Graph Theory

 Linear algebra background

 Linear algebra background}

Instructor: Nicolò Cesa-Bianchi

The material in this handout is taken from: Luca Trevisan, Lecture Notes on Graph Partitioning, Expanders and Spectral Methods, 2016.
Given a real $n \times n$ matrix M, if $M \boldsymbol{u}=\lambda \boldsymbol{u}$ for some $\lambda \in \mathbb{R}$ and $\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$, then \boldsymbol{u} is an eigenvector of M with eigenvalue λ (we also say that \boldsymbol{u} is an eigenvector of λ). Note that eigenvectors can be rescaled without changing the equation $M \boldsymbol{u}=\lambda \boldsymbol{u}$, hence we conventionally assume they have unit length.

Note that λ is an eigenvalue for M if and only if there exists $\boldsymbol{x} \neq \mathbf{0}$ such that $(M-\lambda I) \boldsymbol{x}=\mathbf{0}$, where I is the $n \times n$ identity matrix. The equation $(M-\lambda I) \boldsymbol{x}=\mathbf{0}$ holds for $\boldsymbol{x} \neq \mathbf{0}$ if and only if $M-\lambda I$ is singular, which is equivalent to $\operatorname{det}(M-\lambda I)=0$. Since $\operatorname{det}(M-\lambda I)$ is a n-th degree univariate polynomial in λ, it has exactly n solutions by the fundamental theorem of algebra. This shows that every square matrix has n eigenvalues (not all necessarily distinct). Some of these eigenvalues, however, may correspond to solutions of $\operatorname{det}(M-\lambda I)=0$ in the complex plane. The next result guarantees that at least one eigenvalue is real when M is symmetric.

Fact 1 (proof omitted) If M is symmetric, then there exists $\lambda \in \mathbb{R}$ and $\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that $M \boldsymbol{u}=\lambda \boldsymbol{u}$.

Fact 2 If M is symmetric then any two eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let \boldsymbol{x} be an eigenvector of λ and \boldsymbol{y} an eigenvector of λ^{\prime} with $\lambda \neq \lambda^{\prime}$. Since M is symmetric, $(M \boldsymbol{x})^{\top} \boldsymbol{y}=\boldsymbol{x}^{\top} M \boldsymbol{y}$. On the other hand, $(M \boldsymbol{x})^{\top} \boldsymbol{y}=\lambda \boldsymbol{x}^{\top} \boldsymbol{y}$ and $\boldsymbol{x}^{\top} M \boldsymbol{y}=\lambda^{\prime} \boldsymbol{x}^{\top} \boldsymbol{y}$. Since $\lambda \neq \lambda^{\prime}$, it must by $\boldsymbol{x}^{\top} \boldsymbol{y}=0$, which means that \boldsymbol{x} and \boldsymbol{y} are orthogonal.

Orthogonal projections. If $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{n}$ is a set of $k \leq n$ orthonormal vectors in \mathbb{R}^{n}, then $A=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right]$ maps any vector $\boldsymbol{x} \in \mathbb{R}^{k}$ onto the k-dimensional subspace $V \subseteq \mathbb{R}^{n}$ spanned by $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}$, so that $\|\boldsymbol{x}\|=\|A \boldsymbol{x}\|$. Instead, $A A^{\top}$ projects any vector in \mathbb{R}^{n} onto $V \subseteq \mathbb{R}^{n}$. In particular, $A A^{\top} \boldsymbol{x}=\boldsymbol{x}$ for all $\boldsymbol{x} \in V$. Because the columns of A are orthonormal, we also have $A^{\top} A=I$ (the $k \times k$ identity matrix). In the special case $k=n, A$ performs a change of basis from $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right\}$ to the canonical basis $\left\{e_{1}, \ldots, \boldsymbol{e}_{n}\right\}$, whereas A^{\top} performs the inverse transformation. Moreover, $A A^{\top}=A^{\top} A=I$

We now use Fact 1 to prove that any symmetric matrix has n (not necessarily distinct) real eigenvalues.

Theorem 3 (Spectral Theorem) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists n (not necessarily distinct) real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and n orthonormal real vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ such that \boldsymbol{u}_{i} is an eigenvector of λ_{i}.

Proof. The proof is by induction on n. If $n=1$, then M is a scalar. Hence, any nonzero $x \in \mathbb{R}$ is an eigenvector of M with eigenvalue M because $M x=M x$.

Assume now that the statement holds for $n-1$. By Fact 1 , there exist an eigenvalue $\lambda_{n} \in \mathbb{R}$ with eigenvector $\boldsymbol{x}_{n} \in \mathbb{R}^{n}$.

Claim. \boldsymbol{y} orthogonal to \boldsymbol{x}_{n} implies $M \boldsymbol{y}$ is orthogonal to \boldsymbol{x}_{n}.
Indeed, $\boldsymbol{x}_{n}^{\top} M \boldsymbol{y}=\left(M \boldsymbol{x}_{n}\right)^{\top} \boldsymbol{y}=\lambda_{n} \boldsymbol{x}_{n}^{\top} \boldsymbol{y}=0$.
Now let V be the $(n-1)$-dimensional subspace of \mathbb{R}^{n} that contains all the vectors orthogonal to \boldsymbol{x}_{n}. Now choose an orthonormal basis $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}$ for V and let $B=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n-1}\right]$. By construction, $B B^{\top}$ projects \mathbb{R}^{n} onto V. In particular, $B B^{\top} \boldsymbol{z}=\boldsymbol{z}$ for all $\boldsymbol{z} \in V$. We now apply the inductive hypothesis to the $(n-1) \times(n-1)$ symmetric matrix $M^{\prime}=B^{\top} M B$ and find real eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ and orthonormal eigenvectors $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{n-1} \in \mathbb{R}^{n-1}$. For $i=1, \ldots, n-1$ we have $M^{\prime} \boldsymbol{y}_{i}=B^{\top} M B \boldsymbol{y}_{i}=\lambda_{i} \boldsymbol{y}_{i}$. Therefore, $B B^{\top} M B \boldsymbol{y}_{i}=\lambda_{i} B \boldsymbol{y}_{i}$. Since $\boldsymbol{y}_{i} \in \mathbb{R}^{n-1}$ and B maps \mathbb{R}^{n-1} to $V, B \boldsymbol{y}_{i}$ is orthogonal to \boldsymbol{x}_{n} and, by the above claim, $M B \boldsymbol{y}_{i}$ is orthogonal to \boldsymbol{x}_{n} and so $M B \boldsymbol{y}_{i} \in V$. Therefore $\lambda_{i} B \boldsymbol{y}_{i}=B B^{\top} M B \boldsymbol{y}_{i}=M B \boldsymbol{y}_{i}$. If we now define $\boldsymbol{x}_{i}=B \boldsymbol{y}_{i}$ for $i=1, \ldots, n-1$, then we have $M \boldsymbol{x}_{i}=\lambda_{i} \boldsymbol{x}_{i}$. To finish up, note that, by construction, \boldsymbol{x}_{n} is orthogonal to $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n-1}$. Moreover, for any $1 \leq i<j \leq n-1, \boldsymbol{x}_{i}^{\top} \boldsymbol{x}_{j}=\left(B \boldsymbol{y}_{i}\right)^{\top}\left(B \boldsymbol{y}_{j}\right)=\boldsymbol{y}_{i}^{\top} B^{\top} B \boldsymbol{y}_{j}=\boldsymbol{y}_{i}^{\top} \boldsymbol{y}_{j}=0$. Hence we have found n eigenvalues with n eigenvectors.

Corollary 4 Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then

$$
M=U \Lambda U^{\top}=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

where $U=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Here $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the real eigenvalues of M and $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n} \in \mathbb{R}^{n}$ are the corresponding eigenvectors.

Proof. Note that $M U=\left[\lambda_{1} \boldsymbol{u}_{1}, \ldots, \lambda_{n} \boldsymbol{u}_{n}\right]$ because $M \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}$ for each $i=1, \ldots, n$. Hence $M U=U \Lambda$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Since U is a square orthonormal matrix, $U^{\top} U=U U^{\top}=I$. Therefore $M=M U U^{\top}=U \Lambda U^{\top}$.
Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. For any $\boldsymbol{x} \in \mathbb{R}^{n}$, the Rayleigh quotient is the ratio

$$
R(M, \boldsymbol{x})=\frac{\boldsymbol{x}^{\top} M \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}
$$

Theorem 5 (Variational characterization of eigenvalues - proof omitted) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ be its real eigenvalues. For $k<n$ let $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ be orthonormal vectors such that $M \boldsymbol{u}_{i}=\lambda_{i} \boldsymbol{u}_{i}$ for $i=1, \ldots, k$. Then

$$
\lambda_{k+1}=\min _{\substack{\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} \\ \boldsymbol{u} \perp\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}}} R(M, \boldsymbol{u})
$$

and any minimizer \boldsymbol{u} is an eigenvector of λ_{k+1}.

In particular,

$$
\lambda_{1}=\min _{\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} R(M, \boldsymbol{u})
$$

Also, because $-M$ has eigenvalues $-\lambda_{n} \leq-\lambda_{n-1} \leq \cdots \leq-\lambda_{1}$,

$$
-\lambda_{n}=\min _{\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} R(-M, \boldsymbol{u})=-\max _{\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} R(M, \boldsymbol{u})
$$

and therefore

$$
\lambda_{n}=\max _{\boldsymbol{u} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} R(M, \boldsymbol{u})
$$

A symmetric matrix M is positive semidefinite if $\boldsymbol{x}^{\top} M \boldsymbol{x} \geq 0$ for all $\boldsymbol{x} \in \mathbb{R}^{n}$.
Fact 6 The eigenvalues of a positive semidefinite matrix are all nonnegative.

Proof. As the denominator of the Rayleigh quotient is clearly always positive, Theorem 5 implies that the sign of each eigenvalue is determined by the sign of $\boldsymbol{x}^{\top} M \boldsymbol{x}$.

We conclude with a different, but equally important characterization of eigenvalues.
Theorem 7 (Courant-Fischer - proof omitted) Let M be a symmetric matrix with real eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$. Then

$$
\lambda_{k}=\min _{S: \operatorname{dim}(S)=k} \max _{\boldsymbol{u} \in S \backslash\{\mathbf{0}\}} R(M, \boldsymbol{u}) \quad k=1, \ldots, n
$$

where the mininum is over all subspaces $S \subseteq \mathbb{R}^{n}$ of dimension k.

