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Instructor: Emmanuel Esposito version of May 26, 2024

Most of the material in this handout is inspired or directly taken from: Roman Vershynin, “High-
Dimensional Probability: An Introduction with Applications in Data Science”, 2018.

1 Community detection in the stochastic block model

Consider you want to study the structure of a network, which could be a biological network (e.g.,
protein-protein networks or connectomes) or a social network. A network is naturally modeled
by a (undirected) graph G = (V,E). In particular, we are interested in detecting communities
in networks, that is, clusters in the network that are tightly connected (or dense). Solving
the community detection problem (or community recovery) efficiently is one of the fundamental
problems in network analysis.

Intuitively, the community structure of a network is inherently dependent on the nature of the
graph. A natural way to represent it is by assuming that G is generated by some reasonable
random model. In the previous lectures we focused our attention on Erdős-Rényi random graphs
G(n, p), where n is the fixed number of vertices and p ∈ [0, 1] is the probability that any edge
appears (independently) in the graph. This random graph model is very simple and elegant,
but fails in capturing communities because of its intrinsic homogeneity.

A more effective probabilistic model of graphs that is able to provide a community structure to
the graphs is the stochastic block model (SBM). We consider the special case of 2 communities
over n vertices with equal size n/2; we assume n is an even positive integer throughout these
notes. Given two probabilities p, q ∈ (0, 1], the SBM G(n, p, q) partitions the n vertices into
the two communities of size n/2 and constructs a random graph G ∼ G(n, p, q) by inserting an
edge between any pair of vertices independently with probability p if the vertices belong to the
same community, and with probability q if they do not. The partition into the two communities

Figure 1: A random graph generated according to the stochastic block model G(n, p, q) with
n = 200, p = 1/20 and q = 1/200. Figure taken from Vershynin [2018].

1



is, of course, unknown and our objective is trying to recover it. Without loss of generality,
we associate vertices V with the first n positive integers [n] = {1, . . . , n} so that the first n/2
vertices are exactly the ones belonging to one of the two communities, and the remaining n/2
belong to the other community.

Observe that when p = q we recover exactly the Erdős-Rényi model G(n, p, p) = G(n, p) and
thus no community structure will be expected in the random graphs. Therefore, we assume
that q < p so that edges will occur more likely within each community rather than across the
two.

2 Preliminaries

2.1 Linear algebra

For any vector x := (x1, . . . , xn) ∈ Rn, we denote by ∥x∥2 :=
√∑n

i=1 x
2
i =

√
x⊤x its Euclidean

norm and, more generally, by ∥x∥p :=
(∑n

i=1|xi|p
)1/p

its p-norm for p ∈ [1,∞). We say that x
is a unit vector, or normal, if ∥x∥2 = 1. Two vectors x,y ∈ Rn are said to be orthogonal, and
we write x ⊥ y, whenever x⊤y = 0.

For any symmetric matrix M ∈ Rn×n we denote by λ1(M), . . . , λn(M) ∈ R its real eigenvalues
so that λ1(M) ≥ · · · ≥ λn(M), and by v1(M), . . . ,vn(M) ∈ Rn their corresponding orthonormal
eigenvectors. We denote by

∥M∥ := max
x∈Rn\{0}

∥Mx∥2
∥x∥2

= max
x∈Rn:∥x∥2=1

∥Mx∥2

the spectral norm (also known as operator norm or induced 2-norm) of M . We remark that
∥M∥ = maxi∈[n]|λi(M)| = max

{
|λ1(M)|, |λn(M)|

}
.

Exercise 1. Prove that ∥M∥ = maxi∈[n]|λi(M)| for any symmetric matrix M ∈ Rn×n.

2.2 Perturbation theory

Theorem 1 (Courant-Fischer — proof omitted). Let M ∈ Rn×n be a symmetric matrix with
real eigenvalues λ1(M) ≥ · · · ≥ λn(M). Then, for any k ∈ [n],

λk(M) = max
S⊆Rn:

dim(S)=k

min
x∈S:∥x∥2=1

x⊤Mx = min
S⊆Rn:

dim(S)=n−k+1

max
x∈S:∥x∥2=1

x⊤Mx .

The following theorem shows that all eigenvalues of any two symmetric matrices A and B are
close to each other whenever the spectral norm ∥A−B∥ of their difference is small.

Theorem 2 (Weyl’s inequality). Let A,B ∈ Rn×n be symmetric matrices with real eigenvalues.
Then,

max
i∈[n]

|λi(A)− λi(B)| ≤ ∥A−B∥ .

Proof. Without loss of generality, we show that λi(A)− λi(B) ≤ ∥A−B∥ holds for any i ∈ [n];
the other inequality λi(A)− λi(B) ≥ −∥A−B∥ follows by a similar reasoning.
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Let C = A−B and fix any i ∈ [n]. Then, we can show that

λi(A) = min
S⊆Rn:

dim(S)=n−i+1

max
x∈S:∥x∥2=1

x⊤Ax by Courant-Fischer

= min
S⊆Rn:

dim(S)=n−i+1

max
x∈S:∥x∥2=1

x⊤(B + C)x by definition of C

≤ min
S⊆Rn:

dim(S)=n−i+1

(
max

x∈S:∥x∥2=1
x⊤Bx+ max

x∈S:∥x∥2=1
x⊤Cx

)

≤ min
S⊆Rn:

dim(S)=n−i+1

(
max

x∈S:∥x∥2=1
x⊤Bx+ max

x∈Rn:∥x∥2=1
x⊤Cx

)
since S ⊆ Rn

= λ1(C) + min
S⊆Rn:

dim(S)=n−i+1

max
x∈S:∥x∥2=1

x⊤Bx var. characterization

= λ1(C) + λi(B) by Courant-Fischer

≤ ∥C∥+ λi(B) since λ1(C) ≤ ∥C∥ .

By rearranging, we obtain that λi(A)− λi(B) ≤ ∥C∥ = ∥A−B∥ by definition of C.

Exercise 2. Prove the inequality in the opposite direction for any i ∈ [n], which is currently
missing in the proof of Weyl’s inequality (Hint: use again Courant-Fischer).

While Weyl’s inequality allows us to control the distance between the eigenvalues of two sym-
metric matrices, it does not allow us to conclude that the eigenvectors will be close to each other
too. However, the following theorem actually states that it is indeed the case under some rea-
sonable assumption of separability between eigenvalues (sometimes called eigengap, or spectral
gap, assumption).

Theorem 3 (Davis-Kahan — proof omitted). Let A,B ∈ Rn×n be symmetric matrices. Assume
that there exists some i ∈ [n] such that the i-th largest eigenvalue of A is well separated from the
other eigenvalues of A:

∆i(A) := min
j ̸=i

|λi(A)− λj(A)| > 0 .

Then, the angle ∠(vi(A),vi(B)) ∈ [0, π/2] between the eigenvectors vi(A) and vi(B) correspond-
ing to the i-th largest eigenvalues satisfies

sin∠(vi(A),vi(B)) ≤ 2∥A−B∥
∆i(A)

.

A consequence of Davis-Kahan theorem is that the (unit) eigenvectors vi(A) and vi(B) are close
to each other in Euclidean distance up to a sign whenever the spectral norm ∥A−B∥ is small.
This is stated in the corollary below.

Corollary 4. Under the assumptions of Davis-Kahan theorem,

min
ξ∈{−1,1}

∥vi(A)− ξvi(B)∥2 ≤
2
√
2∥A−B∥
∆i(A)

.
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Proof. For any ξ ∈ {−1, 1} it holds that

∥vi(A)− ξvi(B)∥22 =
(
vi(A)− ξvi(B)

)⊤(
vi(A)− ξvi(B)

)
= ∥vi(A)∥22 + ξ2∥vi(B)∥22 − 2ξvi(A)⊤vi(B)

= 2− 2ξvi(A)
⊤vi(B) .

Consequently, by observing that |vi(A)⊤vi(B)| ≤ ∥vi(A)∥2∥vi(B)∥2 = 1 by Cauchy-Schwarz,
we have that

min
ξ∈{−1,1}

∥vi(A)− ξvi(B)∥22 = 2− 2 max
ξ∈{−1,1}

ξvi(A)⊤vi(B)

= 2− 2|vi(A)
⊤vi(B)|

≤ 2− 2
(
vi(A)⊤vi(B)

)2
since x2 ≤ x for x ∈ [0, 1]

= 2
(
1− cos2∠(vi(A),vi(B))

)
since x⊤y = ∥x∥2∥y∥2 cos∠(x,y)

= 2 sin2∠(vi(A),vi(B)) since sin2 θ = 1− cos2 θ .

Therefore, by Davis-Kahan and monotonicity of the square root, this implies that

min
ξ∈{−1,1}

∥vi(A)− ξvi(B)∥2 ≤
√
2 sin∠(vi(A),vi(B)) ≤ 2

√
2∥A−B∥
∆i(A)

.

2.3 Random matrix theory

In this part, we simply state the matrix concentration bound that will be needed to derive our
community recovery result.

Theorem 5 (Matrix Bernstein’s inequality). Let K ≥ 0 be any constant. Let X1, . . . , Xm ∈
Rn×n be independent zero-mean symmetric random matrices, such that ∥Xi∥ ≤ K almost surely
for all i ∈ [m]. Then, for every t > 0, we have

P

(∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥ ≥ t

)
≤ 2n exp

(
− t2/2

σ2 +Kt/3

)
,

where σ2 :=
∥∥∑m

i=1 E
[
X2

i

]∥∥ is the norm of the matrix variance of the sum.

3 Spectral methods for strong recovery

We finally introduce the recovery problem we want to address in the (symmetric) stochastic
block model G(n, p, q) with 2 balanced communities and we provide an analysis of a simple
spectral approach that solves it under reasonable assumptions. The problem in question in that
of strong recovery, also called almost exact recovery. It consists of recovering the partition of the
nodes while in high probability while allowing only a vanishing fraction of misclassified vertices.
More formally, an algorithm A given G ∼ G(n, p, q) is said to perform strong recovery if its
accuracy (or its normalized agreement) is approaching 1 with high probability (w.h.p.), that
is,

P
(
accuracy of A(G) = 1− o(1)

)
= 1− o(1) .

Here the accuracy of the recovery algorithm is measured as the fraction of vertices correctly
classified in the partition. Note that the accuracy does not take into account whether the vertices
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are correctly labeled into community 1 or 2, as what matters here is whether the vertices are
split as consistently to the underlying partition as possible.

Recall the definition of adjacency matrix A of an undirected graph G = (V,E):

A := [Aij ]i,j∈V ∈ {0, 1}n×n where Aij := I {(i, j) ∈ E} =

{
1 if (i, j) ∈ E

0 otherwise
.

Note that A is symmetric because G is undirected. In our case, the graph G ∼ G(n, p, q) is
random and so must be A. More precisely, A is a random matrix whose entries are Bernoulli
random variables and those above (or below) the diagonal are independent. Each entry Aij

is thus Aij ∼ Ber(p) if i and j belong to the same community, whereas Aij ∼ Ber(q) other-
wise.

For simplicity, we assume that also the diagonal entries are Bernoulli random variables Aii ∼
Ber(p), which correspond to self-loops (i, i) being drawn independently with probability p. This
is a slight change in the model to simplify the presentation of the results, and it does not
negatively affect the stated results.

The expectation of A is thus a block matrix:

Ā := E[A] =



p · · · p q · · · q
...

. . .
...

...
. . .

...
p · · · p q · · · q

q · · · q p · · · p
...

. . .
...

...
. . .

...
q · · · q p · · · p


=

(
p11⊤ q11⊤

q11⊤ p11⊤

)
.

By matrix concentration bounds, we can show that the adjacency matrix A is close to its
expectation Ā in spectral norm, i.e., ∥A− Ā∥ is sufficiently small with high probability. Before
that, let us observe some properties of the matrix Ā:

• The matrix Ā has rank(Ā) = 2 since p ̸= q, hence it has only two non-zero eigenvalues.

• The eigenvalues of Ā can be derived by finding the roots of its characteristic polynomial

det
(
λI − Ā

)
= det

(
λI − p11⊤ q11⊤

q11⊤ λI − p11⊤

)
= det

(
λI − (p+ q)11⊤

)︸ ︷︷ ︸
=:(⋆)

· det
(
λI − (p− q)11⊤

)︸ ︷︷ ︸
=:(◦)

,

where the second equality follows from the fact that det

(
A B
B A

)
= det(A−B) det(A+B).

Note that (⋆) is the characteristic polynomial of the n
2 ×

n
2 matrix (p+q)11⊤, whereas (◦) is

the one of the n
2 ×

n
2 matrix (p−q)11⊤. Both matrices have rank 1 and their only non-zero

eigenvalue is, respectively, tr
(
(p+ q)11⊤

)
=
(p+q

2

)
n and tr

(
(p− q)11⊤

)
=
(p−q

2

)
n. Thus,

we conclude that λ1(Ā) =
(p+q

2

)
n and λ2(Ā) =

(p−q
2

)
n, while λ3(Ā) = · · · = λn(Ā) = 0.
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• The orthonormal eigenvectors corresponding to the largest two eigenvalues of Ā are

v1(Ā) =
1√
n



1
...
1

1
...
1


and v2(Ā) =

1√
n



1
...
1

−1
...

−1


and thus Ā = p+q

2 v1(Ā)v1(Ā)⊤ + p−q
2 v2(Ā)v2(Ā)⊤ = p+q

2 11⊤ + p−q
2 v2(Ā)v2(Ā)

⊤.

Now, we can rewrite the matrix A as A = Ā + W where W := A − Ā. In other words, we
split A into two parts: a deterministic part Ā that denotes the expectation and constitutes
the informative part (or “signal”), and a random part W which constitutes its perturbation
(or “noise”). By the above properties we can indeed conclude that Ā is the informative part.
It particularly reveals information about the community partition we want to recover through
its spectrum. The crucial property we observe is that the signs of the entries of the second
eigenvector v2(Ā) exactly distinguish the vertices of the two communities into “positives” and
“negatives”. However, we cannot directly compute v2(Ā) as we do not have direct access to the
matrix Ā because of the additive noise W . We have instead access to the random adjacency
matrix A of the (random) graph G.

Hopefully, A is sufficiently close to Ā, say, in spectral norm and we can thus use perturbation
theory to conclude that the eigenstructure of the two matrices is sufficiently similar to allow
us to recover the partition by directly working with A. Moreover, we can prove as a matter of
fact that ∥A− Ā∥ is small enough with high probability by adopting concentration bounds from
random matrix theory.

We will show the following theorem on the recovery of the two communities in the SBM.

Theorem 6 (Strong recovery). Let p := a/n and q := b/n for some appropriate a > b > 0.
Assume that there exist sufficiently large α > 0 and c ≫ (1 + α) lnn such that

(i) a+b
2 ≥ (1 + α) lnn,

(ii) (a− b)2 ≥ c(a+ b),

(iii) a ≤ 3b.

Then, with probability 1 − o(1), the signs of the coefficients of v2(A) recover the communities
with accuracy 1− o(1).

We begin by proving that the accuracy of our simple spectral method is controlled under the
eigengap assumption.

Lemma 7. Let A be the adjacency matrix of G ∼ G (n, p, q) and let Ā = E[A] be its expectation.
If the eigengap assumption ∆2(Ā) > 0 holds, then the accuracy of the algorithm that outputs the
community partition according to the signs of the coefficients of v2(A) is at least

1− 2
√
2∥A− Ā∥
∆2(Ā)

.

Proof. The number of mistakes for the algorithm that outputs the community partition provided
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by the signs of the coefficients of v2(A) is

min
ξ∈{−1,1}

n∑
i=1

I
{
ξ sign(v2(A)i) ̸= sign(v2(Ā)i)

}
= min

ξ∈{−1,1}

n∑
i=1

Yi(ξ) ,

where we let Yi(ξ) := I
{
ξ sign(v2(A)i) ̸= sign(v2(Ā)i)

}
. Observe that whenever ξ sign(v2(A)i) ̸=

sign(v2(Ā)i) for some i ∈ [n], that is, the signs of ξv2(A)i and v2(Ā)i disagree for vertex i and
thus Yi(ξ) = 1, we have that

Yi(ξ)
∣∣v2(Ā)i − ξv2(A)i

∣∣ = Yi(ξ)
(∣∣v2(Ā)i

∣∣+ |ξv2(A)i|
)
≥ Yi(ξ)

∣∣v2(Ā)i
∣∣ = Yi(ξ)√

n
,

and the same inequality holds in the other case of Yi(ξ) = 0. Hence, the number of mistakes is

min
ξ∈{−1,1}

n∑
i=1

Yi(ξ) ≤
√
n min

ξ∈{−1,1}

n∑
i=1

∣∣v2(Ā)i − ξv2(A)i
∣∣Yi(ξ)

≤
√
n min

ξ∈{−1,1}

n∑
i=1

∣∣v2(Ā)i − ξv2(A)i
∣∣

= n3/2 min
ξ∈{−1,1}

n∑
i=1

1

n

√(
v2(Ā)i − ξv2(A)i

)2
≤ n min

ξ∈{−1,1}

√√√√ n∑
i=1

(
v2(Ā)i − ξv2(A)i

)2
= n min

ξ∈{−1,1}
∥v2(Ā)− ξv2(A)∥2 ,

where the third inequality follows by Jensen’s inequality with respect to the square root. Alter-
natively, we could have noticed earlier that the sum after the second equality in the above math
display corresponds to ∥v2(Ā) − ξv2(A)∥1 and used the property that ∥x∥1 ≤

√
n∥x∥2 for any

x ∈ Rn. At this point, it immediately follows that

min
ξ∈{−1,1}

∥v2(Ā)− ξv2(A)∥2 ≤
2
√
2∥A− Ā∥
∆2(Ā)

by Davis-Kahan (Corollary 4), since we can apply it thanks to the spectral gap assumption
∆2(Ā) > 0. Then, recalling that we define the accuracy as the fraction of correctly classified
vertices, by combining the above inequalities we conclude that it is

1− 1

n
min

ξ∈{−1,1}

n∑
i=1

Yi(ξ) ≥ 1− 2
√
2∥A− Ā∥
∆2(Ā)

.

Exercise 3. Without explicitly using Jensen’s inequality, prove that ∥x∥1 ≤
√
n∥x∥2 for any

x ∈ Rn (Hint: use the Cauchy-Schwarz inequality).

The next step is showing that the spectral norm of the perturbation matrix is sufficiently small
w.h.p. via matrix concentration bounds.

Lemma 8. Let A be the adjacency matrix of G ∼ G (n, a/n, b/n). Let Ā = E[A] be its expectation
and let W = A − Ā be the zero-mean “perturbation” matrix. Consider any δ > 0 such that
ln(2n/δ) ≤ a+ b. Then,

P
(
∥W∥ ≥ 5

3

√
(a+ b) ln

2n

δ

)
≤ δ .

7



Proof. We want to somehow control the perturbation matrix W . Let us decompose it as follows.
For any 1 ≤ i ≤ j ≤ n, define a binary matrix Zij ∈ {0, 1}n×n such that its only 1-entries are at
coordinates (i, j) and (j, i); in other words,

Zij =

{
eie

⊤
j + eje

⊤
i if i < j

eie
⊤
i if i = j

where ei ∈ {0, 1}n is the i-th vector in the canonical basis of Rn, for each i ∈ [n]. These matrices
allow us to rewrite W as W =

∑
1≤i≤j≤nWijZij , where we recall that Wij = Aij − Āij . The

useful property about this way of writing W is that we expressed it as a sum of independent
matrices with mean zero; in fact, E[WijZij ] = ZijE[Aij− Āij ] = 0 while the independence comes
from the idea of defining Zij with the purpose of isolating dependent components within each
one of those matrices so as to guarantee independence across them.

Since we also have that ∥WijZij∥ ≤ 1 holds almost surely, we can apply matrix Bernstein’s
inequality (Theorem 5) with K = 1 to control ∥W∥ = ∥A − Ā∥. As a consequence, we obtain
for any t > 0 that

P
(
∥W∥ ≥ t

)
≤ 2n exp

(
− t2/2

σ2 + t/3

)
,

where σ2 :=
∥∥∥E [∑i≤j(WijZij)

2
]∥∥∥. Therefore, if we set t as

t =
1

3

(
ln

2n

δ
+

√
ln

2n

δ

(
ln

2n

δ
+ 18σ2

))
,

we immediately obtain by explicit calculations that

P

(
∥W∥ ≥ 1

3

(
ln

2n

δ
+

√
ln

2n

δ

(
ln

2n

δ
+ 18σ2

)))
≤ 2n exp

(
− t2

σ2 + t/3

)
= δ .

Observe that we can use the inequality
√
x+ y ≤

√
x+

√
y for any x, y ≥ 0 to show that

1

3

(
ln

2n

δ
+

√
ln

2n

δ

(
ln

2n

δ
+ 18σ2

))
≤ σ

√
2 ln

2n

δ
+

2

3
ln

2n

δ
,

hence we obtain that

∥W∥ < σ

√
2 ln

2n

δ
+

2

3
ln

2n

δ
(1)

holds with probability at least 1− δ.

The next step is explicitly computing σ or, as we will do, an upper bound to it. To do so,
we leverage the structure of the matrices derived from the decomposition of W into a sum of
“simpler” matrices. First, notice that Z2

ij = (eie
⊤
j + eje

⊤
i )

2 = eie
⊤
i + eje

⊤
j if i < j while
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Z2
ii = Zii = eie

⊤
i . This implies that∑

1≤i<j≤n

(
WijZij

)2
=

∑
1≤i<j≤n

W 2
ij(eie

⊤
i + eje

⊤
j )

=
∑

1≤i<j≤n

W 2
ijeie

⊤
i +

∑
1≤i<j≤n

W 2
ijeje

⊤
j

=
∑

1≤i<j≤n

W 2
ijeie

⊤
i +

∑
1≤j<i≤n

W 2
jieie

⊤
i renaming i ↔ j in the second sum

=
∑

1≤i<j≤n

W 2
ijeie

⊤
i +

∑
1≤j<i≤n

W 2
ijeie

⊤
i since Wij = Wji

=
∑
i ̸=j

W 2
ijeie

⊤
i ,

and therefore ∑
1≤i≤j≤n

(
WijZij

)2
=

n∑
i=1

(
WiiZii

)2
+

∑
1≤i<j≤n

(
WijZij

)2
=

n∑
i=1

W 2
iieie

⊤
i +

∑
i ̸=j

W 2
ijeie

⊤
i

=
n∑

i,j=1

W 2
ijeie

⊤
i

=
n∑

i=1

(
n∑

j=1

W 2
ij

)
︸ ︷︷ ︸

=:Zi

eie
⊤
i

= diag(Z1, . . . , Zn) .

Second, observe that we end up with a diagonal matrix whose entries on the diagonal are
Z1, . . . , Zn ≥ 0 and its expectation E[diag(Z1, . . . , Zn)] = diag

(
E[Z1], . . . ,E[Zn]

)
is also a diag-

onal matrix. This allows us to bound σ2 from above as follows:

σ2 =
∥∥E[diag(Z1, . . . , Zn)

]∥∥
= max

i∈[n]
E[Zi] as ∥M∥ = max

i∈[n]
|λi(M)| for symmetric M ∈ Rn×n

= max
i∈[n]

n∑
j=1

E
[
W 2

ij

]
by linearity of expectation

=
n

2
Var(Ber(p)) +

n

2
Var(Ber(q)) sum of variances of entries in any row of A

=
np(1− p)

2
+

nq(1− q)

2
variance of Bernoulli random variables

≤
(p+ q

2

)
n

=
a+ b

2
by definition of p and q .

Going back to the previous bound on ∥W∥ provided by Equation (1) and applying our upper
bound on σ2, we see that

∥W∥ <

√
(a+ b) ln

2n

δ
+

2

3
ln

2n

δ
≤ 5

3

√
(a+ b) ln

2n

δ
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holds with probability at least 1−δ, where the second inequality follows by assumption on δ.

Finally, we have all the results we need in order to prove our main theorem.

Proof of Theorem 6. First, we observe that the eigengap ∆2(Ā) is

∆2(Ā) = min
{
λ1(Ā)− λ2(Ā), λ2(Ā)

}
= nmin

{
q,

p− q

2

}
= min

{
b,
a− b

2

}
=

a− b

2
,

where the last equality follows by Assumption (iii). Second, since the spectral gap assumption
∆2(Ā) > 0 is satisfied, we can apply Lemma 7 to obtain that the fraction of misclassified vertices
is bounded from above by

2
√
2∥A− Ā∥
∆2(Ā)

=
4
√
2∥W∥
a− b

.

Consider now setting δ := n−α and notice that it satisfies

ln(2n/δ) = ln(2n) + α lnn ≤ 2(1 + α) lnn , (2)

which is not greater than a + b by Assumption (i). Then, we have with probability at least
1− n−α = 1− o(1) that

4
√
2∥W∥
a− b

<
20
√
2

3(a− b)

√
(a+ b) ln

2n

δ
by Lemma 8

≤ 20

3

√
2

c
ln

2n

δ
by Assumption (ii)

≤ 40

3

√
1 + α

c
lnn by (2)

where the last inequality follows by Assumption (ii). Therefore, whenever c ≫ (1 + α) lnn,
meaning that 1

c = 1
1+αo

(
1

lnn

)
, we have that the accuracy is 1−o(1) with probability 1−o(1).
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