 · · ·D1/2AnormD
−1/2p0

= D1/2At
normD

−1/2p0 (using D−1/2D1/2 = I)

= D1/2At
norm

n∑
i=1

ciψi (using (2))

= D1/2

 n∑
j=1

ωt
jψjψ

⊤
j

 n∑
i=1

ciψi (using Fact 6)

= D1/2
n∑

i=1

n∑
j=1

ci ω
t
jψjψ

⊤
j ψi

= D1/2
n∑

i=1

ci ω
t
iψi (since ψ⊤

i ψj = I{i = j})

Therefore, recalling that ω1 = 1,

pt = D1/2c1ψ1 +D1/2
n∑

i=2

ci ω
t
iψi (3)
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Now, if G is not bipartite, then ω2, . . . , ωn ∈ (−1, 1). Since limx→∞ ωx = 0 for all ω ∈ (−1, 1), we
get

lim
t→∞

pt = D1/2c1ψ1

Now recall that π is a unnormalized eigenvector of W . Therefore, using Fact 5, π = d
1⊤d

∝ D1/2ψ1

implying ψ1 = D−1/2d
/
∥D−1/2d∥. Therefore

c1 = ψ
⊤
1 D

−1/2p0 =

(
D−1/2d

)⊤
∥D−1/2d∥

D−1/2p0 =
d⊤D−1p0
∥D−1/2d∥

=
1⊤p0

∥D−1/2d∥
=

1

∥D−1/2d∥

because p0 is a probability vector. So,

D1/2c1ψ1 =
1

∥D−1/2d∥
D1/2D−1/2 d

∥D−1/2d∥
=

d

∥D−1/2d∥2
=

d∑n
j=1 d(j)

2
/
d(j)

= π

concluding the proof. □

Speed of convergence of the random walk. Assume that the random walk starts at some
vertex u ∈ V . For every vertex v ∈ V , we will bound how far pt(v) can be from π(v).

Theorem 8 For all u, v ∈ V and t ∈ N, if p0 = eu, then

∣∣pt(v)− π(v)
∣∣ ≤ (√d(v)

d(u)

)
κt

where κ = max
{
|ωn|, |ω2|

}
.

Proof. We start by writing pt(v) = e
⊤
v pt. Recalling (3),

pt(v) = e
⊤
v pt = π(v) + e⊤v D

1/2
n∑

i=2

ωt
iciψi (4)

Using (2), we know that

ci = ψ
⊤
i D

−1/2eu =
ψ⊤

i eu√
d(u)

So, from (4) and e⊤v D
1/2 =

√
d(v)e⊤v ,

e⊤v D
1/2

n∑
i=2

ωt
iciψi =

(√
d(v)

d(u)

)
e⊤v

n∑
i=2

ωt
iψiψ

⊤
i eu

6



Now we look at the last part of the above expression. We can write

e⊤v

n∑
i=2

ωt
iψiψ

⊤
i eu =

n∑
i=2

ωt
i

(
e⊤v ψi

)(
ψ⊤

i eu
)

≤
n∑

i=2

|ωi|t
∣∣e⊤v ψi

∣∣ ∣∣ψ⊤
i eu

∣∣
≤ κt

n∑
i=1

∣∣e⊤v ψi

∣∣ ∣∣ψ⊤
i eu

∣∣
≤ κt

√√√√ n∑
i=1

(
e⊤v ψi

)2√√√√ n∑
i=1

(
ψ⊤

i eu
)2

(using the Cauchy-Schwartz inequality)

= κt ∥ev∥ ∥eu∥ (because ψ1, . . . ,ψn is an orthonormal basis)

= κt

This concludes the proof. □

The lazy random walk. In order to directly relate the speed of convergence to the spectrum of
the Laplacian of G, we replace W by

W ′ =
1

2

(
I +W

)
With this new matrix, with equal probabilities we have that Vt+1 = Vt or Vt+1 is a random neighbor
of Vt . Also the eigenvalues ω′

1 ≥ · · · ≥ ω′
n of W ′ satisfy ω′

i =
1
2(1 + ωi) ∈ [0, 1]. It is easy to check

that π = d
1⊤d

is the stable distribution also for W ′. Indeed, W ′π = 1
2

(
I +W

)
π = 1

2π + 1
2π = π.

The relation between W ′ and Lnorm is now

W ′ =
1

2

(
I +D1/2AnormD

−1/2
)
=

1

2

(
I +D1/2(I − Lnorm)D

−1/2
)
= I − 1

2
D1/2LnormD

−1/2

If (λ,u) is an eigenpair for Lnorm, then let v = D1/2u and note that

D1/2LnormD
−1/2v = D1/2Lnormu = λv

Hence, D1/2LnormD
−1/2 has the same eigenvalues as Lnorm and thus ω′

i = 1 − λi
2 for i = 1, . . . , n.

Therefore, ω′
2 ≥ ω′

n ≥ 0 which implies that in Theorem 8 we have κ = max
{
|ω′

n|, |ω′
2|
}
= ω′

2 =

1− λ2
2 . Doing again the proof of Theorem 8 we obtain

pt = π +D1/2
n∑

i=2

ci

(
1− λi

2

)t

ψi

and so, for p0 = eu,

pt(v) ≤ π(v) +

(√
d(v)

d(u)

)(
1− λi

2

)t

Mixing time. For any u ∈ V , let p0(u, ·) = eu and pt(u, ·) =
(
W ′)tp0(u, ·). Define

d(t) = max
u,v∈V

∣∣pt(u, v)− π(v)
∣∣
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The mixing time of W ′ is defined by tmix(ε) = min {t ≥ 0 : d(t) ≤ ε} for any ε > 0. For any
sufficiently small ε > 0 and for any t ≥ tmix(ε), Vt approximates an independent random draw from
π. This is how we can use the random walk to approximately draw from the stationary distribution.

For simplicity, let tmix = tmix(1/4). Then t ≥ tmix is implied by

max
u,v∈V

(√
d(v)

d(u)

)(
1− λ2

2

)t

≤ 1

4

Using d(u) ≤ 1, d(v) ≤ n− 1, and 1 + x ≤ ex for all x ∈ R the above is implied by

t ≥ 2

λ2
ln
(
4
√
n− 1

)
which gives tmix = O

(
lnn

λ2

)
.

This reveals the important connection between mixing time, clusterability and the role of λ2.

The mixing time is a lower bound on the hitting time. Let thit(u, v) the smallest t such that Vt = v
given that V0 = u, and let the hitting time be defined as

thit = max
u,v∈V

E
[
thit(u, v)

]
Then one can show that tmix ≤ 2thit +1. The hitting time is also a lower bound on the cover time.
Let tcov(u) be the smallest time t such that the random walk visited all v ∈ V starting from u. The
cover time is

tcov = max
u∈V

E
[
tcov(u)

]
Then one can show that thit ≤ tcov ≤

(
1 + ln |V |

)
thit.

Some examples. We now bound the mixing time of some graphs. Let L be the Laplacian matrix
of some graph G of order n. Then, for any x ∈ Rn and any i = 1, . . . , n we have

(
Lx
)
i
= d(i)xi −

n∑
j=1

A(i, j)xj =
∑

j : (i,j)∈E

(xi − xj) (5)

In the following, we write λ′
1 ≤ · · · ≤ λ′

n to denote the eigenvalues of L and u1, . . . ,un the associated
eigenvectors. We know that u1 is a multiple of 1, and so 1⊤ui = 0 for any i > 1.

Since computing the eigenvalues of L is easier than computing the eigenvalues of Lnorm, we need
the following result relating the eigenvalues of Lnorm with those of L.

Theorem 9 Let L be the Laplacian matrix of a graph with eigenvalues λ′
1 ≤ · · · ≤ λ′

n and let Lnorm

be its normalized Laplacian with eigevalues λ1 ≤ · · · ≤ λn. Then, for all i = 1, . . . , n we have

λ′
i

∆
≤ λi ≤

λ′
i

δ

Proof. By the Courant-Fischer theorem, for all i = 1, . . . , n we have

λi = min
S : dim(S)=i

max
x∈S\{0}

x⊤Lnormx

x⊤x
= min

T : dim(T )=i
max

y∈T\{0}

y⊤Ly

y⊤Dy

8



beause the change of variables y = D−1/2x is a bijection (and so the dimensionality of the subspace
is preserved). Using

y⊤Dy =
∑
i

d(i)y2i ≤ ∆y⊤y

we obtain

min
T : dim(T )=i

max
y∈T\{0}

y⊤Ly

y⊤Dy
≥ 1

∆

(
min

T : dim(T )=i
max

y∈T\{0}

y⊤Ly

y⊤y

)
=

λ′
i

∆

The other inequality is proved similarly. □

Consider now Kn, the complete graph of order n and consider any eigenvector u orthogonal to 1.
Using (5), for any i = 1, . . . , n we have that(

Lu
)
i
=
∑
j ̸=i

(ui − uj) = (n− 1)ui −
∑
j ̸=i

uj = nui −
∑
j

uj = nui

because 1⊤u = 0. Therefore, any u such that 1⊤u = 0 satisfies Lu = nu. This implies that
the eigenvalue n has multiplicity n − 1. So λ′

2 = n and, because Kn is regular, Theorem 9 gives
λ2 =

n
n−1 implying that the mixing time is O(lnn).

For n evem, the dumbell graph Dn consists of two copies of Kn/2, joined by one edge (called the
bridge). So all vertices have degree n/2− 1 or n and we get

λ′
2 = min

x∈Rn\{0}
x⊤1=0

∑
(i,j)∈E(xi − xj)

2

x⊤x
≤ 4

n

where we chose the vector x such that xi = 1 if i belongs to the first clique and xi = −1 otherwise.
Using Theorem 9 we get that λ2 ≤ 4

n(n−1) . This implies that the mixing time is O(n2 lnn).

The two bounds for the mixing time of the clique and the dumbell are tight. This implies an
exponential gap between the mixing time Θ(lnn) of Kn and the mixing time Θ(n2 lnn) of Dn.

Distributed consensus. Given numbers x0 =
(
x0(1), . . . , x0(n)

)
at each vertex of a connected

graph G = (V,E), we want each node in V to compute the average

µ =
1

n

∑
v∈V

x0(v)

by communicating only with its neighbors in G.

We run at each node v ∈ V an algorithm that, at each time step t = 0, 1, . . ., updates the node’s
state xt(v) according to

xt+1(v) =
∑

u : (v,u)∈E

W (v, u)xt(u) (6)

We can write the update as xt+1 = Wxt. We let the matrix W to be a gossip matrix. This is
any nonnegative symmetric matrix, doubly stochastic (W1 = 1 and 1⊤W = 1⊤), and such that
W (i, j) > 0 if and only if (i, j) ∈ E.

Fact 10 The largest eigenvalue of a row-stochastic matrix is 1.
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Proof. Let W be a row-stochastic matrix. Then W1 = 1 and so 1 is an eigenvalue of W . Now
suppose there exists µ > 1 and x ̸= 0 such that Wx = µx. Let xk be a largest element of x. Since
−x also satisfies this equation we can assume, without loss of generality, that xk > 0. Since the
elements W (i, 1), . . . ,W (i, n) on each row of W are nonnegative and sum to 1, for any i = 1 . . . , n
we have

(Wx)i =

n∑
j=1

W (i, j)xj ≤ max
j=1,...,n

xj = xk

Thus, no entry in µx = Wx can be larger than xk. But since µ > 1, µxk > xk and we have a
contradiction. Therefore, the largest eigenvalue of W is 1. □

Let ωn ≤ · · · ≤ ωn−1 < ω1 = 1 be the eigenvalues of W . Let

x = µ1 =
1

n
11⊤x0

Then x is the stationary distribution for W . Indeed, because W is row-stochastic,

Wx =
1

n
W11⊤x0 =

1

n
11⊤x0 = x

Note also that

1

n
11⊤xt =

1

n
11⊤Wxt−1 =

1

n
11⊤xt−1 = · · · = 1

n
11⊤x0 =

1

n
11⊤x (7)

In order to prove convergence of xt to x = µ1, we first observe that

max
v

∣∣xt(v)− µ
∣∣ = ∥xt − x∥∞ ≤ ∥xt − x∥

because the infinity norm is never larger than the Euclidean norm. Hence, it is enough to measure
how fast ∥xt − x∥ vanishes as t → ∞. We use the operator norm ∥W∥ of a symmetric matrix W ,
which is the largest absolute value of an eigenvalue of W . For any vector z, we have the following
inequality: ∥Wz∥ ≤ ∥W∥ ∥z∥. Using that inequality and (7) we can write

∥xt+1 − x∥ =
∥∥W (xt − x

)∥∥ =

∥∥∥∥(W − 11⊤

n

)(
xt − x

)∥∥∥∥ ≤
∥∥∥∥W − 11⊤

n

∥∥∥∥ ∥xt − x∥

Fact 11 If G is not bipartite, then∥∥∥∥W − 11⊤

n

∥∥∥∥ = max
{
|ω2|, |ωn|

}
Proof. By Fact 10, ω1 = 1 with eigenvalue u1 = 1√

n
1. Let W = UΛU⊤ be the spectral

decomposition of W , where Λ = diag(1, ω2, . . . , ωn) and U =
[
u1, . . . ,un

]
. Let M be the n × n

diagonal matrix diag(1, 0, . . . , 0). Then, UMU⊤ = u1u
⊤
1 = 1

n11
⊤ and∥∥∥∥W − 11⊤

n

∥∥∥∥ =
∥∥∥U(Λ−M)U⊤

∥∥∥ =
∥∥∥U diag(0, ω2, . . . , ωn)U

⊤
∥∥∥ = max

{
|ω2|, |ωn|

}
because G is not bipartite and so |ωn| < 1. □
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Now let κ = max
{
|ω2|, |ωn|

}
. We have that maxv

∣∣xt(v) − µ
∣∣ ≤ κt ∥x0 − x∥, implying that the

speed of convergence is dictated by the spectrum of the gossip matrix W if the underlying graph
is not bipartite.

A reasonable choice for the gossip matrix is W = I−αL, where 0 < α < 1/
(
2∆(G)

)
and L = D−A

is the unnormalized Laplacian of G (check that this choice of W is indeed a gossip matrix). The
eigenvalues of W are thus ωi = 1 − αλi, where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of L.
Recall (Theorem 9) that λn < 2∆(g) because the largest eingenvalue of Lnorm for a non-bipartite
graph is smaller than 2. Hence, ωn = 1− αλn > 0, implying κ = ω2 = 1− αλ2 < 1− λ2/

(
2∆(G)

)
.

The update (6) in this case can be written as

xt+1(v) = xt(v) + α
∑

u : (u,v)∈E

(
xt(u)− xt(v)

)
and the speed of convergence is dictated by λ2/∆(G),

ωt
2 ≤

(
1− λ2

∆(G)

)t

≤ exp

(
− λ2t

∆(G)

)

Exercises

1. Show that if G is connected and µ1 = ∆(G), then G is ∆(G)-regular.

2. Prove Fact 4.
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