
Graph Theory

Spectral clustering

Instructor: Nicolò Cesa-Bianchi version of April 27, 2024

The material in this handout is mostly taken from: Luca Trevisan, Lecture Notes on Graph Parti-
tioning, Expanders and Spectral Methods, 2016.

Intuitively, a graph is clusterable if its vertices can be partitioned (in a non-trivial way) so that the
number of edges across the elements of the partition is small. A key notion is therefore that of cut
between disjoint subsets of vertices. We study the clusterability of a graph through the algebraic
properties of its adiacency matrix.

Given two disjoints subsets S, T of vertices of a graph G = (V,E), let E(S, T ) be the set of edges
having one endpoint in S and one endpoint in T . Also, let ¬S = V \ S.

A cut is any partition (S,¬S) such that S ̸≡ V and S ̸≡ ∅. The volume vol(S) of S ⊆ V is the
number of edges incident with a node in S. The conductance of S ⊆ V is defined by

ϕ(S) =

∣∣E(S,¬S)
∣∣

min
{
vol(S), vol(¬S)

}
If vol(S) ≤ vol(¬S), this is the fraction of edges in the cut (S,¬S) among those incident on S. If a
graph is clusterable, then there exists a partition whose each element S has a small conductance.
Finally, the conductance of a graph is

ϕ(G) = min
S : (S,¬S) is a cut

ϕ(S) .

The sparsity of a cut (S,¬S) is

σ(S) =

∣∣E(S,¬S)
∣∣

|S| |¬S|
This the fraction of edges in the cut among all potential edges between the two subset of vertices.
The sparsity of a graph is

σ(G) = min
S : (S,¬S) is a cut

σ(S)

In what follows, we focus on d-regular graphs for simplicity, where vol(S) = d|S| and so

min
{
vol(S), vol(¬S)

}
= dmin{|S|, |¬S|}

As min{α, 1− α} ≤ 2α(1− α) for all α ∈ [0, 1], we have

min
{
|S|, |¬S|

}
≤ 2

n
|S| |¬S|

Therefore, σ(S) ≤ 2(d/n)ϕ(S) for all cuts (S,¬S). We now study the relationships between con-
ductance and algebraic properties of the adjacency matrix.
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Laplacian matrix. The Laplacian matrix of a d-regular graph G = (V,E) is the symmetric matrix
L = I − 1

dA, where A is the adiacency matrix with entries Ai,j = I{(i, j) ∈ E}. For any x ∈ Rn we
have that

x⊤Lx =
∑
i∈V

x2i −
1

d

∑
i∈V

∑
j∈V

Ai,jxixj

=
1

d

∑
i∈V

∑
j : (i,j)∈E

x2i −
1

d

∑
i∈V

∑
j : (i,j)∈E

xixj

=
1

d

∑
i∈V

∑
j : (i,j)∈E

(
x2i − xixj)

=
1

d

∑
(i,j)∈E

(
x2i + x2j − 2xixj)

=
1

d

∑
(i,j)∈E

(xi − xj)
2 ≥ 0

Therefore, the Laplacian matrix is positive semidefinite. Since the rows and columns of L sum to
zero (verify that),

λ1 = min
u∈Rn\{0}

u⊤Lu

u⊤u
= 0

where the minimum is attained by u = 1, where we write 1 = (1, . . . , 1). Hence, u1 = 1√
n
1 is the

eigenvector of λ1, while the remaining eigenvalues of L are all nonnegative because L is positive
semidefinite. Note also that any other eigenvector ui of L with i > 1 is such that u⊤

i u1 = 0. This
helps us characterize λ2,

λ2 = min
u∈Rn\{0}
u⊤1=0

u⊤Lu

u⊤u
= min

u∈Rn\{0}
u⊤1=0

∑
(i,j)∈E(ui − uj)

2

d
∑

i∈V u2i
.

If G = (V,E) has two connected components X,Y ⊂ V , then we can choose u ∈ Rn such that
ui = 1/|X| for all i ∈ X and uj = −1/|Y | for all j ∈ Y . This ensures that u⊤1 = 0. Moreover,
(i, j) ∈ E if and only if (ui − uj)

2 = 0. So u⊤Lu = 0 and therefore u/ ∥u∥ is an eigenvector with
eigenvalue λ2 = 0. More generally, it can be proven that λk = 0 if and only if G has k connected
components. We now look at the largest eigenvalue,

λn = max
u∈Rn\{0}

∑
(i,j)∈E(ui − uj)

2

d
∑

i∈V u2i

= max
u∈Rn\{0}

d
∑

i∈V u2i −
∑

(i,j)∈E 2uiuj

d
∑

i∈V u2i

= max
u∈Rn\{0}

2d
∑

i∈V u2i − d
∑

i∈V u2i −
∑

(i,j)∈E 2uiuj

d
∑

i∈V u2i

= max
u∈Rn\{0}

2d
∑

i∈V u2i −
∑

(i,j)∈E(ui + uj)
2

d
∑

i∈V u2i

= 2− min
u∈Rn\{0}

∑
(i,j)∈E(ui + uj)

2

d
∑

i∈V u2i
.
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So λn ≤ 2 and λn = 2 if G has at least a bipartite component (X,Y ). Indeed, in this case we can
pick u ∈ Rn such that ui = 1 for all i ∈ X, uj = −1 for all j ∈ Y , and uk = 0 for all remaining k.
Then (ui + uj)

2 = 0 for all (i, j) ∈ E, and so u/ ∥u∥ is an eigenvector of G with eigenvalue 2.

Cheeger’s inequalities. While winimizing conductance over all exponentially many cuts is NP-
hard, the proof of Cheeger’s inequalities provides an efficient approximation of ϕ(G). These in-
equalities connect the second eigenvalue with the conductance, revealing the key role of λ2 in
clustering,

λ2

2
≤ ϕ(G) ≤

√
2λ2

The second inequality is proven via an efficient algorithm that finds a cut (SF ,¬SF ) such that
ϕ(SF ) ≤

√
2λ2. Together with the first inequality, this implies that ϕ(SF ) ≤

√
2ϕ(G), which shows

how we can efficiently approximate conductance. We begin by proving the first inequality. From
now on we write

∑n
i=1 instead of

∑
i∈V .

Lemma 1 For any connected and d-regular graph G, λ2 ≤ 2ϕ(G).

Proof. We start noticing that, for any u ∈ Rd such that u⊤1 = 0,

n∑
i=1

n∑
j=1

(ui − uj)
2 = 2n

n∑
i=1

u2i − 2
n∑

i=1

n∑
j=1

uiuj = 2n
n∑

i=1

u2i − 2

(
n∑

i=1

ui

)2

= 2n
n∑

i=1

u2i (1)

Therefore, we have that

λ2 = min
u∈Rn\{0}
u⊤1=0

∑
(i,j)∈E(ui − uj)

2

d
∑n

i=1 u
2
i

= min
u∈Rn\{0}
u⊤1=0

∑
(i,j)∈E(ui − uj)

2

d
2n

∑n
i=1

∑n
j=1(ui − uj)2

(2)

= min
u∈Rn\{0,1}

∑
(i,j)∈E(ui − uj)

2

d
2n

∑n
i=1

∑n
j=1(ui − uj)2

(3)

To understand the last equality: if u ∈ Rn \ {0} and u⊤1 = 0, then u ̸= 1 and (3) is not larger
than (2). Vice versa, if u ̸∈ {0,1}, then u′ defined by u′i = ui − 1

n

∑
j uj satisfies u′ ̸= 0 and

(u′)⊤1 = 0. Hence, the value of (2) is not larger than (3) because the shift by 1
n

∑
j uj cancels out

in the numerator and the denominator of the obective function.

For any S ⊆ V , let u ∈ {0, 1}n be the incidence vector of the set S, that is ui = I{i ∈ S} for
i = 1, . . . , n. Then

∣∣E(S,¬S)
∣∣ =∑(i,j)∈E(ui − uj)

2. Also, using ui = u2i for all i,

|S| |¬S| =

(
n∑

i=1

u2i

)n−
n∑

j=1

u2j

 = n

n∑
i=1

u2i −
n∑

i=1

n∑
j=1

uiuj =
1

2

n∑
i=1

n∑
j=1

(ui − uj)
2

Therefore,

σ(G) = min
S⊊V :S ̸≡∅

∣∣E(S,¬S)
∣∣

|S| |¬S|
= min

u∈{0,1}n\{0,1}

∑
(i,j)∈E(ui − uj)

2

1
2

∑n
i=1

∑n
j=1(ui − uj)2
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which implies d
nλ2 = σ(G). Since σ(G) ≤ 2d

n ϕ(G), the proof is concluded. □

The proof of the second inequality of Cheeger is based on the analysis of Fiedler’s algorithm, the
simplest algorithm for spectral clustering. The algorithm finds a cut of small conductance by
looking at the n − 1 cuts induced by the ranked components of the input vector x. As we see in
the analysis, the algorithm works well when x is the eigenvector of λ2.

Algorithm 1 (Fiedler)

Input: Graph G = (V,E), vector x ∈ Rn \ {0}.
1: Sort V according to the components of x and let v1 ≤ · · · ≤ vn be the vertices of V after sorting
2: Find k ∈ {1, . . . , n− 1} minimizing the conductance ϕ

(
{v1, . . . , vk}

)
Output: {v1, . . . , vk}

Note that Fiedler’s algorithm can be implemented in time O(|E|+ |V | ln |V |), because it takes time
O(|V | ln |V |) to sort the vertices, and the cut of minimal expansion that respects the sorted order
can be found in time O(|E|).

We move on to the analysis of the algorithm, which gives us the second inequality of Cheeger as
an immediate consequence. Let

RL(x) =

∑
(i,j)∈E(xi − xj)

2

d
∑n

i=1 x
2
i

be the Rayleigh quotient for L evaluated at x ∈ Rn, and recall that

λ2 = min
x∈Rn\{0}
x⊤1=0

RL(x)

We now prove the following result, which implies ϕ(G) ≤
√
2λ2.

Theorem 2 Let x ∈ Rn \ {0} be such that x⊤1 = 0, and let SF ⊂ V be the cut found by Fiedler’s
algorithm with input x. Then ϕ(SF ) ≤

√
2RL(x).

Indeed, when the input x is the eigenvector of λ2 we get that

ϕ(G) ≤ ϕ(SF ) ≤
√

2λ2

In order to prove Theorem 2, we need to prove two auxiliary lemmas first.

Lemma 3 Let x ∈ Rn \ {0} be such that x⊤1 = 0. Then there exists a nonnegative vector y such
that RL(y) ≤ RL(x). Furthermore, for every 0 < t ≤ maxv∈V yv, the cut(

{v ∈ V : yv ≥ t} , {v ∈ V : yv < t}
)

is one of the cuts considered in line 2 of Fiedler’s algorithm on input x.
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Proof. Let m be the median value of the entries of x. Let x+,x− have components x+v =[
xv −m

]
+
and x−v =

[
m− xv

]
+
, where [z]+ = z I{z > 0}. Note that x+,x− are both nonnegative.

Now, for every t > 0,{
v ∈ V : x+v ≥ t

}
=
{
v ∈ V :

[
xv −m

]
+
≥ t
}
= {v ∈ V : xv ≥ m+ t}

is one of the cuts considered by Fiedler’s algorithm on input x. Similarly, for every t > 0,{
v ∈ V : x−v ≥ t

}
=
{
v ∈ V :

[
m− xv

]
+
≥ t
}
= {v ∈ V : xv ≤ m− t}

is also one of the cuts considered by Fiedler’s algorithm on input x. It remains to show that
RL(y) ≤ RL(x) for some nonnegative y ∈ Rn. We set

y = argmin
z∈{x+,x−}

RL(z)

Let x′ = x−m1 = x+ −x− and observe that, for every constant c, RL(x+ c1) ≤ RL(x). Indeed,
the numerator of RL(x+c1) and the numerator of RL(x) are the same. Moreover, the denominator
of RL(x+ c1) is ∥x+ c1∥2 = ∥x∥2 + ∥c1∥2 ≥ ∥x∥2. Therefore RL(x

′) ≤ RL(x) and we are left to
show that RL(y) ≤ RL(x

′). To this end we write

RL(y) = min
{
RL(x

+), RL(x
−)
}

≤ ∥x+∥2RL(x
+) + ∥x−∥2RL(x

−)

∥x+∥2 + ∥x−∥2
(using min{a, b} ≤ αa+ (1− α)b)

=

∑
(i,j)∈E(x

+
i − x+j )

2 +
∑

(i,j)∈E(x
−
i − x−j )

2

∥x+∥2 + ∥x−∥2

≤

∑
(i,j)∈E

(
(x+i − x+j )− (x−i − x−j )

)2
∥x+∥2 + ∥x−∥2

(this is shown below)

=

∑
(i,j)∈E(x

′
i − x′j)

2

∥x′∥2
(using x′ = x+ + x− and (x+)⊤x− = 0)

= RL(x
′)

To finish the proof, we need to verify that for each (i, j) ∈ E,

(x+i − x+j )
2 + (x−i − x−j )

2 ≤
(
(x+i − x+j )− (x−i − x−j )

)2
(4)

By computing the square on the right-hand side, the two squares on the left-hand side cancel out
with the corresponding squares on the right-hand side. Hence proving (4) is equivalent to proving

(x+i − x+j )(x
−
i − x−j ) ≤ 0 ⇐⇒ x+i x

−
i − x+i x

−
j − x+j x

−
i + x+j x

−
j ≤ 0

The proof is concluded by observing that x+i x
−
i = x+j x

−
j = 0 by definition, whereas x+i x

−
j ≥ 0 and

x+j x
−
i ≥ 0 holds because all the fours factors are nonnegative by definition. □

The following observation is used in the proof of the next lemma.
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Fact 4 For all random variables X,Y such that Y > 0 and E[X],E[Y ] < ∞,

P
(
X

Y
≤ E[X]

E[Y ]

)
> 0

Proof. Let r = E[X]
/
E[Y ]. Because of linearity of expectation, E

[
X − rY

]
= 0. Since the

expected value is zero, the random variable X − rY must be nonpositive with probability bigger
than zero, P

(
X − rY ≤ 0

)
> 0. Dividing both sides of X − rY ≤ 0 by Y > 0, we get the desired

result. □

We are now ready to prove the second auxiliary lemma. Define the expansion of a set S ⊂ V by

xpn(S) =

∣∣E(S,¬S)
∣∣

vol(S)
=

∣∣E(St,¬St)
∣∣

d|St|
(for regular graphs)

Note that, for regular graphs, xpn(S) = ϕ(S) when |S| ≤ |¬S|.

Lemma 5 For all nonnegative vectors y ∈ Rn there exists 0 < t ≤ maxv yv such that

xpn(St) ≤
√
2RL(y)

where St = {v ∈ V : yv ≥ t}.

Proof. Since rescaling does not affect the Rayleigh quotient, we may assume maxv yv = 1. The
proof uses the probabilistic method. Let T be a random variable such that P

(
T ≤

√
a
)
= a, which

means that T 2 is uniformly distributed in [0, 1] and P
(
T ≤ 0

)
= 0, which implies T > 0 with

probability 1. Because St is nonempty for all t ∈ (0, 1], we can write

xpn(ST ) =

∣∣E(ST ,¬ST )
∣∣

d|ST |
≤

E
[∣∣E(ST ,¬ST )

∣∣]
dE
[
|ST |

] (with probability > 0, by Fact 4)

This implies that there exists some t ∈ (0, 1] such that the above holds. To conclude the proof, we
show that

E
[∣∣E(ST ,¬ST )

∣∣]
dE
[
|ST |

] ≤
√
2RL(y)

We start to bound the denominator. Using that T is uniformly distributed in [0, 1],

E
[
|ST |

]
=

n∑
i=1

P(i ∈ ST ) =

n∑
i=1

P(T ≤ yi) =

n∑
i=1

y2i (5)

Now pick any (i, j) ∈ E and assume yj ≤ yi. Then

P
(
i ∈ ST , j ∈ ¬ST

)
= P

(
yj < T ≤ yi

)
=
(
P(T ≤ yi)− P(T ≤ yj)

)
= y2i − y2j

6



Therefore,

E
[∣∣E(ST ,¬ST )

∣∣] = ∑
(i,j)∈E

((
y2i − y2j

)
I{yj ≤ yi}+

(
y2j − y2i

)
I{yi ≤ yj}

)
=

∑
(i,j)∈E

∣∣y2i − y2j
∣∣

=
∑

(i,j)∈E

∣∣yi − yj
∣∣(yi + yj)

≤
√ ∑

(i,j)∈E

(yi − yj)2
√ ∑

(i,j)∈E

(yi + yj)2

where we applied the Cauchy-Schwartz inequality u⊤v ≤ ∥u∥ ∥v∥ in the last step. Using now the
elementary inequality (a+ b)2 ≤ 2(a2 + b2) we may write

∑
(i,j)∈E

(yi + yj)
2 ≤ 2

∑
(i,j)∈E

(
y2i + y2j

)
= 2d

n∑
i=1

y2i

Combining the above with (5) we obtain

E
[∣∣E(ST ,¬ST )

∣∣]
dE
[
|ST |

] ≤

√(∑
(i,j)∈E(yi − yj)2

) (
2d
∑n

i=1 y
2
i

)
d
∑n

i=1 y
2
i

=

√
2
∑

(i,j)∈E(yi − yj)2

d
∑n

i=1 y
2
i

concluding the proof. □

We can now prove Theorem 2.

Proof of Theorem 2. Let x ∈ Rn be such that x⊤1 = 0 and let
(
SF ,¬SF

)
be the cut found

by Fiedler’s algorithm on input x. Lemma 3 states that:

1. there exists a nonnegative vector y such that RL(y) ≤ RL(x);

2. for this y and for any 0 < t ≤ maxv∈V yv, the set St = {v ∈ V : yv ≥ t} has at most n
2

vertices (because y has at most n
2 nonzero components, as we defined it using the median)

implying ϕ(St) = xpn(St);

3. the cut (St,¬St) is one of the cuts considered by Fiedler’s algorithm on input x, which implies
ϕ(SF ) ≤ ϕ(St) for all t.

Then, Lemma 5 ensures there exists a threshold 0 < t ≤ maxv∈V yv such that xpn(St) ≤
√

2RL(y).
We can thus write

ϕ(SF ) ≤ ϕ(St) = xpn(St) ≤
√
2RL(y) ≤

√
2RL(x)

concluding the proof. □
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Nonregular graphs. What is the correct generalization of the Laplacian matrix I − 1
dA when G

is not d-regular? As we want to preserve the spectral properties, we look at the Rayleigh quotient
for the d-regular case: ∑

(i,j)∈E(xi − xj)
2

d
∑n

i=1 x
2
i

The natural generalization to nonregular graphs is then∑
(i,j)∈E(xi − xj)

2∑n
i=1 d(i)x

2
i

=

∑
(i,j)∈E(xi − xj)

2∑n
i=1

(√
d(i)xi

)(√
d(i)xi

) =
x⊤(D −A)x(

D1/2x
)⊤(

D1/2x
)

where where D1/2 = diag
(√

d(1), . . . ,
√
d(n)

)
and d(i) is the degree of i. If we now set u = D1/2x,

the above becomes(
D−1/2u

)⊤
(D −A)

(
D−1/2u

)
u⊤u

=
u⊤D−1/2(D −A)D−1/2u

u⊤u
=

u⊤(I −D−1/2AD−1/2
)
u

u⊤u

where we assumed d(v) > 0 for all v (there are no isolated vertices) and used D−1/2DD−1/2 = I.
The matrix Lnorm = I −D−1/2AD−1/2 whose components are

Lnorm(i, j) =

{
1 if i = j

−A(i, j)
/√

d(i)d(j) otherwise

is known as the normalized Laplacian. All the spectral properties which we proved for d-regular
graphs, including Cheeger’s inequalities, continue to hold for the normalized Laplacian of arbitrary
graphs.
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