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Random walks on graphs have numerous applications in computer science and other disciplines.
The well-known PageRank index, originally introduced as a way for ranking Web pages, is de-
fined through a random walk on the Web graph. Random walks are also used to model infor-
mation spreading in online social networks. Graph properties—such as size, diameter, degree
distribution—can be efficiently approximated via random walks when the graph is so large that
exact computations are not feasible.

Another important class of applications is the simulation of uniform draws from a finite combina-
torial set. For example, all spanning trees of a graph, all permutations of a set that satisfy certain
properties, all Hamiltonian cycles of a graph. Given the combinatorial set &, one can define a
graph with vertex set S and edges (u,v) whenever u can be obtained from v by a small change; for
example, the substitution of an edge in a spanning tree. By designing a random walk on this graph
that quickly converges to the uniform distribution on S, one can efficiently simulate a uniform
random draw from S.

Let A be the adjacency matrix of a connected graph G and recall the normalized Laplacian matrix
Lnorm =1- D_1/214D_1/2 with entries

I (i,j) = ifi=y
normi%, J) = A(i, g /\/ d(j) otherwise

We use a; > -+ > a, to denote the eigenvalues of A (note that they are ordered in the opposite
direction with respect to the eigenvalues \; < -+ < A\, of Lyoym)-

If G is d-regular, then Lyom = I — A and therefore \; = 1 — a;. Since \; € [0,2] for any G (even
not regular), we have that o; € [— d d] for any d-regular graph.

Recall that d(G) is the average degree of the nodes in G, whereas A(G) is the maximum degree of
a node in G.

Fact 1 For any graph G = (V, E), d(G) < a1 < A(G).

PRrROOF. Using the variational characterization of eigenvalues,

a1 = max xTAx > 1TA1 ZZA i,7) id( ) =d(G)
z:l

x:x#0 x'x 1T1
=1 j=1

For the other inequality, let u be an eigenvector for the eigenvalue a; and let u; > 0 the largest
component of u (if all components are negative, take —u). Then

alz = ZAZ]UJ ZAz] <ZA’L] < A(G)

7j=1




concluding the proof. O

The trace of a symmetric n x n matrix M is M(1,1)+---+ M(n,n). One can show that the trace
is equal to the sum of eigenvalues. Since A;; = 0, the trace of A is zero and so a1 + -+ ay, = 0.
Since we proved that a; > d(G) > 0, this implies that «,, < 0.

Lemma 2 Let G = (V, E) be a connected graph and let M be a nonnegative symmetric matriz such
that M(i,7) > 0 if and only if (i,j) € E. Assume that some nonnegative vector u is an eigenvector
of M. Then u is strictly positive.

ProoF. If u is nonnegative but not strictly positive, then there is some vertex r for which u, = 0.
As G is connected, there must be some edge (r,s) for which u, = 0 but us > 0 (since u is an
eigenvector, u # 0). Let u be the eigenvalue of u. We obtain a contradiction from

n
0= pu, = (Mu), = ZM(r,i)ui > M(r,s)us >0
=1

concluding the proof. O

The next result is the cornerstone for the analysis of random walks on graphs. It applies to
many symmetric matrices defined on graphs, including the adjacency matrix and the normalized
adjacency matrix.

Theorem 3 (Perron-Frobenius for symmetric matrices) Let G = (V, E) be a connected graph
and let M be a nonnegative symmetric matrixz such that, for all i # j, M(i,j) > 0 if and only if
(i,7) € E. Then the eigenvalues py > -+ > pup of M satisfy:

1. The largest eigenvalue puy has a strictly positive eigenvector,

2. 1> —fn,
3. p1 > p2, implying that py has multiplicity 1.

Proor. Note that M has trace zero and so p, < 0 < p1. In order to prove part 1, let u; an

eigenvector for p; and define z; = |uy ;|. Then x'x =u'u = 1. Moreover, since M is nonnegative,

n n n n
p1 = u{ Muy = ZZM(i,j)uiuj < ZZM(Z,Q}\UZHUJ\ =z Mz

i=1 j=1 i=1 j=1

T

Therefore  satisfies ' = 1 and

T
v' Mv

' Mz > p; = max -
v:v£A0 V'V

So, according to the variational characterization of eigenvalues, & must be an eigenvector of u.
Since x is nonnegative, Lemma 2 implies that is strictly positive.

To prove part 2, let u,, be an eigenvector of p, and let z; = |uy ;|. Then, similarly to before and
recalling that u, <0,

n n
| = Jag Mun| <77 M, luilluy] = 2" Ma <
i=1 j=1



To prove part 3, consider an eigenvector us of ps. Note that: u;ul = 0, w1 has strictly positive

components, and us # 0. Hence us must contain positive and negative components. Now let x; =
\u2,z‘\ and, once again, note that us = u;Mug <z'Mz< 1. For the purpose of contradiction,
assume ps = p1. Then x is a nonnegative eigenvector of puy. Lemma 2 implies that x is strictly
positive and so us has all components different from zero. Since wo has positive and negative
components and the graph is connected, there must be at least one edge (i,j) € E such that
ug; < 0 < ug ;. This edge gives a negative contribution to uQTM ug and a positive contribution
to ' Max < py (recall that M is nonnegative). Hence the inequality uj Mus < @' Mz must be
strict, implying pe < 1. So we have a contradiction. O

The next observation (proof omitted) is important in the analysis of convergence of a random walk
on a graph.

Fact 4 G is bipartite if and only if gy, = —p1.

The random walk on a graph. Given a connected graph G = (V, E) with V = {1,...,n}, we
consider the random walk that starts from an arbitrary vertex Vy € V, and at each stept =0, 1, ...
moves from V; to a random vertex V;41 in the neighborhood of V;. Therefore,

A(i, j)

d(3)
Let e; be the canonical basis vector for the i-th coordinate (all zeros but a single 1 in position 7).
The state of the walk at time ¢ is defined by a probability distribution p, over V,

P(V; = i) = pt(i)

Hence, if the walk starts at V) = ¢, then p, = e;. At any time ¢ we have

P(Vipi=i|Vi=j)=

p() =P(Vi=i)= S PB(Vi=i|Vi1=jP(Vir=7) Ejﬁggml> (1)
J:(,J)er Jj=1

Let D = diag (d(1),...,d(n)) and note that D;; =I{i=4}/d(j). Since

iy oS g HE =) AG)
(AP = 0 A5 = )

the right-hand side of (1) can be rewritten as AD~'p, ;| Letting W = AD~!, the evolution of our
random walk is given by p, = Wp,_;, or p, = Wip,. Wis a column—stochastlc matrix, as it is a
nonnegative matrix whose elements in each column sum to 1, that is (17W); = 1 for all 4.

As Wi ; = A(i,7)/d(j), the matrix W is not symmetric. However, it is related to the normalized
adjacency matrix Aporm = D~ Y2AD~Y/2 which is symmetric with components

A (i) = ifi=y
normi%; J) = A(i, j) /\/ d(j) otherwise

Indeed, Anorm = D~12W D2 The normalized adjacency matrix is in turn related to the normal-
ized Laplacian as follows

Lnorm =1- D71/2AD71/2 =1- Anorm



Let o} > --- > o], be the eigenvalues of Anorm. Because Lyoym = I — Anorm, we have o =1 — \;
for all i. Moreover, because the eigenvalues A\; < --- < A, of Lyom belong to the interval [0, 2],
af € [—1,1] for all 4.

Fact 5 The vector ¥ is an eigenvector of Anorm 0f eigenvalue w if and only if DY?4 is an eigen-
vector of W of eigenvalue w.

PROOF. As Aporm = DY/2WDY/2, we have that DV/2A,o.m = WDV2. Thus, if Apom® = wp,
then
WDY?p = D'? Apgrmp = DY ?wep = w(DV?y)

and, similarly, we can show that Wu = w u implies Aporm (Dfl/zu) = w(Dil/Qu). O
This result implies that the eigenvalues w; > --- > w, of W are the same as the eigenvalues of
Anorm~

An application of the Perron-Frobenius theorem to the normalized adjacency matrix Anorm gives:

1. =1 <wp <0< w; <1 and the unique eigenvector 1, of wy has strictly positive components
2. wo < wq
3. wnp, = —w if and only if G is bipartite.

Next, we show that w; = 1. However, ws can be positive or negative. Moreover, if G is bipartite,
then wy =1 and wy = —1.

The stationary distribution. We say that a distribution 7 over V is the stationary distribution
of W if Wa = m. Hence, the stationary distribution is a (unnormalized) eigenvector of W with
eigenvalue 1 = wy, as the eigenvalues of W range in [—1,1]. Now let d = (d(1),...,d(n)) be the
vector of vertex degrees and consider the distribution

d
17d

Since

- o "L A(i,5) d(j 1 . . d@ ,
(Wﬂ-)l = ZW(Zﬂj)Wj = Z; d((]')]) lggc)l = 17d z;A(Z)j) = 1§c)l = 7'1'(7,)

J=1

this is the stationary distribution for W. Moreover, we also know that 7 is (up to normalization)
the unique eigenvector of W for the eigenvalue 1. So Fact 5 implies = = D/ 2ap;.

Fact 6 Let A be a n X n symmetric matriz with spectrum Ai,..., Ap,U1,...,uy. Then, for any
teN,

n
t_ by T
A= g A uiu;
i=1

PrOOF. We use induction on ¢ together with the spectral theorem and the orthonormality of
the eigenvectors. For ¢ = 1 the statement follows from the spectral theorem. Assume now the



statement holds for ¢ — 1 and write

n n
At = AAt_l = <Z )\Zulu;r) Z A;flu]u—r
i=1 j=1
n n
A ]
i=1 j=1
n
= Z M (since u, u; = I{i = j})
i=1
concluding the proof. O

We are now ready to prove the convergence of the random walk to the stationary distribution.
Theorem 7 For any connected graph G not bipartite,
d
. t _
tlggo Wpo = 17d

irrespective to the initial distribution py.

PRrOOF. To verify convergence to 7, we express D*1/2p0 in the eigenbasis ¥, ...,,, of Anorm,
n n
D /2p, = Z (%TD_MP()) W, = Zcﬂpi (2)
i=1 i=1

Now we write

t
b = tho = (Dl/QAnormD_1/2> Do

— D24, D V2DY24 D12, D1/2AnormD_1/2p0
=D" QAflorm “py (using D~Y/2D'/2 = T)
= DY2At Zcﬂﬁz (using (2))
= D'/? Zwtqu Z ci; (using Fact 6)
7j=1
=D'PY D ey v,
i=1 j=1
= D/? Zci Wi, (since 7/’¢T¢j ={i=j})
i=1
Therefore, recalling that wy =1,
p, = D'Peyapy + DV " ciwiep, (3)
i=2



Now, if G is not bipartite, then wa,...,w, € (—1,1). Since limy_,o w”* = 0 for all w € (—1,1), we
get

lim p, = D'/?cy4p,

t—o00

Now recall that 7 is a unnormalized eigenvector of W. Therefore, using Fact 5, w = 1%‘0[ x DY/ 24,
implying ¥; = D_l/zd/HD_l/de. Therefore
_ T _
o =T D V2p = MD—I/QP _ d' D~ 'p, _ 1" py _ 1
' ' ID-12d| "D~V |D-12d) DA

because p, is a probability vector. So,

1 pipp-12_ d d d

ID=1/2d]| ID=12d||  (|D=Y2d|? - YT d(5)?/d(5)

D1/201'¢1 =

™

concluding the proof. O
Speed of convergence of the random walk. Assume that the random walk starts at some

vertex u € V. For every vertex v € V, we will bound how far p;(v) can be from 7(v).

Theorem 8 For allu,v eV andt € N, if py = ey, then

d(v) t
‘pt(v) —71'(1})‘ < ( d(u)> K

where = max {|wn|, lwa }.

PROOF. We start by writing p;(v) = e, p;. Recalling (3),

n
pe(v) = egpy = m(v) + eg D'V2 Y " wheip; (4)
=2
Using (2), we know that
lpiTeu

R T —1/2 _
ci=v9; D e, =
v &(u)

So, from (4) and e] DY/? = \/d(v)e],

el D2y uleit; = ( f,ﬁ;) el > wiwap]e,

=2



Now we look at the last part of the above expression. We can write
n n
ey Y wibiplew =y wi(e¥;) (v ew)
i=2 i=2
n
<Y lwil'ley ] [ el
i=2

n
<EDY ey ][9] ed]
=1

n n

< k! Z (e;r wi)z Z (1,01T eu)2 (using the Cauchy-Schwartz inequality)
i=1 i=1
= k' ||ey|| |leu]| (because ¥4, ...,1,, is an orthonormal basis)
This concludes the proof. ]

The lazy random walk. In order to directly relate the speed of convergence to the spectrum of
the Laplacian of GG, we replace W by

W= (14 W)

With this new matrix, with equal probabilities we have that Vi1 = V; or Vi1 is a random neighbor
of V; . Also the eigenvalues w} > -+ > w/, of W' satisfy w] = 1(1 +w;) € [0,1]. It is easy to check
that m = 1%‘(1 is the stable distribution also for W’. Indeed, W'mw = %(I +W)m = %71’ + %w = .
The relation between W' and Lyorm iS now

1 1 1
W/ = 5([_{_ D1/2An0rmD_1/2> — 5(] + DI/Q(I _ Lnorm)D_1/2) . §D1/2Ln0rmD_1/2
If (A, u) is an eigenpair for Lyom, then let v = D'/?4 and note that
D2 LyoemD™V?0 = D2 Lygumu = Mo

Hence, Dl/anomel/2 has the same eigenvalues as Lyoym and thus wg =1- % fori=1,...,n.
Therefore, w) > w], > 0 which implies that in Theorem 8 we have x = max {|w],|, |w}|} = wh =
1-— )‘2—2 Doing again the proof of Theorem 8 we obtain

n A\
- D1/2 (1= .
Dy ™+ ZC ( 2) ’(/)z

=2

pi(v) < m(v) + ( ZEZ;) <1 N A21>t

and so, for p, = ey,

Mixing time. For any u € V, let py(u,-) = e, and p,(u,-) = (W')'py(u, ). Define

d(t) = max |pe(u,v) — 7(v)|

u,v

7



The mixing time of W' is defined by tmix(¢) = min{t >0 : d(t) < e} for any ¢ > 0. For any
sufficiently small e > 0 and for any ¢ > tix(g), Vi approximates an independent random draw from
7. This is how we can use the random walk to approximately draw from the stationary distribution.

For simplicity, let tmix = tmix(1/4). Then t > tpnix is implied by

o (59) (%) =

Using d(u) <1, d(v) <n—1,and 1 +x < e” for all z € R the above is implied by

PN

2 1
t> ™ In (4\/n — 1) which gives tmix = O <1)1\n> .
2 2

This reveals the important connection between mixing time, clusterability and the role of As.

The mixing time is a lower bound on the hitting time. Let ¢p;;(u, v) the smallest ¢ such that V; = v
given that Vj = u, and let the hitting time be defined as

thit = Jil}%)‘(/E[thit(ua v)]
Then one can show that t,ix < 2th; + 1. The hitting time is also a lower bound on the cover time.
Let tcov (1) be the smallest time ¢ such that the random walk visited all v € V' starting from w. The

cover time is

teov = Iz?ea\i'( E [tcov (u)]

Then one can show that tp; < teov < (1 + In |V\)thit.

Some examples. We now bound the mixing time of some graphs. Let L be the Laplacian matrix
of some graph G of order n. Then, for any & € R™ and any ¢ = 1,...,n we have

(La), = d(i)z; — > A(i,j)r; = > (@i — ) (5)
j=1

J:(id)eE

In the following, we write A} < --- < X/ to denote the eigenvalues of L and uy, .. ., u, the associated
eigenvectors. We know that w; is a multiple of 1, and so 1Twu; = 0 for any i > 1.

Since computing the eigenvalues of L is easier than computing the eigenvalues of Lyorm, we need
the following result relating the eigenvalues of Lyom with those of L.

Theorem 9 Let L be the Laplacian matriz of a graph with eigenvalues Ny < --- < X/, and let Lyorm

be its normalized Laplacian with eigevalues \y < -+ < \,. Then, for alli=1,...,n we have
hV by
Zton <
A~ %
Proor. By the Courant-Fischer theorem, for all i =1,...,n we have
A\ = : $TLnormx o . yTLy
;= _ min =~ max ———— = min = max -———
S :dim(S)=i x€S\{0} T'T T:dim(T)=i yeT\{0} ¥y ' Dy



beause the change of variables y = D~1/2

is preserved). Using

x is a bijection (and so the dimensionality of the subspace

y' Dy=> d(i)y; <Ay'y

we obtain
_ TLy 1 TLy N,
min max — min max =2
T dim(T)=i yeT\ {0} yTDy A \T:dim(T)=iyeT\{0} Y'Yy A
The other inequality is proved similarly. ([l

Consider now K,,, the complete graph of order n and consider any eigenvector u orthogonal to 1.
Using (5), for any i = 1,...,n we have that

(LU)Z-:Z(W—U]) (n—1)u Zu] = nu; — Zu] = nu;

J#i J#

because 1Tu = 0. Therefore, any w such that 1w = 0 satisfies Lu = nu. This implies that
the eigenvalue n has multiplicity n — 1. So A, = n and, because K, is regular, Theorem 9 gives
Ay = = implying that the mixing time is O(Inn).

n

For n evem, the dumbell graph D), consists of two copies of K, /5, joined by one edge (called the
bridge). So all vertices have degree n/2 — 1 or n and we get

Digper(®i— 1?4
)\/2 — InlIl (Zvj)EET ¢ J S —
zeR™\{0} T'T n
x'1=0
where we chose the vector @ such that x; = 1 if ¢ belongs to the first clique and x; = —1 otherwise.

Using Theorem 9 we get that Ao < ﬁ. This implies that the mixing time is O(n?Inn).

The two bounds for the mixing time of the clique and the dumbell are tight. This implies an
exponential gap between the mixing time ©(Inn) of K,, and the mixing time ©(n?Inn) of D,,.

Distributed consensus. Given numbers g = (z0(1),...,z0(n)) at each vertex of a connected
graph G = (V, E), we want each node in V' to compute the average

= % Z zo(v)

veV

by communicating only with its neighbors in G.

We run at each node v € V' an algorithm that, at each time step ¢t = 0,1,..., updates the node’s
state z¢(v) according to

ra@) = S W(o,u)a(u) (6)

u: (v,u)EE

We can write the update as x;11 = Wx;. We let the matrix W to be a gossip matrix. This is
any nonnegative symmetric matrix, doubly stochastic (W1 = 1 and 1TW = 17), and such that
W (i,j) > 0 if and only if (i,j) € E.

Fact 10 The largest eigenvalue of a row-stochastic matrix is 1.



PrOOF. Let W be a row-stochastic matrix. Then W1 =1 and so 1 is an eigenvalue of W. Now
suppose there exists 4 > 1 and & # 0 such that Wax = px. Let x be a largest element of x. Since
—x also satisfies this equation we can assume, without loss of generality, that x > 0. Since the
elements W (i, 1),...,W(i,n) on each row of W are nonnegative and sum to 1, forany i =1...,n
we have

n

(Wx); = ZW(i,j)xj < max z; =

- Jj=1,..,n

7=1
Thus, no entry in px = Wa can be larger than xy. But since p > 1, pzp > z; and we have a
contradiction. Therefore, the largest eigenvalue of W is 1. O

Let wyp <+ <wp—1 <wi =1 be the eigenvalues of W. Let

1
T =pul= EllT:co

Then « is the stationary distribution for W. Indeed, because W is row-stochastic,
1 T 1 T
Wx=-WI11 xyp=—-11 g ==
n n

Note also that

1 1 1 1 1
“11 T = 11T Wy = 11T == =11 Txzp = ~11 "2 (7)
n n n n n

In order to prove convergence of x; to @ = ul, we first observe that
max |z (v) — p| = |2 — || < [lze — ]

because the infinity norm is never larger than the Euclidean norm. Hence, it is enough to measure
how fast ||x; — x|| vanishes as t — co. We use the operator norm ||W|| of a symmetric matrix W,
which is the largest absolute value of an eigenvalue of W. For any vector z, we have the following
inequality: [|[Wz| < ||W||||z||. Using that inequality and (7) we can write

H 117

117
i1 — x| = | W (2 — o) || = H (W — n) x — x) W — —|| ||z — x|

Fact 11 If G is not bipartite, then

Wﬁi

117
H —max{|w2] \wn|}

ﬁl. Let W = UAUT be the spectral

decomposition of W, where A = diag(1l,we, ... ,wy) and U= [ul, e ,un]. Let M be the n x n
diagonal matrix diag(1,0,...,0). Then, UZWUT =wu{ = +117 and

Proor. By Fact 10, w; = 1 with eigenvalue u; =

117
-2

= HU (A—M) UTH = HUdlag (0,wa, ..., n)UTH = max {|wa|, |wn|}
because G is not bipartite and so |wy| < 1. O

10



Now let £ = max {|wa, |wn|}. We have that max, |z:(v) — u| < k' ||@o — @/, implying that the
speed of convergence is dictated by the spectrum of the gossip matrix W if the underlying graph
is not bipartite.

A reasonable choice for the gossip matrix is W = I —aL, where 0 < a < 1/(2A(G)) and L=D—A
is the unnormalized Laplacian of G (check that this choice of W is indeed a gossip matrix). The
eigenvalues of W are thus w; = 1 — a);, where 0 = A1 < Ay < --- < A, are the eigenvalues of L.
Recall (Theorem 9) that A\, < 2A(g) because the largest eingenvalue of Lyory, for a non-bipartite
graph is smaller than 2. Hence, w, =1 — aX, > 0, implying Kk =ws =1 —aly <1 — )\2/(2A(G)).
The update (6) in this case can be written as

T (v) =@(v) +a Y (zi(u) — @(v))

u:(u,v)eEE

and the speed of convergence is dictated by \o/A(G),

“ < (1 - A?zn)t = o (1%)

Exercises

1. Show that if G is connected and p; = A(G), then G is A(G)-regular.

2. Prove Fact 4.
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