
Graph Theory

Finding a planted clique

Instructor: Nicolò Cesa-Bianchi version of May 5, 2024

The material in this handout is taken from: Luca Trevisan, Handout 7 of Beyond Worst-Case
Analysis, 2017.

Social networks are naturally modeled as undrected graphs, where the presence of an edge between
two individuals denotes friendship or shared interests. In social network analysis, one often wants to
find communities, defined as subsets of individuals who form dense clusters in the graph. A stylized
version of this task is the problem of finding a large clique in a random graph. Take Gn ∼ G(n, 12)
and suppose a clique of size k ≫ 2 log2 n is “planted” in Gn by adding all missing edges in an
arbitrary subset S of k < n vertices, where the subset S does not depend on the realization of
the random edges of Gn. Let G = (V,E) be the resulting graph. We want to know whether there
exists an efficient algorithm to find this clique. In summary, we assume G is built according to the
following process:

1. A subset S ⊂ V of size k is selected

2. Gn ∼ G(n, 12) is drawn

3. G is builts by adding to Gn all missing edges between pairs of vertices in S.

We know that ω(Gn)
p→ 2 log2 n. Therefore, the problem of finding the planted clique is meaningful

when k > 3 log2 n because—with high probability—there are no random cliques of size larger
than 3 log2 n. The simplest algorithm to find the planted clique checks every subset of V of size

k > 3 log2 n until a clique is found. The running time of this algorithm is
(
n
k

)
k2 ≥

(
n
k

)k
k2, and thus

exponential in k = Ω(log n). A better, but still inefficient algorithm is the following.

Algorithm 1 (Inefficient Clique Finder)

Input: Graph G = (V,E), integer k > 3 log2 n.
1: for all S ⊂ V with |S| = 3 log2 n do
2: if S is a clique then
3: Let T ⊆ V \ S be the set of vertices adjacent to all vertices in S
4: if T ∪ S is a clique larger than k then
5: Return T
6: end if
7: end if
8: end for
9: Return the empty set

Output: A clique of size at least k or the empty set.

The running time of this algorithm is O
(
nlogn(log n)2

)
for any k = Ω(log n), which is quasi-

polynomial in n.

1

Algorithm 2 (Clique Finder)

Input: Graph G = (V,E).
1: Let v1, . . . , nn be an ordering of the vertices in V such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).
2: for k = n, n− 1, . . . , 3 log2 n do
3: if {v1, . . . , vk} form a clique then
4: Return {v1, . . . , vk}
5: end if
6: end for
7: Return the empty set

Output: A clique of size at least 3 log2 n or the empty set.

A simple and efficient algorithm is Algorithm 2.

In order to analyze this algorithm, we look at the distribution of the degree in G(n, 12). Recall the
following special case of Chernoff-Höffding bounds.

Lemma 1 Let N have a binomial distribution of parameters n, p. Then, for any 0 < δ < 1,

N ≤ np+

√
n

2
ln

1

δ
and N ≥ np−

√
n

2
ln

1

δ

hold with probability at least 1− δ.

Now note that if Gn ∼ G(n, 12), then dGn(v) is a binomial random variable of parameters n − 1, 12
for each vertex v. Therefore, using a union bound over the n vertices, we get that with probability
at least 1− δ

2

max
v∈V

dGn(v) ≤
n− 1

2
+

√
n− 1

2
ln

2n

δ
(1)

Let S with |S| = k be the subset of vertices where the clique is planted. Each vertex in S in Gn

receives an average of k−1
2 random edges from the other vertices in S. By using Chernoff-Höffding

bounds again, we see that with probability at least 1− δ
2 the number

∣∣NGn(v)∩S
∣∣ of these random

edges from S in Gn satisfies

max
v∈S

∣∣NGn(v) ∩ S
∣∣ ≤ k − 1

2
+

√
k − 1

2
ln

2k

δ

Since each v ∈ S has actually k − 1 edges in G, this implies that, with high probability, at least

k − 1

2
−
√

k − 1

2
ln

2k

δ

edges are added to each v ∈ S. Hence, with probability at least 1− δ,

min
v∈S

dG(v) ≥
n− 1

2
−

√
n− 1

2
ln

2n

δ︸ ︷︷ ︸
random edges

+
k − 1

2
−

√
k − 1

2
ln

2k

δ︸ ︷︷ ︸
added edges

≥ n− 1

2
+

k − 1

2
− 2

√
n− 1

2
ln

2n

δ

2

Hence, if

k − 1

2
= 4

√
n− 1

2
ln

2n

δ

then with probability at least 1− δ

min
v∈S

dG(v) ≥
n− 1

2
+ 2

√
n− 1

2
ln

2n

δ

max
v∈V \S

dG(v) ≤ max
v∈V

dGn(v) ≤
n− 1

2
+

√
n− 1

2
ln

2n

δ
(using (1))

implying that, with the same probability, the k highest degree vertices in G belong to S.

We just saw that it is easy to find a hidden clique of size k = Ω
(√

n lnn
)
. We now look at the case

k = Ω(
√
n). Here we hide the dependence on ln 1

δ and simple say that any result holds with high
probability (w.h.p.).

We need the following result (stated without proof). Let Jn = 1⊤1 the all-one n × n matrix and
let λmax(M) be the largest eigenvalue of a symmetric matrix M . Note that 1⊤M1 =

∑
i,j Mi,j .

Lemma 2 If An is the adiancency matrix of Gn ∼ G
(
n, 12

)
, then λmax

(
An− 1

2Jn
)
≤ 2

√
n with high

probability.

The proof of Lemma 2 shows that 1 is close to the eigenvector of the largest eigenvalue. Now note
that for all 1 ≤ i, j ≤ n, the random variables Xi,j = An(i, j)− 1

2 are i.i.d. with zero expected value
and variance equal to 1

4 . Then, by Chernoff-Hoeffding bounds, (An1)i =
∑

j Xi,j = O
(√

n
)
w.h.p.

for any i. The lemma then shows that A1 ≤
(
2
√
n
)
1 w.h.p.

If A is now the adiacency matrix of G with a planted clique of size k in S and 1S ∈ {0, 1}n has
nonzero components only on coordinates corresponding to elements of S, we have that

λmax

(
A− Jn

2

)
= max

x : x̸=0

x⊤(A− 1
2Jn

)
x

x⊤x

≥
1⊤S

(
A− 1

2Jn
)
1S

1⊤S 1S

≥
1⊤SA1S − 1

21
⊤
S Jn1S

k

=
k(k − 1)− 1

2k
2

k

=
k

2
− 1

where we used

1⊤SA1S =
∑
i∈S

∑
j∈S

Ai,j = k(k − 1) 1⊤S Jn1S =
∑
i∈S

∑
j∈S

1 = k2

Therefore, if we pick k
2 − 1 ≥ 4

√
n, which is equivalent to |S| = Ω

(√
n
)
, then Lemma 2 tells us that

we can distinguish G with a planted clique from Gn ∼ G
(
n, 12

)
. However, we do not know yet how

to find S.

3

The intuition behind Algorithm 3, which finds S with high probability, is the following. Let L be
the top k components (in absolute value) of the eigenvector of the largest eigenvalue of A − 1

2Jn.
Then we show that L contains at least 3

4 of the elements in S. Hence, any element of S has at least
3k
4 components in L while Lemma 1 implies that all v ̸∈ S have at most k

2 +O
(√

k lnn
)
neighbors

in L with high probability.

Now let A = An + AS where An is the adiacency matrix of Gn ∼ G
(
n, 12

)
and AS is the n × n

adiacency matrix only containing the edges missing from Gn to form a clique on S. Note that the
probability that AS contains an edge between any two vertices in S is 1

2 , which is the probability
that edge is missing from Gn. Therefore, we can think of AS as the adiacency matrix of a graph
Gk ∼ G

(
k, 12

)
where, clearly, Gk and Gn are dependent. Using Lemma 2 and the union bound, we

conclude that w.h.p.,

λmax

(
An − Jn

2

)
≤ 2

√
n (2)

λmax

(
AS − JS

2

)
≤ 2

√
k (3)

where JS = 1⊤S 1S . Therefore, if x is any eigenvector for the largest eigenvalue of A− Jn
2 ,

k

2
− 1 ≤ x⊤

(
A− Jn

2

)
x

= x⊤ASx+ x⊤
(
An − Jn

2

)
x

≤ x⊤ASx+ 2
√
n (holds w.h.p. by (2))

implying

x⊤ASx ≥ k

2
− 1− 2

√
n

Now,

k

2
− 1− 2

√
n ≤ x⊤

(
AS − JS

2
+

JS
2

)
x

= x⊤
(
AS − JS

2

)
x+

1

2
x⊤(1S1⊤S)x (since JS = 1S1

⊤
S)

≤ λmax

(
AS − JS

2

)
+

1

2

(
1⊤Sx

)2
≤ 2

√
k +

1

2

(
1⊤Sx

)2
(holds w.h.p. by (3))

Therefore, (
1⊤Sx

)2 ≥ k − 2− 4
√
n− 4

√
k

Recall that ∥x∥ = 1 because x is an eigenvalue and let y be such that yi = |xi| for all i = 1, . . . , n
(so that also ∥y∥ = 1). By choosing k ≥ 10

√
n we can ensure 1⊤S y ≥

∣∣1⊤Sx∣∣ ≥ 15
16

√
k for n ≥ 256.

this gives ∥∥∥1S −
√
ky

∥∥∥2 = k + k ∥y∥2 − 2
√
k1⊤S y ≤ 2k − 2

15k

16
=

2k

16
(4)

4

This shows that
√
ky is close to 1S . We can use this insight to devise an algorithm (Algorithm 3)

that, with high probability, finds the hidden clique given G and k as input.

Algorithm 3 (Improved Clique Finder)

Input: Graph G = (V,E), k ∈ N.
1: Compute the adiacency matrix A of G
2: Let x the eigenvector of largest eigenvalue for A− 1

2Jn
3: Let L be the set of k vertices i with largest |xi|

Output: The set of k vertices in V with the largest number of neighbors in L.

Let L be the set of vertices computed in line 3 of Algorithm 3. Since ∥y∥ = 1, the smallest yi such
that i ∈ L with |L| = k must satisfy yi ≤ 1√

k
, which implies minj∈L

√
kyj ≤ 1. Therefore, there

exists 0 < t ≤ 1 such that i ∈ L if and only if
√
kyi ≥ t. Let m = |S \L|. Therefore, m elements of

S are missing from L. Since |L| = k, L also contains m elements that are not in S. Therefore,∥∥∥1S −
√
ky

∥∥∥2 = ∑
i∈S

(
1−

√
kyi

)2
+
∑
j ̸∈S

ky2j

≥
∑

i∈S\L

(
1−

√
kyi

)2
+

∑
j∈L\S

ky2j

≥ m(1− t)2 +mt2 (because 0 ≤
√
kyi < t ≤ 1 and

√
kyj > t > 0)

≥ m

2

Combining with (4) we get m ≤ 4k
16 and so L contains at least 3k

4 elements of S. Hence, any v ∈ S

has at least 3k
4 neighbours in L. On the other hand, Lemma 1 implies that

max
v∈V \S

∣∣N(v) ∩ L
∣∣ ≤ k

2
+

√
k

4
lnn

with high probability.

5

