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The material in this handout is taken from: Luca Trevisan, Lecture Notes on Graph Partitioning,
Expanders and Spectral Methods, 2016.

Given a real n×n matrix M , if Mu = λu for some λ ∈ R and u ∈ Rn\{0}, then u is an eigenvector
of M with eigenvalue λ (we also say that u is an eigenvector of λ). Note that eigenvectors can be
rescaled without changing the equation Mu = λu, hence we conventionally assume they have unit
length.

Note that λ is an eigenvalue for M if and only if there exists x ̸= 0 such that (M−λI)x = 0, where
I is the n× n identity matrix. The equation (M − λI)x = 0 holds for x ̸= 0 if and only if M − λI
is singular, which is equivalent to det(M − λI) = 0. Since det(M − λI) is a n-th degree univariate
polynomial in λ, it has exactly n solutions by the fundamental theorem of algebra. This shows
that every square matrix has n eigenvalues (not all necessarily distinct). Some of these eigenvalues,
however, may correspond to solutions of det(M − λI) = 0 in the complex plane. The next result
guarantees that at least one eigenvalue is real when M is symmetric.

Fact 1 (proof omitted) If M is symmetric, then there exists λ ∈ R and u ∈ Rn \ {0} such that
Mu = λu.

Fact 2 If M is symmetric then any two eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Proof. Let x be an eigenvector of λ and y an eigenvector of λ′ with λ ̸= λ′. Since M is symmetric,
(Mx)⊤y = x⊤My. On the other hand, (Mx)⊤y = λx⊤y and x⊤My = λ′x⊤y. Since λ ̸= λ′, it
must by x⊤y = 0, which means that x and y are orthogonal. □

Orthogonal projections. If u1, . . . ,uk ∈ Rn is a set of k ≤ n orthonormal vectors in Rn, then
A =

[
u1, . . . ,uk

]
maps any vector x ∈ Rk onto the k-dimensional subspace V ⊆ Rn spanned by{

u1, . . . ,uk

}
, so that ∥x∥ = ∥Ax∥. Instead, AA⊤ projects any vector in Rn onto V ⊆ Rn. In

particular, AA⊤x = x for all x ∈ V . Because the columns of A are orthonormal, we also have
A⊤A = I (the k× k identity matrix). In the special case k = n, A performs a change of basis from{
u1, . . . ,un

}
to the canonical basis

{
e1, . . . , en

}
, whereas A⊤ performs the inverse transformation.

Moreover, AA⊤ = A⊤A = I

We now use Fact 1 to prove that any symmetric matrix has n (not necessarily distinct) real eigen-
values.

Theorem 3 (Spectral Theorem) Let M ∈ Rn×n be a symmetric matrix. Then there exists n
(not necessarily distinct) real numbers λ1, . . . , λn and n orthonormal real vectors u1, . . . ,un such
that ui is an eigenvector of λi.
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Proof. The proof is by induction on n. If n = 1, then M is a scalar. Hence, any nonzero x ∈ R
is an eigenvector of M with eigenvalue M because Mx = Mx.

Assume now that the statement holds for n− 1. By Fact 1, there exist an eigenvalue λn ∈ R with
eigenvector xn ∈ Rn.

Claim. y orthogonal to xn implies My is orthogonal to xn.

Indeed, x⊤
nMy = (Mxn)

⊤y = λnx
⊤
n y = 0.

Now let V be the (n−1)-dimensional subspace of Rn that contains all the vectors orthogonal to xn.
Now choose an orthonormal basis u1, . . . ,un−1 for V and let B =

[
u1, . . . ,un−1

]
. By construction,

BB⊤ projects Rn onto V . In particular, BB⊤z = z for all z ∈ V . We now apply the inductive
hypothesis to the (n − 1) × (n − 1) symmetric matrix M ′ = B⊤MB and find real eigenvalues
λ1, . . . , λn−1 and orthonormal eigenvectors y1, . . . ,yn−1 ∈ Rn−1. For i = 1, . . . , n − 1 we have
M ′yi = B⊤MByi = λiyi. Therefore, BB⊤MByi = λiByi. Since yi ∈ Rn−1 and B maps Rn−1 to
V , Byi is orthogonal to xn and, by the above claim, MByi is orthogonal to xn and so MByi ∈ V .
Therefore λiByi = BB⊤MByi = MByi. If we now define xi = Byi for i = 1, . . . , n − 1, then
we have Mxi = λixi. To finish up, note that, by construction, xn is orthogonal to x1, . . . ,xn−1.
Moreover, for any 1 ≤ i < j ≤ n − 1, x⊤

i xj = (Byi)
⊤(Byj) = y⊤

i B
⊤Byj = y⊤

i yj = 0. Hence we
have found n eigenvalues with n eigenvectors. □

Corollary 4 Let M ∈ Rn×n be a real symmetric matrix. Then

M = UΛU⊤ =

n∑
i=1

λiuiu
⊤
i

where U =
[
u1, . . . ,un

]
and Λ = diag

(
λ1, . . . , λn

)
. Here λ1 ≤ λ2 ≤ · · · ≤ λn are the real

eigenvalues of M and u1, . . . ,un ∈ Rn are the corresponding eigenvectors.

Proof. Note that MU =
[
λ1u1, . . . , λnun

]
because Mui = λiui for each i = 1, . . . , n. Hence

MU = UΛ where Λ = diag
(
λ1, . . . , λn

)
. Since U is a square orthonormal matrix, U⊤U = UU⊤ = I.

Therefore M = MUU⊤ = UΛU⊤. □

Let M ∈ Rn×n be a symmetric matrix. For any x ∈ Rn, the Rayleigh quotient is the ratio

R(M,x) =
x⊤Mx

x⊤x

Theorem 5 (Variational characterization of eigenvalues — proof omitted) Let M ∈ Rn×n

be a symmetric matrix, and λ1 ≤ λ2 ≤ · · · ≤ λn be its real eigenvalues. For k < n let u1, . . . ,uk be
orthonormal vectors such that Mui = λiui for i = 1, . . . , k. Then

λk+1 = min
u∈Rn\{0}

u⊥{u1,...,uk}

R(M,u)

and any minimizer u is an eigenvector of λk+1.
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In particular,
λ1 = min

u∈Rn\{0}
R(M,u)

Also, because −M has eigenvalues −λn ≤ −λn−1 ≤ · · · ≤ −λ1,

−λn = min
u∈Rn\{0}

R(−M,u) = − max
u∈Rn\{0}

R(M,u)

and therefore
λn = max

u∈Rn\{0}
R(M,u)

A symmetric matrix M is positive semidefinite if x⊤Mx ≥ 0 for all x ∈ Rn.

Fact 6 The eigenvalues of a positive semidefinite matrix are all nonnegative.

Proof. As the denominator of the Rayleigh quotient is clearly always positive, Theorem 5 implies
that the sign of each eigenvalue is determined by the sign of x⊤Mx. □

We conclude with a different, but equally important characterization of eigenvalues.

Theorem 7 (Courant-Fischer — proof omitted) Let M be a symmetric matrix with real eigen-
values λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λk = min
S : dim(S)=k

max
u∈S\{0}

R(M,u) k = 1, . . . , n

where the mininum is over all subspaces S ⊆ Rn of dimension k.
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