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Instructor: Nicolò Cesa-Bianchi version of March 27, 2024

The material in this handout is taken from: Noga Alon and Joel H. Spencer, The Probabilistic
Method (3rd edition), John Wiley & Sons, 2008. Reinhard Diestel, Graph Theory (5th edition),
Springer, 2017.

A generative model for graphs is a probability distribution over all graphs of a certain order. One
of the simplest such models is the one proposed by Paul Erdős and Alfred Rényi around 1960. The
Erdős-Rényi random graph Gn = (Vn, En) of parameters n ∈ N and p ∈ [0, 1] is such that the
events (i, j) ∈ En for every 1 ≤ i < j ≤ n are independent and have probability p. We use G(n, p)
to denote the resulting probability distribution over graphs of order n. If 0 < p < 1, then G(n, p)
assigns a nonzero probability to every graph of order n. In particular, for any given G = (V,E) of
order n we have that

P(G) = p|E|(1− p)(
n
2)−|E|

where the probability is computed with respect to the distribution G(n, p). Note that G
(
n, 12

)
is

the uniform distribution over all graphs of order n. The distribution of the number of edges of Gn

follows a binomial distribution of parameters
(
n
2

)
and p,

P(|En| = k) =
∑

E′⊆[V ]2 : |E′|=k

P(E′) =

((n
2

)
k

)
pk(1− p)(

n
2)−k

We write Gn ∼ G(n, p) to denote the random graph Gn = (Vn, En) distributed according to G(n, p).
Note that E

[
|En|

]
= p

(
n
k

)
= pn(n−1)

2 which is Θ(n2) when p = Θ(1).

We use the Erdős-Rényi model to prove properties about graphs via the so-called probabilistic
method. In order to prove that there exist graphs with certain properties, we show that the Erdős-
Rényi model generates the desired graphs with probability strictly bigger than zero.

In the following, we repeatedly use two simple facts from probability theory. The first one is known
as the union bound: for any finite collection E1, . . . , EN of events,

P
(
E1 ∪ · · · ∪ EN

)
≤

N∑
i=1

P(Ei)

The second one is Markov’s inequality: for all nonnegative random variables X and all a > 0,

P(X ≥ a) ≤ E[X]

a

We start with a simple application of the probabilistic method to show that there exist graphs of
any order n ≥ 4 that have neither a large clique nor a large independent set, where large means at
least 2 log2 n.
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Fact 1 For all n ≥ 4 and all k ≥ ⌈2 log2 n⌉, there exists a graph G of order n such that α(G) < k
and ω(G) < k.

Proof. Let G ∼ G
(
n, 12

)
. The probability that an arbitrary U ⊂ V of size k is an independent

set is 2−(
k
2). Therefore,

P
(
α(G) ≥ k

)
= P

(
∃U ⊂ V : |U | = k, U is independent in G

)
≤

∑
U⊂V : |U |=k

2−(
k
2) (using the union bound)

=

(
n

k

)
2−(

k
2)

≤
(n
2

)k
2−

k(k−1)
2 (using

(
n
k

)
≤

(
n
2

)k
for 4 ≤ k ≤ n)

= 2k(log2 n−1)− k(k−1)
2

≤ 2
k2

2
−k− k(k−1)

2 (using k ≥ ⌈2 log2 n⌉)

≤ 2−
k
2 ≤ 1

4
(because k ≥ 4)

Likewise, the probability that an arbitrary U ⊂ V of size k is a clique is also 2−(
k
2). Therefore, with

an identical proof, we can prove that P
(
ω(G) ≥ k

)
≤ 1

4 . This implies

P
(
α(G) < k and ω(G) < k

)
= 1−P

(
α(G) ≥ k or ω(G) ≥ k

)
≥ 1−P

(
α(G) ≥ k

)
−P

(
ω(G) ≥ k

)
> 0

where we used the union bound. Since P
(
α(G) < k and ω(G) < k

)
> 0, we conclude there exists

G of order n such that α(G) < k and ω(G) < k. □

We now use the probabilistic method to prove a harder result. Namely, that we can find graphs that
lack short cycles and simultaneously have a large chromatic number. Recall that a high chromatic
number requires a small independence number, which in turn is favored by a high density. On the
other hand, a high density also favors the presence of short cycles. As we see next, the trick to
obtain the right density is to choose p slightly larger than 1

n .

Theorem 2 (Erdős, 1959) For every integer k ≥ 3 there exists a graph G such that g(G) > k
and χ(G) > k.

We start by proving an auxiliary lemma on the expected number of cycles of a given length.

Lemma 3 The expected number of cycles of length k in G ∼ G(n, p) is

n(n− 1) · · · (n− k + 1)

2k
pk

Proof. Let Ck be the set of all cycles of length k on n vertices. Since each cycle is specified
by a sequence of k distinct vertices, and there are n(n − 1) · · · (n − k + 1) ways of choosing this
sequence, |Ck| = n(n − 1) · · · (n − k + 1)/(2k), where we divide by 2k because there are exactly
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2k sequences that correspond to the same cycle. Since a cycle is also specified by a sequence of k
edges, P

(
G contains C

)
= pk for any given C ∈ Ck. Finally, let Nk(G) be the number of cycles of

length k in G.

E
[
Nk(G)

]
=

∑
C∈Ck

P
(
G contains C

)
=

∑
C∈Ck

pk = |Ck|pk

concluding the proof. □

We are now ready to prove Erdős theorem.

Proof of Theorem 2. Fix ε > 0 with 0 < ε < 1
k , and let p = nε−1. Let N≤k(G) be the number

of cycles of length at most k in G. By Lemma 3 we have

E
[
N≤k(G)

]
=

k∑
i=3

n(n− 1) · · · (n− i+ 1)

2i
pi ≤ 1

2

k∑
i=3

(np)i ≤ k − 2

2
(np)k (1)

where we used (np)i ≤ (np)k because np = nε ≥ 1. Now,

P
(
N≤k(G) ≥ n/2

)
≤

E
[
N≤k(G)

]
n/2

(by Markov’s inequality)

≤ (k − 2)nk−1pk (by (1))

= (k − 2)nk−1n(ε−1)k

= (k − 2)nkε−1

<
1

2
(for n large since kε− 1 < 0 due to ε < 1/k)

Now, using the argument in the proof of Fact 1,

P
(
α(G) ≥ n/(2k)

)
≤

(
n

n/(2k)

)
(1− p)(

n/(2k)
2 )

=

(
n

r

)
(1− p)(

r
2) (letting r = n/(2k))

≤ 2ne−p(r2) (using
(
n
r

)
< 2n and 1− p ≤ e−p)

≤ 2ne−pr2/4 (using
(
r
2

)
≥ r2

4 for r ≥ 2)

= 2ne−pn2/(16k2)

≤ 2ne−n (as pn = nε ≥ 16k2 for n large enough)

<
1

2
(for n large enough)

Combining these two results, we conclude that for n large enough with respect to k,

P
(
N≤k(G) < n/2 and α(G) < n/(2k)

)
> 0

Then, there exists a graph G of order n with fewer than n/2 cycles of length at most k and α(G) <
n/(2k). From each of those cycles delete a vertex and let H = (VH , EH) be the graph obtained.
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Then |VH | ≥ n/2 and g(H) > k. By definition of G, and using the fact that χ(H)α(H) ≥ |VH |
which holds for any graph,

χ(H) ≥ |VH |
α(H)

≥ n/2

α(G)
> k

where we used the fact that α(H) ≤ α(G) since H is obtained by deleting vertices from G (see
Exercise 1). This concludes the proof. □

Asymptotic properties. Given Gn ∼ G
(
n, 12

)
, a function µ : Gn 7→ µ(Gn), and a function

f : N → R, we say that µ(Gn)
p→ f(n) if

lim
n→∞

P
(
µ(Gn) =

(
1 + o(1)

)
f(n)

)
= 1 where o(1) → 0 for n → ∞

To understand this definition, recall that g =
(
1+o(1)

)
f means that for all ε > 0 there exists n(ε) ∈

N such that for all n ≥ n(ε) we have (1 − ε)f(n) ≤ g(n) ≤ (1 + ε)f(n). Therefore, we can define
ε(n) = min {ε > 0 : (∀n′ ≥ n) (1− ε)f(n′) ≤ g(n′) ≤ (1 + ε)f(n′)} such that limn→∞ ε(n) = 0. So

g(n)
p→ f(n) means that the probability of (∃n′ ≥ n)

∣∣f(n′)− g(n′)
∣∣ > ε(n) goes to zero as n → ∞.

In Fact 1 we proved that if k ≥ ⌈2 log2 n⌉, then one can find graphs Gn such that α(Gn) < k and

ω(Gn) < k. It turns out that ω(Gn)
p→ 2 log2 n and α(Gn)

p→ 2 log2 n. More precisely, there exists
a sequence k1, k2, . . . such that

kn =
(
1 + o(1)

)
2 log2 n and lim

n→∞
P
(
ω(Gn) ∈ {kn, kn + 1}

)
= 1

and the exactly same result also holds for the independence number. To get some intuition on why

this is true, note that the expected number of cliques of size k in Gn is f(n, k) =
(
n
k

)
2−(

k
2). Using

the standard bounds ( n

ek

)k
≤

(
n

k

)
≤

(en
k

)k

we obtain f(n, k) = 2k(log2 n−
k
2
−log2 k+Θ(1)). Hence, it is easy to see that

lim
n,k→∞

f(n, k) =

{
0 if k > 2 log2 n
∞ if k < 2 log2 n

In other words, the expected number of cliques of size k goes to zero for k > 2 log2 n and to infinity
for k < 2 log2 n

We now study χ(Gn). We already know that χ(Gn) ≥ n/α(Gn) for every Gn. Let

kn = max {k ∈ N : f(n, k) ≥ 1} (2)

Note that kn =
(
1 + o(1)

)
2 log2 n. To prove χ(Gn) ≤

(
1 + o(1)

)
n

α(Gn)
with probability one for

n → ∞, we use the following lemma (without proof).

Lemma 4 P
(
ω(Gn) < kn − 4

)
< 2−n2+o(1)

.

Clearly, the same result holds with α(Gn) in place of ω(Gn).

Theorem 5 χ(Gn)
p→ n

2 log2 n
.
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Proof. For G = (V,E) recall that G[S] is the graph induced by S ⊆ V . For any fixed such S
of size m, if G ∼ G(n, 12), then G[S] ∼ G(m, 12). We now show that for n → ∞ any S ⊆ V of size
m = n

/
(log2 n)

2 contains an independent set of size at least km defined in (2).

P
(
∃S ⊆ V : |S| = m, α

(
G[S]

)
< km)

≤
(
n

m

)
2−m2+o(1)

(using Lemma 4 for each G[S])

< 2n−m2+o(1)
(because

(
n
m

)
< 2n)

= 2
n−

(
n

(logn)2

)2+o(1)

(for m = n
/
(log2 n)

2)

= 2
n

(logn)4+o(1)

(
(logn)4+o(1)−n1+o(1)

)
→ 0 (for n → ∞)

This implies that for n large, almost all graphs are such that any subset of m vertices contains an
independent set of size at least km. For any such graph, we can repeat the following procedure
until less than m vertices remain: find an independent set of size km, assign the same color to its
vertices, and remove it from the graph. Once the procedure is over, we are left with less than m
vertices, which we can color with less than m additional colors. Therefore,

χ(G) <
n

km
+m = (1 + o(1))

n

2 log2 n

because m = n
/
(log2 n)

2 and km =
(
1 + o(1)

)
2 log2 n− 2 log2 log2 n =

(
1 + o(1)

)
2 log2 n. □

Acknowledgements. Thanks to Andrea Rovati for flagging mistakes and typos in earlier versions
of this handout.

Exercises

1. For any G = (V,E) and for any S ⊆ V , let H = G[S]. Prove that α(H) ≤ α(G).
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