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The set of actions is S C {0,1}4. We assume there is a fixed but unknown sequence of
loss vectors £y, lo, ... € [0,1]¢. Let also
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Let Zy,Z5, - € R? be iid. random vectors with Laplace density f(z) = %exp(—n]|z[1).
Let X, X5, ... € S be the sequence of actions chosen by FPL, where

X, = argmin ' (Lt_l + Zt) )
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We start with a preliminary lemma.
Lemma 1 (FTL-BTL). Let ¢1,0s,... an arbitrary sequence of losses and let

Z, = argminz' L,
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Then
T T
E E:i’\t < g ﬁtTZET = migl x' Ly
€
t=1 t=1 *

Proof. The statement is proven by induction on 7. The case T' = 1 is obvious. Assume now
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Since by definition
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the inductive assumption implies
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Adding £ Z7 on both sides gives the result. m



We now prove a bound on the regret of FPL, defined by
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Theorem 2. The regret of FPL is bounded by Ry < 4D~/ dT where D = max |1
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Proof. Introduce )/(\'t = argminz (Lt + Zt). We have
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The second term in (1) is bounded as follows. Note that
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)A(t = argmin z! (Lt + Zt) = argmin Z z! (ﬁs + Z, — Zs_l)
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where Zy = (0,...,0). Now apply the FTL-BTL lemma to the losses ¢, = ¢, + Z, — Z; 1 and
obtain

where zy = argminz ' Ly. Hence,
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By letting X;" = argmin z! (Lt + Z*), where Z* has the same distribution as each Z;,
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where we used
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when Zy = (0,...,0) and Z; = --- = Zp = Z*. This gives
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Using standard probability facts, we further bound
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Therefore,
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In order to bound the first term in (1), introduce the function

Fi(2) = z4(2) "4, where 2,(z) = argminz " (Ly_y + 2) .
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This allows us to write
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where in the last step we performed the change of variable 2’ = ¢, + z. This gives us
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We start by bounding the difference in the integral
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where we used e™* > 1 —x and the triangular inequality ||z — £||1 < ||z||1 + ||¢||:- Using the
positivity of Fy(z), we can thus write
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Summarizing, we have
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