Graph Theory

Linear algebra background

Instructor: Nicolò Cesa-Bianchi

version of April 8, 2024

The material in this handout is taken from: Luca Trevisan, Lecture Notes on Graph Partitioning, Expanders and Spectral Methods, 2016.

Given a real $n \times n$ matrix M, if $M\boldsymbol{u} = \lambda \boldsymbol{u}$ for some $\lambda \in \mathbb{R}$ and $\boldsymbol{u} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$, then \boldsymbol{u} is an eigenvector of M with eigenvalue λ (we also say that \boldsymbol{u} is an eigenvector of λ). Note that eigenvectors can be rescaled without changing the equation $M\boldsymbol{u} = \lambda \boldsymbol{u}$, hence we conventionally assume they have unit length.

Note that λ is an eigenvalue for M if and only if there exists $\mathbf{x} \neq \mathbf{0}$ such that $(M - \lambda I)\mathbf{x} = \mathbf{0}$, where I is the $n \times n$ identity matrix. The equation $(M - \lambda I)\mathbf{x} = \mathbf{0}$ holds for $\mathbf{x} \neq \mathbf{0}$ if and only if $M - \lambda I$ is singular, which is equivalent to $\det(M - \lambda I) = 0$. Since $\det(M - \lambda I)$ is a *n*-th degree univariate polynomial in λ , it has exactly n solutions by the fundamental theorem of algebra. This shows that every square matrix has n eigenvalues (not all necessarily distinct). Some of these eigenvalues, however, may correspond to solutions of $\det(M - \lambda I) = 0$ in the complex plane. The next result guarantees that at least one eigenvalue is real when M is symmetric.

Fact 1 (proof omitted) If M is symmetric, then there exists $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n \setminus \{0\}$ such that $Mu = \lambda u$.

Fact 2 If M is symmetric then any two eigenvectors corresponding to distinct eigenvalues are orthogonal.

PROOF. Let \boldsymbol{x} be an eigenvector of λ and \boldsymbol{y} an eigenvector of λ' with $\lambda \neq \lambda'$. Since M is symmetric, $(M\boldsymbol{x})^{\top}\boldsymbol{y} = \boldsymbol{x}^{\top}M\boldsymbol{y}$. On the other hand, $(M\boldsymbol{x})^{\top}\boldsymbol{y} = \lambda\boldsymbol{x}^{\top}\boldsymbol{y}$ and $\boldsymbol{x}^{\top}M\boldsymbol{y} = \lambda'\boldsymbol{x}^{\top}\boldsymbol{y}$. Since $\lambda \neq \lambda'$, it must by $\boldsymbol{x}^{\top}\boldsymbol{y} = 0$, which means that \boldsymbol{x} and \boldsymbol{y} are orthogonal.

Orthogonal projections. If $u_1, \ldots, u_k \in \mathbb{R}^n$ is a set of $k \leq n$ orthonormal vectors in \mathbb{R}^n , then $A = [u_1, \ldots, u_k]$ maps any vector $x \in \mathbb{R}^k$ onto the k-dimensional subspace $V \subseteq \mathbb{R}^n$ spanned by $\{u_1, \ldots, u_k\}$, so that ||x|| = ||Ax||. Instead, AA^{\top} projects any vector in \mathbb{R}^n onto $V \subseteq \mathbb{R}^n$. In particular, $AA^{\top}x = x$ for all $x \in V$. Because the columns of A are orthonormal, we also have $A^{\top}A = I$ (the $k \times k$ identity matrix). In the special case k = n, A performs a change of basis from $\{u_1, \ldots, u_n\}$ to the canonical basis $\{e_1, \ldots, e_n\}$, whereas A^{\top} performs the inverse transformation. Moreover, $AA^{\top} = A^{\top}A = I$

We now use Fact 1 to prove that any symmetric matrix has n (not necessarily distinct) real eigenvalues.

Theorem 3 (Spectral Theorem) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists n (not necessarily distinct) real numbers $\lambda_1, \ldots, \lambda_n$ and n orthonormal real vectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$ such that \mathbf{u}_i is an eigenvector of λ_i .

PROOF. The proof is by induction on n. If n = 1, then M is a scalar. Hence, any nonzero $x \in \mathbb{R}$ is an eigenvector of M with eigenvalue M because Mx = Mx.

Assume now that the statement holds for n-1. By Fact 1, there exist an eigenvalue $\lambda_n \in \mathbb{R}$ with eigenvector $\boldsymbol{x}_n \in \mathbb{R}^n$.

Claim. \boldsymbol{y} orthogonal to \boldsymbol{x}_n implies $M\boldsymbol{y}$ is orthogonal to \boldsymbol{x}_n .

Indeed, $\boldsymbol{x}_n^{\top} M \boldsymbol{y} = (M \boldsymbol{x}_n)^{\top} \boldsymbol{y} = \lambda_n \boldsymbol{x}_n^{\top} \boldsymbol{y} = 0.$

Now let V be the (n-1)-dimensional subspace of \mathbb{R}^n that contains all the vectors orthogonal to \boldsymbol{x}_n . Now choose an orthonormal basis $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_{n-1}$ for V and let $B = [\boldsymbol{u}_1, \ldots, \boldsymbol{u}_{n-1}]$. By construction, BB^{\top} projects \mathbb{R}^n onto V. In particular, $BB^{\top}\boldsymbol{z} = \boldsymbol{z}$ for all $\boldsymbol{z} \in V$. We now apply the inductive hypothesis to the $(n-1) \times (n-1)$ symmetric matrix $M' = B^{\top}MB$ and find real eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ and orthonormal eigenvectors $\boldsymbol{y}_1, \ldots, \boldsymbol{y}_{n-1} \in \mathbb{R}^{n-1}$. For $i = 1, \ldots, n-1$ we have $M'\boldsymbol{y}_i = B^{\top}MB\boldsymbol{y}_i = \lambda_i\boldsymbol{y}_i$. Therefore, $BB^{\top}MB\boldsymbol{y}_i = \lambda_iB\boldsymbol{y}_i$. Since $\boldsymbol{y}_i \in \mathbb{R}^{n-1}$ and B maps \mathbb{R}^{n-1} to $V, B\boldsymbol{y}_i$ is orthogonal to \boldsymbol{x}_n and, by the above claim, $MB\boldsymbol{y}_i$ is orthogonal to \boldsymbol{x}_n and so $MB\boldsymbol{y}_i \in V$. Therefore $\lambda_i B\boldsymbol{y}_i = BB^{\top}MB\boldsymbol{y}_i = MB\boldsymbol{y}_i$. If we now define $\boldsymbol{x}_i = B\boldsymbol{y}_i$ for $i = 1, \ldots, n-1$, then we have $M\boldsymbol{x}_i = \lambda_i\boldsymbol{x}_i$. To finish up, note that, by construction, \boldsymbol{x}_n is orthogonal to $\boldsymbol{x}_1, \ldots, \boldsymbol{x}_{n-1}$. Moreover, for any $1 \leq i < j \leq n-1$, $\boldsymbol{x}_i^{\top}\boldsymbol{x}_j = (B\boldsymbol{y}_i)^{\top}(B\boldsymbol{y}_j) = \boldsymbol{y}_i^{\top}B^{\top}B\boldsymbol{y}_j = \boldsymbol{y}_i^{\top}\boldsymbol{y}_j = 0$. Hence we have found n eigenvalues with n eigenvectors.

Corollary 4 Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then

$$M = U\Lambda U^{\top} = \sum_{i=1}^{n} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^{\top}$$

where $U = [\mathbf{u}_1, \ldots, \mathbf{u}_n]$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Here $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the real eigenvalues of M and $\mathbf{u}_1, \ldots, \mathbf{u}_n \in \mathbb{R}^n$ are the corresponding eigenvectors.

PROOF. Note that $MU = [\lambda_1 \boldsymbol{u}_1, \dots, \lambda_n \boldsymbol{u}_n]$ because $M\boldsymbol{u}_i = \lambda_i \boldsymbol{u}_i$ for each $i = 1, \dots, n$. Hence $MU = U\Lambda$ where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$. Since U is a square orthonormal matrix, $U^{\top}U = UU^{\top} = I$. Therefore $M = MUU^{\top} = U\Lambda U^{\top}$.

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. For any $x \in \mathbb{R}^n$, the **Rayleigh quotient** is the ratio

$$R(M, \boldsymbol{x}) = \frac{\boldsymbol{x}^\top M \boldsymbol{x}}{\boldsymbol{x}^\top \boldsymbol{x}}$$

Theorem 5 (Variational characterization of eigenvalues — proof omitted) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be its real eigenvalues. For k < n let u_1, \ldots, u_k be orthonormal vectors such that $Mu_i = \lambda_i u_i$ for $i = 1, \ldots, k$. Then

$$\lambda_{k+1} = \min_{\substack{\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}\\ \boldsymbol{u} \perp \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_k\}}} R(M, \boldsymbol{u})$$

and any minimizer u is an eigenvector of λ_{k+1} .

In particular,

$$\lambda_1 = \min_{\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} R(M, \boldsymbol{u})$$

Also, because -M has eigenvalues $-\lambda_n \leq -\lambda_{n-1} \leq \cdots \leq -\lambda_1$,

$$-\lambda_n = \min_{\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} R(-M, \boldsymbol{u}) = -\max_{\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} R(M, \boldsymbol{u})$$

and therefore

$$\lambda_n = \max_{\boldsymbol{u} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}} R(M, \boldsymbol{u})$$

A symmetric matrix M is **positive semidefinite** if $\mathbf{x}^{\top}M\mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

Fact 6 The eigenvalues of a positive semidefinite matrix are all nonnegative.

PROOF. As the denominator of the Rayleigh quotient is clearly always positive, Theorem 5 implies that the sign of each eigenvalue is determined by the sign of $\mathbf{x}^{\top}M\mathbf{x}$.

We conclude with a different, but equally important characterization of eigenvalues.

Theorem 7 (Courant-Fischer — proof omitted) Let M be a symmetric matrix with real eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then

$$\lambda_k = \min_{\substack{S: \dim(S) = k}} \max_{\boldsymbol{u} \in S \setminus \{\boldsymbol{0}\}} R(M, \boldsymbol{u}) \qquad k = 1, \dots, n$$

where the minimum is over all subspaces $S \subseteq \mathbb{R}^n$ of dimension k.