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The material in this handout is taken from: Luca Trevisan, Lecture Notes on Graph Partitioning,
Ezpanders and Spectral Methods, 2016.

Given a real n xn matrix M, if Mu = Au for some A € R and w € R™\ {0}, then w is an eigenvector
of M with eigenvalue A\ (we also say that u is an eigenvector of \). Note that eigenvectors can be
rescaled without changing the equation Mu = Au, hence we conventionally assume they have unit
length.

Note that A is an eigenvalue for M if and only if there exists @ # 0 such that (M — A )x = 0, where
I is the n x n identity matrix. The equation (M — AI)x = 0 holds for @ # 0 if and only if M — A\
is singular, which is equivalent to det(M — AI) = 0. Since det(M — AI) is a n-th degree univariate
polynomial in A, it has exactly n solutions by the fundamental theorem of algebra. This shows
that every square matrix has n eigenvalues (not all necessarily distinct). Some of these eigenvalues,
however, may correspond to solutions of det(M — AI) = 0 in the complex plane. The next result
guarantees that at least one eigenvalue is real when M is symmetric.

Fact 1 (proof omitted) If M is symmetric, then there exists A € R and uw € R™ \ {0} such that
Mu = \u.

Fact 2 If M is symmetric then any two eigenvectors corresponding to distinct eigenvalues are
orthogonal.

PROOF. Let x be an eigenvector of A and y an eigenvector of X' with A # ). Since M is symmetric,
(Mx)"y = " My. On the other hand, (Mx)'y = Ax'y and "My = Nz 'y. Since A # X, it
must by =y = 0, which means that & and y are orthogonal. U

Orthogonal projections. If uy,...,ur € R" is a set of k < n orthonormal vectors in R”, then
A= [ul, e ,uk] maps any vector & € R¥ onto the k-dimensional subspace V' C R” spanned by
{wi,...,ux}, so that ||x| = ||Az|. Instead, AAT projects any vector in R" onto V' C R". In
particular, AATx = x for all x € V. Because the columns of A are orthonormal, we also have
ATA =T (the k x k identity matrix). In the special case k = n, A performs a change of basis from
{ul, e un} to the canonical basis {el, e en}, whereas A" performs the inverse transformation.
Moreover, AAT = ATA=1

We now use Fact 1 to prove that any symmetric matrix has n (not necessarily distinct) real eigen-
values.

Theorem 3 (Spectral Theorem) Let M € R"™ " be a symmetric matriz. Then there exists n
(not necessarily distinct) real numbers A1, ..., N, and n orthonormal real vectors ui, ..., u, such
that w; is an eigenvector of \;.



Proor. The proof is by induction on n. If n = 1, then M is a scalar. Hence, any nonzero x € R
is an eigenvector of M with eigenvalue M because Mz = Mx.

Assume now that the statement holds for n — 1. By Fact 1, there exist an eigenvalue A, € R with
eigenvector x, € R".

Claim. y orthogonal to x,, implies My is orthogonal to x,.
Indeed, z, My = (Mz,) "y = \,z,|y = 0.

Now let V' be the (n—1)-dimensional subspace of R" that contains all the vectors orthogonal to x,.
Now choose an orthonormal basis w1, ..., u,_1 for V and let B = [ul, e ,un_ﬂ . By construction,
BB projects R™ onto V. In particular, BBz = z for all z € V. We now apply the inductive
hypothesis to the (n — 1) x (n — 1) symmetric matrix M’ = B"MB and find real eigenvalues
A1, ..., An_1 and orthonormal eigenvectors ¥yy,...,¥y,_; € R* ' Fori = 1,...,n — 1 we have
M'y;, = BT M By; = \yy,. Therefore, BB' M By, = \;By,. Since y; € R*! and B maps R""! to
V', By, is orthogonal to x,, and, by the above claim, M By, is orthogonal to x, and so M By, € V.
Therefore \;By; = BBTMByi = MBy,;. If we now define ¢; = By, for i = 1,...,n — 1, then

we have Mx; = A\;x;. To finish up, note that, by construction, x, is orthogonal to x1,...,x,_1.
Moreover, for any 1 <i < j<n—1, a:iTa:j = (Byi)T(Byj) = yZTBTByj = y;-ryj = 0. Hence we
have found n eigenvalues with n eigenvectors. O

Corollary 4 Let M € R™™™ be a real symmetric matriz. Then
n
M = UAU—r = ZAZUZUZT
i=1

where U = [ul,...,un] and A = diag()\l,...,)\n). Here M < XAy < .-+ < )\, are the real

eigenvalues of M and uy,...,u, € R"™ are the corresponding eigenvectors.

PrOOF. Note that MU = [Alul,...,)\nun] because Mu; = A\;u; for each ¢ = 1,...,n. Hence
MU = UA where A = diag ()\1, e ,)\n). Since U is a square orthonormal matrix, U'U = UU " = I.
Therefore M = MUUT = UAU . g

Let M € R™ "™ be a symmetric matrix. For any @ € R, the Rayleigh quotient is the ratio

-
x' Mx
R(M,x) = ———
(M, z) = —=
Theorem 5 (Variational characterization of eigenvalues — proof omitted) Let M € R™*"
be a symmetric matriz, and \; < Ay < -+ < N\, be its real eigenvalues. For k < n let uy,...,u be
orthonormal vectors such that Mu; = \ju; fori=1,... k. Then
A = min R(M,u
FHLT R\ (0} (M, u)

ul{ui,...,ur}

and any minimizer w is an eigenvector of Ajgy1.



In particular,
Al= min R(M,u)
ueR"\ {0}

Also, because —M has eigenvalues — A, < —Ap_1 < --- < =g,

—Ap= min R(-M,u)=—- max R(M,u)
ueRn\ {0} uw€R"\ {0}

and therefore
A= max R(M,u)
ucR\ {0}

A symmetric matrix M is positive semidefinite if " Mz > 0 for all z € R".
Fact 6 The eigenvalues of a positive semidefinite matriz are all nonnegative.

PROOF. As the denominator of the Rayleigh quotient is clearly always positive, Theorem 5 implies
that the sign of each eigenvalue is determined by the sign of ' M. O

We conclude with a different, but equally important characterization of eigenvalues.

Theorem 7 (Courant-Fischer — proof omitted) Let M be a symmetric matriz with real eigen-
values M1 < xo < --- < \,. Then

A, = min max R(M,u) k=1,...,n
S:dim(S)=k ueS\{0}

where the mininum is over all subspaces S C R™ of dimension k.



