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Given a set S and any k ∈ {2, . . . , |S|}, [S]k is the collection of all k-element subsets of S. So,[
{1, 2, 3}

]2
=

{
{1, 2}, {1, 3}, {2, 3}

}
.

A graph G = (V,E) has a finite vertex set V and a finite edge set E ⊆ [V ]2. We use i, j, u, v, w, x
to denote vertices in V . The number |V | of vertices is the order of G. The graph of order zero is
empty. A graph is non-trivial if it has at least one edge. An element of E is denoted by e or (i, j).
If (i, j) ∈ E, then i, j denote the endpoints of the edge (the order does not matter). Note that G
has no self-loops (i, i) because (i, i) ̸∈ [V ]2. Moreover, there can be at most one edge in G between
any two pair of vertices. Such graphs are often called simple. A vertex i is incident with an edge
e if e = (i, j) for some j ∈ V \ {i}. Two vertices i, j are adjacent if (i, j) ∈ E. If E ≡ [V ]2, then
G is the complete graph (or clique) on n vertices, denoted by Kn.

If G′ = (V ′, E′) is such that V ′ ⊆ V and E′ ⊆ [V ′]2∩E, then G′ is a subgraph of G. If a subgraph
G′ is such that E′ ≡ [V ′]2∩E, then G′ is called the subgraph induced by V ′ and denoted by G[V ′].

The complement of a graph G = (V,E) is the graph G = (V,E) such that e ∈ E if and only if
e ̸∈ E for all e ∈ [V ]2.

Degrees. The neighborhood of a vertex v of G is the set N(v) of vertices that are adjacent
to v. The degree d(v) of v is the cardinality of N(v). A vertex with degree zero is isolated.
The numbers δ(G) = min {d(v) : v ∈ V } and ∆(G) = max {d(v) : v ∈ V } are the minimum and
maximum degree of G. If δ(G) = ∆(G) = k then G is k-regular.

The average degree of G is

d(G) =
1

|V |
∑
v∈V

d(v)

and we obviously have δ(G) ≤ d(G) ≤ ∆(G). A related quantity is the edge density ε(G) =
|E|/|V |. Note that

|E| = 1

2

∑
v∈V

d(v) =
1

2
d(G)|V |

implying ε(G) = d(G)/2.

Fact 1 The number of vertices of odd degree is always even in any graph.

Proof. Since |E| = 1
2

∑
v∈V d(v) is integer, then

∑
v∈V d(v) must be even. Therefore, the number

of vertices v with odd degree d(v) must be even. □

We already know that the edge density is half the average degree. Now note that the minimum
degree can be larger than the edge density. For instance, in K2 we have δ(G) = 1 and ε(G) = 1

2 .
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Fact 2 Every G with at least one edge has an induced subgraph H such that δ(H) > ε(H) ≥ ε(G).

Proof. Construct a sequence of nested subgraphs G ≡ G0, G1, . . . induced by the vertex sets
V = V0 ⊇ V1 ⊇ V2 · · · as follows. If Vi has a vertex vi of degree d(vi) ≤ ε(Gi) then Vi+1 ≡ Vi \ {vi}.
Otherwise, stop and set H = Gi. If Gi+1 is created, then

ε(Gi+1) =
|Ei+1|
|Vi+1|

=
|Ei| − d(vi)

|Vi| − 1
≥ |Ei| − ε(Gi)

|Vi| − 1
=

|Ei|
|Vi|

= ε(Gi)

When the procedure stops (say at H ≡ Gk for some k ≥ 0), then Ek is nonempty. Indeed, G0 has
at least one edge, and if |Ei+1| = 0 for some i, then all edges in Ei have vi as endpoint. But then
d(vi) = |Ei| > |Ei|/|Vi| = ε(Gi), implying that vi is not removed. Hence, Ek is not empty and since
the procedure stopped, it must be that δ(H) > ε(H) ≥ ε(G), concluding the proof. □

Paths and cycles. A path in G = (V,E) of length k ≥ 0 is a subgraph Pk containing k + 1
distinct vertices v0, . . . , vk ∈ V and k edges e1, . . . , ek ∈ E such that ei = (vi−1, vi) for i = 1, . . . , k.
If k = 0 then P0 = K1. A cycle Ck in G of length k ≥ 3 is formed when a path Pk−1 can be
extended in G to include the edge (vk−1, v0) ∈ E. The length of a shortest cycle in G is the girth
g(G), while the length of a longest cycle in G is the circumference. A chord is any edge between
two vertices of a cycle which is not itself an edge of the cycle.

If a graph has a large minimum degree, then it contains long paths and cycles.

Fact 3 Every graph G with δ(G) ≥ 2 contains a path of length δ(G) and a cycle of length at least
δ(G) + 1.

Proof. Let v0, . . . , vk be the vertices on any longest path Pk in G. Then N(vk) all belong to Pk

(otherwise Pk is not the longest path). Therefore, k ≥ d(vk) ≥ δ(G). Now let vi the vertex of Pk

with smallest index i such that (vi, vk) ∈ E. Then the vertices vi, . . . , vk form a cycle of length at
least δ(G) + 1 because the degree of vk is at least δ(G). □

The distance d(i, j) betweeen two vertices i, j is the length of the shortest path between them (if
no path exists between the two vertices, then their distance is infinite). The diameter diam(G) of
G is the largest distance between any two vertices in G (note that the diameter can be infinite, for
example when the graph has an isolated vertex). The radius rad(G) of a graph G is the smallest
distance d such that there exists a vertex whose distance from any other vertex in G is at most d.
Formally,

rad(G) = min
i∈V

max
j∈V

d(i, j)

Clearly, rad(G) ≤ diam(G). Also, let x ∈ V such that d(x, v) ≤ rad(G) for all v ∈ V . Pick any two
vertices u, v ∈ V then d(u, v) ≤ d(u, x) + d(x, v) ≤ 2 rad(G). This shows that diam(G) ≤ 2 rad(G).

Girth and diameter are related as follows.

Fact 4 Every graph G containing at least a cycle satisfies g(G) ≤ 2 diam(G) + 1.

Proof. Let C be the shortest cycle in G. If g(G) ≥ 2 diam(G) + 2, then C contains at least
2 diam(G) + 2 edges. Take any two vertices x, y at opposite extremes of C. Then x, y are con-
nected by two paths in C, say P1 and P2, whose each length is at least diam(G) + 1. On the other
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hand, the distance between x and y in G can be at most diam(G) by definition of diameter. Let
P be a path joining x to y in G. Note that not all the edges of P can be in C (otherwise, C
is not the shortest cycle in G). Then some edges of P are neither in P1 nor in P2 and, togheter
with the shortest between P1 and P2, form a cycle shorter than C. Thus we have a contradiction. □

Connectivity. A non-empty graph G is connected if any two of its vertices are linked by a path in
G. A maximal connected subgraph of G is a component of G. Any non-empty graph corresponds
to a set containing at least one component. G is k-connected if |V | > k and for all X ⊂ V with
|X| < k, the subgraph induced by V \X is connected. In words, a graph is k-connected when we
cannot disconnect the graph by removing any subset of k − 1 vertices. Every non-empty graph is
0-connected, and the 1-connected graphs are precisely all the non-empty connected graphs except
K1 (which is not 1-connected because it does not have order 2).

The largest integer k such that G is k-connected is the connectivity κ(G) of G. Thus κ(G) = 0
if and only if G is disconnected or G ≡ K1, and κ(Kn) = n− 1 for all n ≥ 1.

We now relate connectivity to minimum degree and to the existence of a set of edges whose removal
disconnects the graph.

Theorem 5 If G is non-trivial, then κ(G) ≤ |F | ≤ δ(G) where F is any smallest set of edges
whose removal causes the graph to disconnect.

Proof. Let G = (V,E) be non-trivial and let v be any vertex with minimum degree δ(G). Then
|F | ≤ δ(G) because v can be disconnected by removing the edges that are incident with N(v).
We now show that κ(G) ≤ |F | by a case analysis. Let G′ = (V,E \ F ) and note that G′ has two
connected components.

Case 1. G has a vertex v that is not incident with an edge in F . Let C be the component of G′

that contains v and consider the set VC of vertices of C that are incident with an edge of F . If we
remove these vertices, then v is disconnected from the other component of G. Hence κ(G) ≤ |VC |.
On the other hand, no edge in F can have both ends in C (otherwise, F is not minimal). Therefore,
|VC | ≤ |F |.

Case 2. All vertices of G are incident with some edge in F . Pick an arbitrary vertex v and let C
be the component of G′ that contains v. Some u ∈ N(v) are such that (v, u) ∈ F . The others nodes
in the neighborhood of v must belong to C and are incident with distinct edges of F (otherwise, F
is not minimal). Therefore d(v) ≤ |F |, which implies d(v) = |F | = δ(G), because we already know
that |F | ≤ δ(G) and d(v) ≥ δ(G) must be true. As removing N(v) disconnects v, we conclude
κ(G) ≤ δ(G) = |F |. □

Bipartite graphs. A graph G = (V,E) is bipartite if V admits a partition into 2 elements such
that every edge has its ends in different elements: vertices in the same partition element must not
be adjacent (i.e., they form an independent set). A bipartite graph in which every two vertices
from different partition elements are adjacent is called complete. Clearly, K1 and K2 are bipartite
(K1 with a trivial partition element), but K3 (the triangle) is not. We now show that this is due
to the presence of an odd cycle (a cycle of odd length).
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Fact 6 A graph is bipartite if and only if it has no odd cycles.

Proof. First, suppose that G is bipartite. If G contains a cycle v0, . . . , vk, then the even vertices
v0, v2, . . . must be all in the same partition element, which must be different from the one which all
the odd vertices v1, v3, . . . belong to. If the cycle is odd, then k is even and so v0 and vk belong to
the same partition element. But they are connected by an edge, and so G cannot be bipartite. Now
suppose that G is a nontrivial graph that has no odd cycles. It is enough to consider connected
graphs since if G is bipartite, so is every component of G (and vice versa). Consider any vertex
z ∈ V and let A = {v : d(z, v) is even}. Similarly, let B = {v : d(z, v) is odd}. Clearly, A and
B are a partition of V . We now show that A and B are independent sets. Assume that A is not
independent and suppose that x and y are adjacent vertices of A. Now let P be a shortest path
z = v0, v1, . . . , v2k = x and Q a shortest path z = u0, u1, . . . , u2m = y. Note that y cannot be on P
and x cannot be on Q. So the two paths must separate at some vertex w such that w = vj = uj .
Now consider the cycle following P from w to x, then going through (x, y), and then following Q
from y to w. This cycle has odd length, which contradicts the assumption that G has no odd cycles.
This proves that A is an independent set. Similarly, we can prove the also B is an independent set. □

Euler tours. A walk (resp., a closed walk) is a path (resp., cycle) whose vertices may not be all
distinct. A closed walk in a graph is an Euler tour if it traverses every edge of the graph exactly
once. A graph is Eulerian if it admits an Euler tour.

Theorem 7 (Euler, 1736) A connected graph is Eulerian if and only if every vertex has even
degree.

Proof. The degree condition is clearly necessary: a vertex appearing k times in an Euler tour (or
k + 1 times, if it is the starting and finishing vertex and as such counted twice) must have degree
2k. Conversely, we show by induction on |E| that every connected graph G = (V,E) with all
degrees even has an Euler tour. The induction starts trivially with |E| = 0. Now let |E| ≥ 1. Since
all degrees are even, we can find in G a non-trivial closed walk that contains no edge more than
once (see Exercise 4). Let W be such a walk of maximal length and let F be the set of its edges.
We now show that F ≡ E, implying that W is an Euler tour. For the purpose of contradiction,
suppose that E′ = E \F has at least an edge. For every vertex v ∈ V , an even number of the edges
{(v, u) : u ∈ N(v)} lies in F (because W is a closed walk containing each edge only once), so the
degrees of the subgraph G′ = (V,E′) are again all even. Since G is connected, G′ has an edge e
incident with a vertex w on W . By the induction hypothesis, the component C of G′ containing e
has an Euler tour W ′. Consider the closed walk starting at w that goes through W ′, comes back
at w, and then goes through W coming back again at w. This closed walk in G contradicts the
maximal length of W . □

Euler tours can be found in time O(|E|) using Hierholzer’s algorithm.

Hamilton cycles. A Hamilton cycle is a cycle that contains all vertices. A graph is Hamiltonian
if it contains a Hamilton cycle. A trivial example of a Hamiltonian graph is Kn for any n ≥ 3.

The following result provides a characterization of Hamiltonian graphs in terms of their closure.
Let G be a graph of order n. Then the closure of G, written [G], is constructed by adding edges that
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connect pairs of nonadjacent vertices u and v for which d(u)+d(v) ≥ n. One continues recursively,
adding one edge at the time until all nonadjacent pairs u, v satisfy d(u) + d(v) < n.

Theorem 8 (Bondy–Chvátal 1972) A graph of order at least 3 is Hamiltonian if and only if
its closure is Hamiltonian.

Note that every graph G with n ≥ 3 vertices and δ(G) ≥ n/2 is Hamiltonian because [G] ≡ Kn.
More in general, any graph G of order at least 3 such that d(u) + d(v) ≥ n for every nonadjacent
vertices u and v satisfies [G] ≡ Kn and is therefore Hamiltonian.

A characterization of Hamiltonian graphs in terms of a simply checkable property, like the vertex
degree for Eulerian graphs, is still missing.

The problem of determining whether an Hamiltonian path exists in a graph is NP-complete.

Acknowledgements. Thanks to Ivan Masnari, Andrea Rovati, and Francesco Agrimonti for
flagging mistakes and typos in earlier versions of this handout.

Exercises.

1. Show that every 2-connected graph contains a cycle.
2. Show that every connected graph G = (V,E) contains a path of length at least

min
{
2δ(G), |V | − 1

}
3. Show that every tree is a bipartite graph.
4. Show that in every non-trivial connected graph whose each vertex has even degree there exists

a non-trivial closed walk that contains no edge more than once.
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