
Graph Theory

Colorings, cliques, independent and dominating sets

Instructor: Nicolò Cesa-Bianchi version of March 12, 2024

When we model a certain problem instance in terms of a graph, we may be interested in defining
specific graph-theoretical properties that lead to further insights for solving the starting problem.
Some of these properties can be quantified in terms of real numbers. They are typically referred
to as graph parameters. A graph parameter is a function ϕ : G → R that maps the set of simple
graphs G to real values.

Graph parameters are called graph invariants because these properties only depend on the structure
of the graphs, and thus are invariant under graph isomorphisms. Two graphs G = (V,E) and
H = (V ′, E′) are isomorphic if there exists a bijective function f : V → V ′ such that (u, v) ∈ E if
and only if

(
f(u), f(v)

)
∈ E′. In this case, we write G ≃ H and the function f is called graph

isomorphism. Assuming G and H are isomorphic, we know that ϕ(G) = ϕ(H) for any graph
invariant ϕ. We now introduce some of the most common graph parameters.

The first graph parameter we introduce is based on the notion of independent set. A subset U ⊆ V
is independent in G = (V,E) if no two vertices in U are neighbors. We can equivalently define a
set U to be independent when the induced subgraph G[U ] has no edges, that is, G[U ] = (U, ∅).
The independence number α(G) is the size of the largest independent set in G. The associated
decision problem is NP-complete. It is easy to prove the sum of the independence number and the
size of the smallest vertex cover1 is always equal to the order of the graph.

The definition of independent sets is connected to that of cliques. The clique number ω(G) is
the size of the largest clique in G. The associated decision problem is NP-complete (equivalent to
independent set in the complement graph G of G).

A third well-known graph-theoretical construct that we focus on is that of vertex colorings. A
vertex coloring c : V → {1, . . . , k} of G = (V,E) is an assignment of colors {1, . . . , k} to vertices
such that (x, y) ∈ E implies c(x) ̸= c(y). G is k-colorable if there exists a coloring c with codomain
of size k. Equivalently, G is k-colorable if there exists a partition V1, . . . , Vk of V such that each
subset Vi is independent in G. The chromatic number χ(G) is the smallest integer k such that
G is k-colorable. The associated decision problem is NP-complete except for k ≤ 2. Here are some
easy facts.

• Any bipartite graph is 2-colorable (equivalent to having no odd-length cycle in the graph).
• For the clique, χ(Kn) = n. This implies ω(G) ≤ χ(G) for all G.
• For the cycle, χ(C2n) = 2 and χ(C2n+1) = 3.

Another well-known fact is given by the four-color theorem, which states that χ(G) ≤ 4 for all
planar2 graphs G. More generally, we clearly have that 1 ≤ χ(G) ≤ n, but we can further prove
that χ(G) ≤ 1 +

√
2E as shown next.

1A subset U ⊆ V is a vertex cover of G = (V,E) if all edges in E have at least an endpoint in U .
2A graph is planar when it can be drawn so that if any two edges intersect, they only do so in a vertex.
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Fact 1 For all G,

χ(G) ≤ 1

2
+

√
2|E|+ 1

4
.

Proof. Let k = χ(G) and V1, . . . , Vk be the partition of V induced by the k-coloring. Due to
the minimality of k, there is at least one edge in E for any pair (Vi, Vj) with i ̸= j. Therefore,

|E| ≥
(
k
2

)
. Solving for k gives the result. □

The chromatic number cannot be large when all vertices have small degrees. We can then prove
another upper bound on the chromatic number, which is known to be tight when G = Kn or
G = C2n+1.

Fact 2 For all G, χ(G) ≤ ∆(G) + 1.

Proof. If χ(G) > k, then there exists v ∈ V with d(v) ≥ k. Hence, if ∆(v) < k then χ(G) ≤ k,
which implies χ(G) ≤ ∆(v) + 1. □

Given that each color uniquely corresponds to an independent set, a small independence number
implies a large chromatic number.

Fact 3 For all G, χ(G)α(G) ≥ |V |.

Proof. Let k = χ(G) and V1, . . . , Vk the partition of V induced by a k-coloring of G. Since each
Vi is independent in G,

|V | =
k∑

i=1

|Vi| ≤
k∑

i=1

α(G) ≤ χ(G)α(G)

concluding the proof. □

The next important result shows that a small average degree implies a large independence number.
We being by introducing a fundamental tool that will be useful within the proof of this result.

Fact 4 (Jensen’s inequality) Let X ∈ R be a real-valued random variable such that X ∼ P for
some distribution P . Let f : R→ R be a convex function. Then, f(EP [X]) ≤ EP [f(X)].

In particular, we can consider the distribution P to be the empirical distribution with probability
mass function P (x) =

∑m
i=1

I{x=xi}
m over a certain set {x1, . . . , xm}. Given a function h : R → R,

this implies that the expectation computed over P is EP [h(X)] = 1
m

∑m
i=1 h(xi). When h is the

identity function the expectation above becomes the sample mean and Jensen’s inequality states
that

f

(
1

m

m∑
i=1

xi

)
≤ 1

m

m∑
i=1

f(xi)

Additionally, we introduce the notation C(v) = N(v)∪{v} for the neighborhood of v that includes
v itself. Now we have all the tools required for proving the following theorem.

Theorem 5 (Turán, 1941) For all G, α(G)
(
d(G) + 1

)
≥ |V |.
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Algorithm 1 Greedy construction of an independent set

Input: graph G = (V,E)
i← 1; G1 ← G
while Gi is not empty do

vi ∈ argminv∈Vi
di(v)

Gi+1 ← Gi − Ci(vi) ▷ remove Ci(vi) and all incident edges from Gi

i← i+ 1
end while
return {v1, . . . , vi−1}

Proof. Consider the following greedy algorithm to construct an independent set: pick the vertex
of smallest degree and remove it from the graph together with its neighborhood. Iterate on the
remaining graph until there are no more vertices to pick.

Let {v1, . . . , vs} be the set of s vertices picked by the algorithm. Furthermore, let G1, . . . , Gs+1 be
the sequence of graphs generated by the algorithm: each Gi = (Vi, Ei) has degree function di = dGi

and “extended” neighborhood function Ci(v) = Ni(v)∪ {v}. A graph Gi+1 is obtained from Gi by
removing the vertices in Ci(vi) along with the edges that have an endpoint in Ci(vi).

Since the algorithm removes at least one vertex (vi) at every step i, the algorithm always terminates
in a finite number s ≤ n of iterations. Notice that we can find a tighter upper bound on the number
of iterations. Consider the vertices v1, . . . , vs picked by the algorithm. Clearly, this set of vertices
forms an independent set of size s ≤ α(G). This follows from the fact that, when the algorithm
removes a vertex vi, it removes all its neighbors Ni(vi) along with it. Therefore, it cannot be the
neighbor of any vertex picked either before or after it.

For the purpose of this proof, introduce the quantity

Q(G′) =
∑

u∈V (G′)

1

1 + d(u)
,

where d(u) is the degree of u in the initial graph G. At each step i, this quantity goes down by

Q(Gi)−Q(Gi+1) =
∑
u∈Vi

1

1 + d(u)
−

∑
u∈Vi+1

1

1 + d(u)
=

∑
u∈Ci(vi)

1

1 + d(u)
.

Considering the fact that the degree of a vertex can only decrease until its removal from the graph,
we know that d(u) ≥ di(u) for all u ∈ Vi. Thus, the variation of Q at step i is bounded by∑

u∈Ci(vi)

1

1 + d(u)
≤

∑
u∈Ci(vi)

1

1 + di(u)
≤

∑
u∈Ci(vi)

1

1 + di(vi)
=
|Ci(vi)|
1 + di(vi)

= 1 ,

where we also use the fact that di(u) ≥ di(vi) for any u ∈ Vi by choice of vi. Since it takes s ≤ α(G)
steps until Q(G) goes to zero (indeed, Q(Gs+1) = 0 because Gs+1 is empty), and we decrease Q(G)
by at most one in each step, then

Q(G) = Q(G1)−Q(Gs+1) =

s∑
i=1

(
Q(Gi)−Q(Gi+1)︸ ︷︷ ︸

≤1

)
≤ s ≤ α(G) . (1)
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Now we just observe that

Q(G)

|V |
=

1

|V |
∑
v∈V

1

1 + d(v)
≥ 1

1 + 1
|V |

∑
v∈V d(v)

=
1

1 + d(G)
(2)

because of Jensen’s inequality applied to the function f(x) = 1
1+x , which is convex for x > −1. We

conclude the proof by putting together Equations (1) and (2). □

Turán’s theorem also shows that a large average degree implies a large clique number.

Corollary 6 For all G, ω(G)
(
|V | − d(G)

)
≥ |V |.

Proof. Let n = |V | and G = (V,E) be the complement of G, where e ∈ E if and only if e ̸∈ E.
If dG(v) is the degree of v in G, then its degree in G is dG(v) = n − 1 − dG(v). Consequently, if
d(G) is the average degree in G and d(G) is the one in G, then

d(G) =
1

n

∑
v∈V

dG(v) =
1

n

∑
v∈V

(
n− 1− dG(v)

)
= n− 1− d(G) .

As an independent set in G corresponds to a clique in G, we can apply Turán’s theorem and obtain

ω(G) = α(G) ≥ n

d(G) + 1
=

n

n− d(G)
,

concluding the proof. □

In this last part, we focus on a new graph invariant based on the definition of dominating set.
A subset U ⊆ V is dominating in G = (V,E) if every vertex in V \ U has a neighbor in U . The
domination number γ(G) is the size of the smallest dominating set in G. The associated decision
problem is NP-complete.

It is fairly easy to show that the domination number is always smaller than the independence
number.

Fact 7 For all G, γ(G) ≤ α(G).

Proof. Let U be an independent set of maximum cardinality. Then U is a dominating set.
Indeed, if U is not dominating then there is x ∈ V \ U without neighbors in U . But then U ∪ {x}
would be an independent set larger than U , leading to a contradiction. □

The next result shows that if all vertices have a large degree, then the domination number must be
small.

Theorem 8 (Arnautov, 1974; Payan, 1975) For all G,

γ(G)
1 + δ(G)

1 + ln
(
1 + δ(G)

) ≤ |V | .
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Proof. Let n = |V | and δ = δ(G). We run a greedy algorithm choosing the vertices for the
dominating set one by one, where in each step a vertex that covers the maximum number of yet
uncovered vertices is picked (as long as there are any), where an uncovered vertex does not lie in
the union of the sets C(v) of the vertices v chosen by the algorithm so far. Let U be the set of
currently uncovered vertices and let r = |U|. Then, the next vertex v′ chosen by the algorithm
satisfies ∑

u∈U
I{u ∈ C(v′)} = max

v∈V

∑
u∈U

I{u ∈ C(v)}

≥ E

[∑
u∈U

I{u ∈ C(X)}

]
(X ∈ V chosen uniformly at random)

=
∑
u∈U

P
(
u ∈ C(X)

)
=

∑
u∈U

|C(u)|
n

≥
∑
u∈U

δ + 1

n
=

r(δ + 1)

n
.

Adding this v′ to the set of chosen vertices, we observe that the number of uncovered vertices is
now at most r(1− (δ + 1)/n). It follows that in each iteration of the above procedure the number
of uncovered vertices decreases by a factor of 1− (δ+1)/n. The number m of steps it takes so that
|U| ≤ n

δ+1 satisfies n
(
1− δ+1

n

)m ≤ n
δ+1 . Using 1− x ≤ e−x, this implies

n · exp
(
−δ + 1

n
m

)
≤ n

δ + 1
,

which solved for m gives m ≥ n
δ+1 ln(δ + 1). Then, we can stop the greedy procedure as soon as

s = |U| ≤ n/(δ+1). Adding this set of s ≤ n/(δ+1) yet uncovered vertices gives the desired result
(the procedure returns a dominating set of size m+ s ≥ γ(G)). □
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